首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
While most chemokine receptors fail to cross the chemokine class boundary with respect to the ligands that they bind, the human cytomegalovirus (HCMV)-encoded chemokine receptor US28 binds multiple CC-chemokines and the CX3C-chemokine Fractalkine. US28 binding to CC-chemokines is both necessary and sufficient to induce vascular smooth muscle cell (SMC) migration in response to HCMV infection. However, the function of Fractalkine binding to US28 is unknown. In this report, we demonstrate that Fractalkine binding to US28 not only induces migration of macrophages but also acts to inhibit RANTES-mediated SMC migration. Similarly, RANTES inhibits Fractalkine-mediated US28 migration in macrophages. While US28 binding of both RANTES and Fractalkine activate FAK and ERK-1/2, RANTES signals through Gα12 and Fractalkine through Gαq. These findings represent the first example of differential chemotactic signaling via a multiple chemokine family binding receptor that results in migration of two different cell types. Additionally, the demonstration that US28-mediated chemotaxis is both ligand-specific and cell type–specific has important implications in the role of US28 in HCMV pathogenesis.  相似文献   

3.
Chemokine receptors play fundamental roles in human physiology from embryogenesis to inflammatory response. The receptors belong to the G-protein coupled receptor class, and are activated by chemokine ligands with a range of specificities and affinities that result in a complicated network of interactions. The molecular basis for function is largely a black box, and can be directly attributed to the lack of structural information on the receptors. Studies to date indicate that function can be best described by a two-site model, that involves interactions between the receptor N-domain and ligand N-terminal loop residues (site-I), and between receptor extracellular loop and the ligand N-terminal residues (site-II). In this review, we describe how the two-site model could modulate binding affinity and ligand selectivity, and also highlight some of the unique chemokine receptor features, and their role in function.  相似文献   

4.
Chemokine receptors form a large subfamily of G protein-coupled receptors that predominantly activate heterotrimeric Gi proteins and are involved in immune cell migration. CCX-CKR is an atypical chemokine receptor with high affinity for CCL19, CCL21, and CCL25 chemokines, but is not known to activate intracellular signaling pathways. However, CCX-CKR acts as decoy receptor and efficiently internalizes these chemokines, thereby preventing their interaction with other chemokine receptors, like CCR7 and CCR9. Internalization of fluorescently labeled CCL19 correlated with β-arrestin2-GFP translocation. Moreover, recruitment of β-arrestins to CCX-CKR in response to CCL19, CCL21, and CCL25 was demonstrated using enzyme-fragment complementation and bioluminescence resonance energy transfer methods. To unravel why CCX-CKR is unable to activate Gi signaling, CCX-CKR chimeras were constructed by substituting its intracellular loops with the corresponding CCR7 or CCR9 domains. The signaling properties of chimeric CCX-CKR receptors were characterized using a cAMP-responsive element (CRE)-driven reporter gene assay. Unexpectedly, wild type CCX-CKR and a subset of the chimeras induced an increase in CRE activity in response to CCL19, CCL21, and CCL25 in the presence of the Gi inhibitor pertussis toxin. CCX-CKR signaling to CRE required an intact DRY motif. These data suggest that inactive Gi proteins impair CCX-CKR signaling most likely by hindering the interaction of this receptor with pertussis toxin-insensitive G proteins that transduce signaling to CRE. On the other hand, recruitment of the putative signaling scaffold β-arrestin to CCX-CKR in response to chemokines might allow activation of yet to be identified signal transduction pathways.  相似文献   

5.
为探讨转化生长因子β1(TGF-β1)在蜕膜基质细胞中发挥免疫调节作用的机制,本研究以人妊娠初期的蜕膜基质细胞为研究对象,经0 ng/ml、1 ng/ml、5 ng/ml和10 ng/ml的TGF-β1处理后,运用RT-PCR方法检测趋化因子mRNA的表达,Western-blot检测趋化因子蛋白质的表达.结果表明:在mRNA水平和蛋白水平,高浓度的TGF-β1能够显著的下调蜕膜基质细胞中趋化因子配体CX3CL1、CXCL12和CXCL16的表达,有意义的上调趋化因子受体CXCR4和CXCR6的表达.研究结果提示,TGF-β1对趋化因子配体/受体有显著的调节作用,并通过趋化因子参与母胎界面的免疫调节.  相似文献   

6.
Among non-communicable diseases, cardiovascular disease (CVD) is claimed to be the leading cause of death worldwide. The chemokine (C–C Motif) receptor 5 (CCR5) gene has a strong association with the development of CVD and may culminate in myocardial infarction. In this study, its potential variations have been determined using molecular dynamics approach. Single nucleotide polymorphisms (SNPs) are the predominant mutations and their deleterious effects were initially screened using prediction tools. Further, for the 75 % of deleterious non-synonymous SNPs predicted in common by the above tools, root mean square deviation (RMSD) and stability residues were determined using SWISS-PDB viewer and SRide server respectively. Accordingly, four point mutations L55Q, V131F, R223W, and G301R which had RMSD ≥2.0 Å were selected and trajectory analyses were performed. In common, all trajectory analyses reported no similarities between native and mutants. Combined mutational analysis comparing all the mutants together with the native also showed significant and similar changes. Thus we conclude that the above four mutations are the potential targets of CCR5 and may lead to CVD.  相似文献   

7.
Human β-defensins (hBDs) are believed to function as alarm molecules that stimulate the adaptive immune system when a threat is present. In addition to its antimicrobial activity, defensins present other activities such as chemoattraction of a range of different cell types to the sites of inflammation. We have solved the structure of the hBD6 by NMR spectroscopy that contains a conserved β-defensin domain followed by an extended C-terminus. We use NMR to monitor the interaction of hBD6 with microvesicles shed by breast cancer cell lines and with peptides derived from the extracellular domain of CC chemokine receptor 2 (Nt-CCR2) possessing or not possessing sulfation on Tyr26 and Tyr28. The NMR-derived model of the hBD6/CCR2 complex reveals a contiguous binding surface on hBD6, which comprises amino acid residues of the α-helix and β2–β3 loop. The microvesicle binding surface partially overlaps with the chemokine receptor interface. NMR spin relaxation suggests that free hBD6 and the hBD6/CCR2 complex exhibit microsecond-to-millisecond conformational dynamics encompassing the CCR2 binding site, which might facilitate selection of the molecular configuration optimal for binding. These data offer new insights into the structure–function relation of the hBD6–CCR2 interaction, which is a promising target for the design of novel anticancer agents.  相似文献   

8.
9.
10.
11.
12.
Prolonged opioid treatment leads to a comprehensive cellular adaptation mediated by opioid receptors, a basis to understand the development of opioid tolerance and dependence. However, the molecular mechanisms underlying opioid-induced cellular adaptation remain obscure. Recent advances in opioid receptor trafficking and signaling in cells have extensively increased our insight into the network of intracellular signal integration. This review focuses on those important intracellular biochemical processes that play critical roles in the development of opioid tolerance and dependence after opioid receptor activation, and tries to explain what happens after opioid receptor activation, and how the cellular adaptation develops from cell membrane to nucleus. Decades of research have delineated a network on opioid receptor trafficking and signaling, but the challenge remains to explain opioid tolerance and dependence from a single cellular signal network.  相似文献   

13.
Docking methodology aims to predict the experimental binding modes and affinities of small molecules within the binding site of particular receptor targets and is currently used as a standard computational tool in drug design for lead compound optimisation and in virtual screening studies to find novel biologically active molecules. The basic tools of a docking methodology include a search algorithm and an energy scoring function for generating and evaluating ligand poses. In this review, we present the search algorithms and scoring functions most commonly used in current molecular docking methods that focus on protein–ligand applications. We summarise the main topics and recent computational and methodological advances in protein–ligand docking. Protein flexibility, multiple ligand binding modes and the free-energy landscape profile for binding affinity prediction are important and interconnected challenges to be overcome by further methodological developments in the docking field.  相似文献   

14.
15.
CCX282-B, also called vercirnon, is a specific, orally-administered chemokine receptor CCR9 antagonist that regulates migration and activation of inflammatory cells in the intestine. This randomized, placebo-controlled trial was conducted to evaluate the safety and efficacy of CCX282-B in 436 patients with Crohn’s disease. Crohn’s Disease Activity Index (CDAI) scores were 250–450 and C-reactive protein >7.5 mg/L at study entry. In addition to stable concomitant Crohn’s medication (85% of subjects), subjects received placebo or CCX282-B (250 mg once daily, 250 mg twice daily, or 500 mg once daily) for 12 weeks. They then received 250 mg CCX282-B twice daily, open-label, through week 16. Subjects who had a clinical response (a ≥70 point drop in CDAI) at week 16 were randomly assigned to groups given placebo or CCX282-B (250 mg, twice daily) for 36 weeks. Primary endpoints were clinical response at Week 8 and sustained clinical response at Week 52. During the 12-week Induction period, the clinical response was highest in the group given 500 mg CCX282-B once daily. Response rates at week 8 were 49% in the placebo group, 52% in the group given CCX282-B 250 mg once daily (odds ratio [OR] = 1.12; p = .667 vs placebo), 48% in the group given CCX282-B 250 mg twice daily (OR = 0.95; p = .833), and 60% in the group given CCX282-B 500 mg once daily (OR = 1.53; p = .111). At week 12, response rates were 47%, 56% (OR = 1.44; p = .168), 49% (OR = 1.07; p = .792), and 61% (OR = 1.74; p = .039), respectively. At the end of the Maintenance period (week 52), 47% of subjects on CCX282-B were in remission, compared to 31% on placebo (OR = 2.01; p = .012); 46% showed sustained clinical responses, compared to 42% on placebo (OR = 1.14; p = .629). CCX282-B was well tolerated. Encouraging results from this clinical trial led to initiation of Phase 3 clinical trials in Crohn’s disease.

Trial Registration

ClinicalTrials.gov NCT00306215.  相似文献   

16.
Endothelin (ETB)-receptors mediate anti-apoptotic actions. Lack of functional ETB-receptors leads to increased neuronal apoptosis in the hippocampus. The increased apoptosis must be compensated by other mechanisms, however, as ETB-deficient rats display normal overall brain morphology. To illuminate on brain plasticity in ETB-receptor deficiency, we studied the expression and function of another neuroprotective system, the cannabinoid CB1-receptors, in ETB-deficient hippocampus. We show that CB1 expression in hippocampus increases postnatally in all rats but that the increase in CB1-receptor expression is significantly higher in ETB-deficient compared to wildtype littermates. Neuronal apoptosis decreases during brain maturation but remains on a significantly higher level in the ETB-deficient compared to wildtype dentate. When investigating survival of hippocampal neurons in culture, we found significant protection against hypoxia-induced cell death with CB1-analogs (noladin, (9-tetrahydrocannabinol) only in ETB-deficient neurons. We suggest that CB1-receptor upregulation in the ETB-mutant hippocampus reflects an attempt to compensate for the lack of ETB-receptors. Special issue dedicated to Dr. Bernd Hamprecht  相似文献   

17.
18.
19.
20.
Characteristics of Non-opioid β-Endorphin Receptor   总被引:4,自引:0,他引:4  
Tritium-labeled selective agonist of non-opioid beta-endorphin receptor, the decapeptide immunorphine ([3H]SLTCLVKGFY) with specific activity of 24 Ci/mmol has been prepared. By its use, non-opioid beta-endorphin receptors were revealed and characterized on mouse peritoneal macrophages and rat myocardium, spleen, adrenal, and brain membranes. The non-opioid beta-endorphin receptor of macrophages has in addition to immunorphine (Kd of the [3H]immunorphine-receptor complex was 2.4 +/- 0.1 nM) and beta-endorphin (Ki of the [3H]immunorphine specific binding was 2.9 +/- 0.2 nM) a high affinity for Fc-fragment of human IgG1, pentarphine (VKGFY), cyclopentarphine [cyclo(VKGFY)], and [Pro3]pentarphine (VKPFY) (Ki values were 0.0060 +/- 0.0004, 2.7 +/- 0.2, 2.6 +/- 0.2, and 2.8 +/- 0.2 nM, respectively) and is insensitive to naloxone and [Met5]enkephalin (Ki > 100 microM). Treatment of macrophages with trypsin resulted in the loss of their ability for the specific binding of [3H]immunorphine. Values of the specific binding of 8.4 nM [3H]immunorphine to rat adrenal, spleen, myocardium, and brain membranes were determined to be 1146.0 +/- 44.7, 698.6 +/- 28.1, 279.1 +/- 15.4, and 172.2 +/- 1.8 fmol/mg protein, respectively. Unlabeled beta-endorphin, pentarphine, [Pro3]pentarphine, cyclopentarphine, cyclodipentarphine [cyclo(VKGFYVKGFY)], and Fc-fragment of IgG1 inhibited the binding of [3H]immunorphine to membranes from these organs. No specific binding of [3H]immunorphine to rat liver, lung, kidney, and intestine membranes was found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号