首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The transition between shallow and mesophotic coral reef communities in the tropics is characterized by a significant gradient in abiotic and biotic conditions that could result in potential trade-offs in energy allocation. The mesophotic reefs in the Bahamas and the Cayman Islands have a rich sponge fauna with significantly greater percent cover of sponges than in their respective shallow reef communities, but relatively low numbers of spongivores. Plakortis angulospiculatus, a common sponge species that spans the depth gradient from shallow to mesophotic reefs in the Caribbean, regenerates faster following predation and invests more energy in protein synthesis at mesophotic depths compared to shallow reef conspecifics. However, since P. angulospiculatus from mesophotic reefs typically contain lower concentrations of chemical feeding deterrents, they are not able to defend new tissue from predation as efficiently as conspecifics from shallow reefs. Nonetheless, following exposure to predators on shallow reefs, transplanted P. angulospiculatus from mesophotic depths developed chemical deterrence to predatory fishes. A survey of bioactive extracts indicated that a specific defensive metabolite, plakortide F, varied in concentration with depth, producing altered deterrence between shallow and mesophotic reef P. angulospiculatus. Different selective pressures in shallow and mesophotic habitats have resulted in phenotypic plasticity within this sponge species that is manifested in variable chemical defense and tissue regeneration at wound sites.  相似文献   

2.
Mesophotic coral reefs (30–150 m) have been assumed to be physically and biologically connected to their shallow-water counterparts, and thus may serve as refugia for important taxonomic groups such as corals, sponges, and fish. The recent invasion of the Indo–Pacific lionfish (Pterois volitans) onto shallow reefs of the Caribbean and Bahamas has had significant, negative, effects on shallow coral reef fish populations. In the Bahamas, lionfish have extended their habitat range into mesophotic depths down to 91 m where they have reduced the diversity of several important fish guilds, including herbivores. A phase shift to an algal dominated (>50% benthic cover) community occurred simultaneously with the loss of herbivores to a depth of 61 m and caused a significant decline in corals and sponges at mesophotic depths. The effects of this invasive lionfish on mesophotic coral reefs and the subsequent changes in benthic community structure could not be explained by coral bleaching, overfishing, hurricanes, or disease independently or in combination. The significant ecological effects of the lionfish invasion into mesophotic depths of coral reefs casts doubt on whether these communities have the resilience to recover themselves or contribute to the recovery of their shallow water counterparts as refugia for key coral reef taxa.  相似文献   

3.
Macroalgal phase shifts on Caribbean reefs have been reported with increasing frequency, and recent reports of these changes on mesophotic coral reefs have raised questions regarding the mechanistic processes behind algal population expansions to deeper depths. The brown alga Lobophora variegata is a dominant species on many shallow and deep coral reefs of the Caribbean and Pacific, and it increased in percent cover (>50%) up to 61 m on Bahamian reefs following the invasion of the lionfish Pterois volitans. We examined the physiological and ecological constraints contributing to the spread of Lobophora on Bahamian reefs across a mesophotic depth gradient from 30 to 61 m, pre‐ and post‐lionfish invasion. Results indicate that there were no physiological limitations to the depth distribution of Lobophora within this range prior to the lionfish invasion. Herbivory by acanthurids and scarids in algal recruitment plots at mesophotic depths was higher prior to the lionfish invasion, and Lobophora chemical defenses were ineffective against an omnivorous fish species. In contrast, Lobophora exhibited significant allelopathic activity against the coral Montastraea cavernosa and the sponge Agelas clathrodes in laboratory assays. These data indicate that when lionfish predation on herbivorous fish released Lobophora from grazing pressure at depth, Lobophora expanded its benthic cover to a depth of 61 m, where it replaced the dominant coral and sponge species. Our results suggest that this chemically defended alga may out‐compete these species in situ, and that mesophotic reefs may be further impacted in the near future as Lobophora continues to expand to its compensation point.  相似文献   

4.
Mesophotic coral reef ecosystems remain largely unexplored with only limited information available on taxonomic composition, abundance and distribution. Yet, mesophotic reefs may serve as potential refugia for shallow-water species and thus understanding biodiversity, ecology and connectivity of deep reef communities is integral for resource management and conservation. The Caribbean coral, Montastraea cavernosa, is considered a depth generalist and is commonly found at mesophotic depths. We surveyed abundance and size-frequency of M. cavernosa populations at six shallow (10m) and six upper mesophotic (45m) sites in Bermuda and found population structure was depth dependent. The mean surface area of colonies at mesophotic sites was significantly smaller than at shallow sites, suggesting that growth rates and maximum colony surface area are limited on mesophotic reefs. Colony density was significantly higher at mesophotic sites, however, resulting in equal contributions to overall percent cover. Size-frequency distributions between shallow and mesophotic sites were also significantly different with populations at mesophotic reefs skewed towards smaller individuals. Overall, the results of this study provide valuable baseline data on population structure, which indicate that the mesophotic reefs of Bermuda support an established population of M. cavernosa.  相似文献   

5.
The vital roles that sponges play in marine habitats are well-known. However, sponges inhabiting freshwaters have been largely ignored despite having widespread distributions and often high local abundances. We used natural abundance stable isotope signatures of carbon and nitrogen (δ 13C and δ 15N) to infer the primary food source of the cosmopolitan freshwater sponge Spongilla lacustris. Our results suggest that S. lacustris feed largely on pelagic resources and may therefore link pelagic and benthic food webs. A facultative association between S. lacustris and endosymbiotic green algae caused S. lacustris to have significantly depleted carbon and nitrogen signatures that may reflect carbon and nitrogen exchange between sponges and their symbiotic algae. Isotopic data from specialist sponge consumers demonstrated that sponges hosting zoochlorellae were the major component of the diet of the spongillafly Climacia areolaris and the sponge-eating caddisfly Ceraclea resurgens suggesting that the symbiosis between freshwater sponges and algae is important to sponge predator trophic ecology. Our results help define the role of sponges in freshwater ecosystems and shed new light on the evolution and ecological consequences of a complex tri-trophic symbiosis involving freshwater sponges, zoochlorellae, and spongivorous insects.  相似文献   

6.
Mesophotic and deeper reefs of the tropics are poorly known and underexplored ecosystems worldwide. Collectively referred to as the ‘twilight zone’, depths below ~30–50 m are home to many species of reef fishes that are absent from shallower depths, including many undescribed and endemic species. We currently lack even a basic understanding of the diversity and evolutionary origins of fishes on tropical mesophotic reefs. Recent submersible collections in the Caribbean have provided new specimens that are enabling phylogenetic reconstructions that incorporate deep‐reef representatives of tropical fish genera. Here, we investigate evolutionary depth transitions in the family Gobiidae (gobies), the most diverse group of tropical marine fishes. Using divergence‐time estimation coupled with stochastic character mapping to infer the timing of shallow‐to‐deep habitat transitions in gobies, we demonstrate at least four transitions from shallow to mesophotic depths. Habitat transitions occurred in two broad time periods (Miocene, Pliocene–Pleistocene), and may have been linked to the availability of underutilized niches, as well as the evolution of morphological/behavioural adaptations for life on deep reefs. Further, our analysis shows that at least three evolutionary lineages that invaded deep habitats subsequently underwent speciation, reflecting another unique mode of radiation within the Gobiidae. Lastly, we synthesize depth distributions for 95 species of Caribbean gobies, which reveal major bathymetric faunal breaks at the boundary between euphotic and mesophotic reefs. Ultimately, our study is the first rigorous investigation into the origin of Caribbean deep‐reef fishes and provides a framework for future studies that utilize rare, deep‐reef specimens.  相似文献   

7.
Sponges constitute one of the most diverse and abundant animal groups in the marine tropical benthos especially in coral reefs, though poorly studied to species level. The aim of this study is to characterize the sponge community along a depth gradient at Isla Larga (Parque Nacional San Esteban, Venezuela) fringe reef. Net and total sedimentation, roughness index, sponge species richness, density and proportion of the bottom covered by sponges, were evaluated at seven depths (1, 3, 6, 9, 12, 15, 18 m), 17 species were identified grouped in 10 demosponges families. The highest densities and coverage corresponded to 6 m of depth (6.03ind/m2; 11%), that coincides with the lowest net sedimentation and highest substrate heterogeneity. Most abundant species were Desmapsamma anchorata, Amphimedon erina and Scopalina rueztleri. Principal component analysis divided this community in three zones according to depth. The shallow zone of the reef (1 and 3 m), where wave force and high irradiance exert a constant stress sponges, shows the lowest density and coverage by sponges. In contrast, medium depth (6, 9 y 12 m) and deep zone (15 y 18 m) with lower light and sedimentation levels seem to enhance sponge growth and survival that are reflected on the higher densities and coverage of sponges.  相似文献   

8.
Quantitative surveys of sessile benthos and fish populations associated with reef habitats across a 15–50 m depth gradient were performed by direct diver observations using rebreathers at Isla Desecheo, Puerto Rico. Statistically significant differences between depths were found for total live coral, total coral species, total benthic algae, total sponges and abiotic cover. Live coral cover was higher at the mid-shelf (20 m) and shelf-edge (25 m) stations, whereas benthic algae and sponges were the dominant sessile-benthic assemblage at mesophotic stations below 25 m. Marked shifts in the community structure of corals and benthic algae were observed across the depth gradient. A total of 119 diurnal, non-cryptic fish species were observed across the depth gradient, including 80 species distributed among 7,841 individuals counted within belt-transects. Fish species richness was positively correlated with live coral cover. However, the relationship between total fish abundance and live coral was weak. Abundance of several numerically dominant fish species varied independently from live coral cover and appeared to be more influenced by depth and/or habitat type. Statistically significant differences in the rank order of abundance of fish species at euphotic vs mesophotic stations were detected. A small assemblage of reef fishes that included the cherubfish, Centropyge argi, sunshine chromis, Chromis insolata, greenblotch parrotfish, Sparisoma atomarium, yellowcheek wrasse, Halichoeres cyanocephalus, sargassum triggerfish, Xanthichthys ringens, and the longsnout butterflyfish, Chaetodon aculeatus was most abundant or only present from stations deeper than 30 m, and thus appear to be indicator species of mesophotic habitats.  相似文献   

9.

Mesophotic coral ecosystems (MCEs) represent the lowest depth distribution inhabited by many coral reef-associated organisms. Research on fishes associated with MCEs is sparse, leading to a critical lack of knowledge of how reef fish found at mesophotic depths may vary from their shallow reef conspecifics. We investigated intraspecific variability in body condition and growth of three Hawaiian endemics collected from shallow, photic reefs (5–33 m deep) and MCEs (40–75 m) throughout the Hawaiian Archipelago and Johnston Atoll: the detritivorous goldring surgeonfish, Ctenochaetus strigosus, and the planktivorous threespot chromis, Chromis verater, and Hawaiian dascyllus, Dascyllus albisella. Estimates of body condition and size-at-age varied between shallow and mesophotic depths; however, these demographic differences were outweighed by the magnitude of variability found across the latitudinal gradient of locations sampled within the Central Pacific. Body condition and maximum body size were lowest in samples collected from shallow and mesophotic Johnston Atoll sites, with no difference occurring between depths. Samples from the Northwestern Hawaiian Islands tended to have the highest body condition and reached the largest body sizes, with differences between shallow and mesophotic sites highly variable among species. The findings of this study support newly emerging research demonstrating intraspecific variability in the life history of coral-reef fish species whose distributions span shallow and mesophotic reefs. This suggests not only that the conservation and fisheries management should take into consideration differences in the life histories of reef-fish populations across spatial scales, but also that information derived from studies of shallow fishes be applied with caution to conspecific populations in mesophotic coral environments.

  相似文献   

10.
Benthic-pelagic coupling and the role of bottom-up versus top-down processes are recognized as having a major impact on the structure of marine communities. While the roles of bottom-up processes are better appreciated they are still viewed as principally affecting the outcome of top-down processes. Sponges on coral reefs are important members of the benthic community and provide a critically important functional linkage between water-column productivity and the benthos. As active suspension feeders sponges utilize the abundant autotrophic and heterotrophic picoplankton in the water column. As a result sponges across the Caribbean basin exhibit a consistent and significant pattern of greater biomass, tube extension rate, and species numbers with increasing depth. Likewise, the abundance of their food supply also increases along a depth gradient. Using experimental manipulations it has recently been reported that predation is the primary determinant of sponge community structure. Here we provide data showing that the size and growth of the sponge Callyspongia vaginalis are significantly affected by food availability. Sponges increased in size and tube extension rate with increasing depth down to 46 m, while simultaneously exposed to the full range of potential spongivores at all depths. Additionally, we point out important flaws in the experimental design used to demonstrate the role of predation and suggest that a resolution of this important question will require well-controlled, multi-factorial experiments to examine the independent and interactive effects of predation and food abundance on the ecology of sponges.  相似文献   

11.
12.
Deeper coral reefs experience reduced temperatures and light and are often shielded from localized anthropogenic stressors such as pollution and fishing. The deep reef refugia hypothesis posits that light‐dependent stony coral species at deeper depths are buffered from thermal stress and will avoid bleaching‐related mass mortalities caused by increasing sea surface temperatures under climate change. This hypothesis has not been tested because data collection on deeper coral reefs is difficult. Here we show that deeper (mesophotic) reefs, 30–75 m depth, in the Caribbean are not refugia because they have lower bleaching threshold temperatures than shallow reefs. Over two thermal stress events, mesophotic reef bleaching was driven by a bleaching threshold that declines 0.26 °C every +10 m depth. Thus, the main premise of the deep reef refugia hypothesis that cooler environments are protective is incorrect; any increase in temperatures above the local mean warmest conditions can lead to thermal stress and bleaching. Thus, relatively cooler temperatures can no longer be considered a de facto refugium for corals and it is likely that many deeper coral reefs are as vulnerable to climate change as shallow water reefs.  相似文献   

13.

Background

Sponges have long been known to be ecologically important members of the benthic fauna on coral reefs. Recently, it has been shown that sponges are also important contributors to the nitrogen biogeochemistry of coral reefs. The studies that have been done show that most sponges are net sources of dissolved inorganic nitrogen (DIN; NH4 + and NO3 ) and that nitrification, mediated by their symbiotic prokaryotes, is the primary process involved in supplying DIN to adjacent reefs.

Methodology/Principal Findings

A natural experiment was conducted with the Caribbean sponge Xestospongia muta from three different locations (Florida Keys, USA; Lee Stocking Island, Bahamas and Little Cayman, Cayman Islands). The DIN fluxes of sponges were studied using nutrient analysis, stable isotope ratios, and isotope tracer experiments. Results showed that the fluxes of DIN were variable between locations and that X. muta can be either a source or sink of DIN. Stable isotope values of sponge and symbiotic bacterial fractions indicate that the prokaryotic community is capable of taking up both NH4 + and NO3 while the differences in δ 15N between the sponge and bacterial fractions from the NH4 + tracer experiment suggest that there is translocation of labeled N from the symbiotic bacteria to the host.

Conclusions/Significance

Nitrogen cycling in X. muta appears to be more complex than previous studies have shown and our results suggest that anaerobic processes such as denitrification or anammox occur in these sponges in addition to aerobic nitrification. Furthermore, the metabolism of this sponge and its prokaryotic symbionts may have a significant impact on the nitrogen biogeochemistry on Caribbean coral reefs by releasing large amounts of DIN, including higher NH4 + concentrations that previously reported.  相似文献   

14.
The Mediterranean spongofauna is relatively well-known for habitats shallower than 100 m, but, differently from oceanic basins, information upon diversity and functional role of sponge grounds inhabiting deep environments is much more fragmentary. Aims of this article are to characterize through ROV image analysis the population structure of the sponge assemblages found in two deep habitats of the Mediterranean Sea and to test their structuring role, mainly focusing on the demosponges Pachastrella monilifera Schmidt, 1868 and Poecillastra compressa (Bowerbank, 1866). In both study sites, the two target sponge species constitute a mixed assemblage. In the Amendolara Bank (Ionian Sea), where P. compressa is the most abundant species, sponges extend on a peculiar tabular bedrock between 120 and 180 m depth with an average total abundance of 7.3 ± 1.1 specimens m−2 (approximately 230 gWW m−2 of biomass). In contrast, the deeper assemblage of Bari Canyon (average total abundance 10.0 ± 0.7 specimens m−2, approximately 315 gWW m−2 of biomass), located in the southwestern Adriatic Sea between 380 and 500 m depth, is dominated by P. monilifera mixed with living colonies of the scleractinian Madrepora oculata Linnaeus, 1758, the latter showing a total biomass comparable to that of sponges (386 gWW m−2). Due to their erect growth habit, these sponges contribute to create complex three-dimensional habitats in otherwise homogenous environments exposed to high sedimentation rates and attract numerous species of mobile invertebrates (mainly echinoderms) and fish. Sponges themselves may represent a secondary substrate for a specialized associated fauna, such zoanthids. As demonstrated in oceanic environments sponge beds support also in the Mediterranean Sea locally rich biodiversity levels. Sponges emerge also as important elements of benthic–pelagic coupling in these deep habitats. In fact, while exploiting the suspended organic matter, about 20% of the Bari sponge assemblage is also severely affected by cidarid sea urchin grazing, responsible to cause visible damages to the sponge tissues (an average of 12.1 ± 1.8 gWW of individual biomass removed by grazing). Hence, in deep-sea ecosystems, not only the coral habitats, but also the grounds of massive sponges represent important biodiversity reservoirs and contribute to the trophic recycling of organic matter.  相似文献   

15.
Over the past decades numerous studies have reported declines in stony corals and, in many cases, phase shifts to fleshy macroalgae. However, long-term studies documenting changes in other benthic reef organisms are scarce. Here, we studied changes in cover of corals, algal turfs, benthic cyanobacterial mats, macroalgae, sponges and crustose coralline algae at four reef sites of the Caribbean islands of Curaçao and Bonaire over a time span of 40 yr. Permanent 9 m2 quadrats at 10, 20, 30 and 40 m depth were photographed at 3- to 6-yr intervals from 1973 to 2013. The temporal and spatial dynamics in the six dominant benthic groups were assessed based on image point-analysis. Our results show consistent patterns of benthic community change with a decrease in the cover of calcifying organisms across all sites and depths from 32.6 (1973) to 9.2% (2013) for corals and from 6.4 to 1% for crustose coralline algae. Initially, coral cover was replaced by algal turfs increasing from 24.5 (1973) to 38% around the early 1990s. Fleshy macroalgae, still absent in 1973, also proliferated covering 12% of the substratum approximately 20 yr later. However, these new dominants largely declined in abundance from 2002 to 2013 (11 and 2%, respectively), marking the rise of benthic cyanobacterial mats. Cyanobacterial mats became the most dominant benthic component increasing from a mere 7.1 (2002) to 22.2% (2013). The observed increase was paralleled by a small but significant increase in sponge cover (0.5 to 2.3%). Strikingly, this pattern of degradation and phase change occurred over the reef slope down to mesophotic depths of 40 m. These findings suggest that reefs dominated by algae may be less stable than previously thought and that the next phase may be the dominance of slimy cyanobacterial mats with some sponges.  相似文献   

16.
17.
Coral reefs are subjected to unprecedented levels of disturbance with population growth and climate change combining to reduce standing coral cover and stocks of reef fishes. Most of the damage is concentrated in shallow waters (<30 m deep) where humans can comfortably operate and where physical disturbances are most disruptive to marine organisms. Yet coral reefs can extend to depths exceeding 100 m, potentially offering refuge from the threats facing shallower reefs. We deployed baited remote underwater stereo-video systems (stereo-BRUVs) at depths of 10–90 m around the southern Mariana Islands to investigate whether fish species targeted by fishing in the shallows may be accruing benefits from being at depth. We show that biomass, abundance and species richness of fishery-targeted species increased from shallow reef areas to a depth of 60 m, whereas at greater depths, a lack of live coral habitat corresponded to lower numbers of fish. The majority of targeted species were found to have distributions that ranged from shallow depths (10 m) to depths of at least 70 m, emphasising that habitat, not depth, is the limiting factor in their vertical distribution. While the gradient of abundance and biomass versus depth was steepest for predatory species, the first species usually targeted by fishing, we also found that fishery-targeted herbivores prevailed in similar biomass and species richness to 60 m. Compared to shallow marine protected areas, there was clearly greater biomass of fishery-targeted species accrued in mesophotic depths. Particularly some species typically harvested by depth-limited fishing methods (e.g., spearfishing), such as the endangered humphead wrasse Cheilinus undulatus, were found in greater abundance on deeper reefs. We conclude that mesophotic depths provide essential fish habitat and refuge for fishery-targeted species, representing crucial zones for fishery management and research into the resilience of disturbed coral reef ecosystems.  相似文献   

18.
Most marine sponges establish a persistent association with a wide array of phylogenetically and physiologically diverse microbes. To date, the role of these symbiotic microbial communities in the metabolism and nutrient cycles of the sponge‐microbe consortium remains largely unknown. We identified and quantified the microbial communities associated with three common Mediterranean sponge species, Dysidea avara, Agelas oroides and Chondrosia reniformis (Demospongiae) that cohabitate coralligenous community. For each sponge we quantified the uptake and release of dissolved organic carbon (DOC) and nitrogen (DON), inorganic nitrogen and phosphate. Low microbial abundance and no evidence for DOC uptake or nitrification were found for D. avara. In contrast A. oroides and C. reniformis showed high microbial abundance (30% and 70% of their tissue occupied by microbes respectively) and both species exhibited high nitrification and high DOC and NH4+ uptake. Surprisingly, these unique metabolic pathways were mediated in each sponge species by a different, and host specific, microbial community. The functional convergence of microbial consortia found in these two sympatric sponge species, suggest that these metabolic processes may be of special relevance to the success of the holobiont.  相似文献   

19.
We analyzed an extensive dataset of over 9000 benthic and suprabenthic species found throughout the Gulf of Mexico (GoMx) to assess whether mesophotic coral ecosystems represent distinct assemblages and evaluate their potential to serve as refugia for shallow reef communities. We assessed community structure of the overall benthic community from 0 to 300 m via non-metric multidimensional scaling (NMDS) of species presence across depth bands. We used the Jaccard index of similarity to calculate the proportion of shared species between adjacent depth bands, measure species turnover with depth, and assess taxonomic overlap between shallow reefs versus progressively deeper depth bands. NMDS ordinations showed that the traditionally defined mesophotic range (30–150 m) as a whole is not a distinct community. In contrast, taxonomically distinct communities, determined by hierarchical clustering, were found at 0–70, 60–120, 110–200, and 190–300 m. Clustering highlighted an important separation in the benthic community at ~60 m, which was especially important for actinopterygian fishes. Species turnover between adjacent depths decreased with depth for all taxa combined and individual taxa, with peaks at ~60, 90–120, and 190–200 m. Fishes showed lower turnover from shallow to upper mesophotic depths (0–50 m) than all taxa combined, a substantial peak at 60 m, followed by a precipitous and continued decline in turnover thereafter. Taxonomic overlap between shallow (0–20 m) and progressively deeper zones declined steadily with depth in all taxa and individual taxa, suggesting that mid- and lower mesophotic habitats have less (but not inconsequential) potential to serve as refugia (60–150 m, 15–25% overlap with shallow habitats) than upper mesophotic zones (30–60 m, 30–45% overlap with shallow habitats) for all taxa combined. We conclude that the traditional mesophotic zone is home to three ecological communities in the GoMx, one that is confluent with shallow reefs, a distinct mesophotic assemblage spanning 60–120 m, and a third that extends onto the outer continental shelf.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号