首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Reactivity of chalcones with reactive species issued from methanol radiolysis was investigated in the absence or presence of dioxygen. Chalcones are natural antioxidants that are present in fruit and vegetables. Their degradation in the radiolysed solutions was followed by HPLC, NMR, FAB-LSIMS mass spectroscopy and analytical TLC in deaerated solution. Among the 18 identified radiolytic compounds, 16 were new. The formation of the radiolytic products was not influenced by A- and B-ring substitutions. To explain the degradation process, we thus suggested that the primary step was an attack of the alpha,beta-double bond by the 1-hydroxymethyl radical, either at C(alpha) or at C(beta). This step was followed by addition, cyclization or bond dissociations. Different chemical pathways were discussed that implicate the reactive species issued from methanol radiolysis. This paper highlights the relative importance of the different radical species, especially the carbon-centered radical, 1-hydroxymethyl (HMR) and the corresponding oxygen-centered isomer. In addition, an interesting unusual role of dioxygen should be noted; indeed, in the presence of dioxygen, degradation of chalcones was inhibited.  相似文献   

2.
Design and synthesis of new biomimetic materials   总被引:1,自引:0,他引:1  
In this paper, it is reported that the histidine-silane derivative Boc-His(Boc)-CONH-(CH2)3Si(OEt)3 can be polymerized via the sol-gel method or can be grafted on a silica surface. The obtained organosilicas bear histidine molecules covalently bonded on the inorganic matrix. Their Cu(II) complexes have been evaluated as oxidation catalysts for the conversion of 3,5-di-tert-butylcatechol (DTBC) to 3,5-di-tert-butylquinone (DTBQ) in the presence of dioxygen.  相似文献   

3.
V Iu Velikov 《Ontogenez》1986,17(1):93-97
The efficiency of 7% ethanol and cycloheximide (CH) as activators of parthenogenesis was compared on the in vitro matured oocytes of the CBA/C57BL (F1) mice. CH is a more potent activator but the oocytes are activated by ethanol more synchronously. The oocytes matured in the F12, F10 and RPMI 1640 media were activated by ethanol reliably better than those matured in the Minimum Essential Medium Eagle or in the M3 medium. Addition of five amino acids (arginine, alanine, serine, aspartic and glutamic acids), only ornithine or arginine, as well as prolongation of oocyte cultivation in M3 from 19.5 to 26.5 h reliably increased the percentage of activated oocytes.  相似文献   

4.
In the petals of Dahlia variabilis, hydroxylation of chalcones at position 3 can be detected, except the well-known flavonoid 3′-hydroxylation. Although the reaction is well characterized at the enzymatic level, it remained unclear whether it is catalyzed by a flavonoid 3′-hydroxylase (F3′H, EC1.14.13.21, CYP75B) with broad substrate specificity. Two novel allelic variants of F3′H were cloned from D. variabilis, which differ only in three amino acids within their 508 residues. The corresponding recombinant enzymes show significant differences in their chalcone 3-hydroxylase (CH3H) activity. A substitution of alanine at position 425 with valine enables CH3H activity, whereas the reciprocal substitution leads to a loss of CH3H activity. Interaction of the valine at position 425 with not yet identified structural properties seems to be decisive for chalcone acceptance. This is the first identification of an F3′H which is able to catalyze chalcone 3-hydroxylation to a physiologically relevant extent from any plant species.  相似文献   

5.
Few studies have dealt so far with methanogenic pathways and populations in subarctic and arctic soils. We studied the effects of temperature on rates and pathways of CH4 production and on the relative abundance and structure of the archaeal community in a mildly acidic peat from a permafrost region in Siberia (67 degrees N). We monitored the production of CH4 and CO2 over time and measured the consumption of Fe(II), ethanol and volatile fatty acids. All experiments were performed with and without specific inhibitors [2-bromoethanesulfonate (BES) for methanogenesis and CH3F for acetoclastic methanogenesis]. The optimum temperature for methanogenesis was between 26 degrees C and 28 degrees C [4.3 micromol CH4 (g dry weight)(-1) day(-1)], but the activity was high even at 4 degrees C [0.75 micromol CH4 (g dry weight)(-1) day(-1)], constituting 17% of that at 27 degrees C. The population structure of archaea was studied by terminal restriction fragment length polymorphism analysis and remained constant over a wide temperature range. Acetoclastic methanogenesis accounted for about 70% of the total methanogenesis. Most 16S rRNA gene sequences clustered with Methanosarcinales, correlating with the prevalence of acetoclastic methanogenesis. In addition, sequences clustering with Methanobacteriales were recovered. Fe reduction occurred in parallel to methanogenesis. At lower and higher temperatures Fe reduction was not affected by BES. Because butyrate was consumed during methanogenesis and accumulated when methanogenesis was inhibited (BES and CH3F), it is proposed to serve as methanogenic precursor, providing acetate and H2 by syntrophic oxidation. In addition, ethanol and caproate occurred as intermediates. Because of thermodynamic constraints, homoacetogenesis could not compete with hydrogenotrophic methanogenesis.  相似文献   

6.
The reaction of dioxygen with the ferrous forms of the cloned cytochrome c peroxidase [CCP(MI)] and mutants of CCP(MI) prepared by site-directed mutagenesis was studied by photolysis of the respective ferrous-CO complexes in the presence of dioxygen. Reaction of ferrous CCP(MI) with dioxygen transiently formed a FeII-O2 complex (bimolecular rate constant = (3.8 +/- 0.3) x 10(4) M-1 s-1 at pH 6.0; 23 degrees C) that reacted further (first-order rate constant = 4 +/- 1 s-1) to form a product with an absorption spectrum and an EPR radical signal at g = 2.00 that were identical to those of compound I formed by the reaction of CCP(MI)III with peroxide. Thus, the product of the reaction of CCP(MI)II with dioxygen retained three of the four oxidizing equivalents of dioxygen. Gel electrophoresis of the CCP(MI)II + dioxygen reaction products showed that covalent dimeric and trimeric forms of CCP(MI) were produced by the reaction of CCP(MI)II with dioxygen. Photolysis of the CCP(MI)II-CO complex in the presence of ferrous cytochrome c prevented the appearance of the cross-linked forms and resulted in the oxidation of 3 mol of cytochrome c/mol of CCP(MI)II-CO added. The results provide evidence that reaction of CCP(MI)II with dioxygen causes transient oxidation of the enzyme by 1 equiv above the normal compound I oxidation state. Mutations that eliminate the broad EPR signal at g = 2.00 characteristic of the compound I radical also prevented the rapid oxidation of the ferrous enzyme by dioxygen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The excised intestines of channel catfish, Ictalurus punctatus, were perfused at 20 or 4 degrees C for 1 h 45 min, with methylmercury (CH(3)HgCl) alone, or in the presence of excess L-cysteine (L-Cys), D-cysteine (D-Cys), L-methionine (L-Met); or with ouabain or probenecid to identify the potential CH(3)Hg(II) uptake pathways in fish intestines. A temperature effect was noted, with CH(3)Hg(II) concentrations in tissues perfused at 20 degrees C being higher than at 4 degrees C, substantiating the idea that mechanisms requiring metabolic energy are involved in CH(3)Hg(II) uptake in fish intestines. The results indicate that, when CH(3)Hg(II) is complexed as the CH(3)Hg-L-Cys complex, it is taken up via an L-neutral amino acid carrier and rapidly transported to the serosal side of the intestine. Methylmercury uptake could be inhibited by probenecid and ouabain, although probenecid had less impact on CH(3)Hg(II) uptake than ouabain. Our results for CH(3)Hg(II) uptake in the presence of D-Cys, L-Met in excess of L-Cys, or with a metal mixture further established that CH(3)Hg(II) uptake across fish intestines occurs via a variety of pathways, including an energy-dependent L-neutral amino acid carrier, and that the route and amount of accumulation were a function of CH(3)Hg(II) speciation in the digestive tract of the fish.  相似文献   

8.
The kinetics of O2 binding to a vacant coordination site on the cobalt(II) ion have been determined, revealing a radical-like character for the reaction. Reversible oxygenation of Co(II) cyclidenes (C4, C5, C6, C8, C12-bridged and unbridged) was studied by a cryogenic stopped-flow method. In the presence of axial base, kinetic parameters are insensitive to the nature of the solvent, and negative entropies of activation suggest that dissociation of a solvent molecule is not the rate-determining step for the dioxygen binding process. This is in contrast to the behavior of previously studied Co(II) complexes. A very low activation energy (1–4 kcal mol−1), typical of diffusion controlled processes, was found for dioxygen binding. The binding rate constants for the highest affinity complexes (108 M−1 s−1) are comparable to the values for natural dioxygen carriers. The size of the lacuna primarily affects the dioxygen binding rates, while the axial bases influence the dioxygen dissociation rates.  相似文献   

9.
Formation of oxygen radicals during reduction of H(2)O(2) or diperoxovanadate with vanadyl sulfate or ferrous sulfate was indicated by the 1:2:2:1 electron spin resonance (ESR) signals of the DMPO adduct typical of standard ()OH radical. Signals derived from diperoxovanadate remained unchanged in the presence of ethanol in contrast to those from H(2)O(2). This gave the clue that they represent a different radical, possibly (*)OV(O(2))(2+), formed on breaking a peroxo-bridge of diperoxovanadate complex. The above reaction mixtures evolved dioxygen or, when NADH was present, oxidized it rapidly which was accompanied by consumption of dioxygen. Operation of a cycle of peroxovanadates including this new radical is suggested to explain these redox activities both with vanadyl and ferrous sulfates. It can be triggered by ferrous ions released from cellular stores in the presence of catalytic amounts of peroxovanadates.  相似文献   

10.
The implication of NO in many inflammatory diseases has been well documented. We have previously reported that some chalcone derivatives can control the iNOS pathway in inflammatory processes. In the present study, we have assessed the NO-scavenging capacity of three chalcone derivatives (CH8, CH11, and CH12) in a competitive assay with HbO(2), a well-known physiologically relevant NO scavenger. Our data identify these chalcones as new NO scavengers. The estimated second-order rate constants (k(s)) for the reaction of the three derivatives with NO is in the same range as the value obtained for HbO(2), with CH11 exerting the greatest effect. These results suggest an additional action of these compounds on NO regulation.  相似文献   

11.
The effects of temperature on rates and pathways of CH4 production and on the abundance and structure of the archaeal community were investigated in acidic peat from a mire in northern Scandinavia (68 degrees N). We monitored the production of CH4 and CO2 over time and measured the turnover of Fe(II), ethanol, and organic acids. All experiments were performed with and without specific inhibitors (2-bromoethanesulfonate [BES] for methanogenesis and CH3F for acetoclastic methanogenesis). The optimum temperature for methanogenesis was 25 degrees C (2.3 micromol CH4.g [dry weight](-1) . day(-1)), but the activity was relatively high even at 4 degrees C (0.25 micromol CH4. g [dry weight](-1) . day(-1)). The theoretical lower limit for methanogenesis was calculated to be at -5 degrees C. The optimum temperature for growth as revealed by real-time PCR was 25 degrees C for both archaea and bacteria. The population structure of archaea was studied by terminal restriction fragment length polymorphism analysis and remained constant over a wide temperature range. Hydrogenotrophic methanogenesis accounted for about 80% of the total methanogenesis. Most 16S rRNA gene sequences that were affiliated with methanogens and all McrA sequences clustered with the exclusively hydrogenotrophic order Methanobacteriales, correlating with the prevalence of hydrogenotrophic methanogenesis. Fe reduction occurred parallel to methanogenesis and was inhibited by BES, suggesting that methanogens were involved in Fe reduction. Based upon the observed balance of substrates and thermodynamic calculations, we concluded that the ethanol pool was oxidized to acetate by the following two processes: syntrophic oxidation with methanogenesis (i) as an H2 sink and (ii) as a reductant for Fe(III). Acetate accumulated, but a considerable fraction was converted to butyrate, making volatile fatty acids important end products of anaerobic metabolism.  相似文献   

12.
Although many northern peat-forming wetlands (peatlands) are a suitable habitat for anaerobic CH 4 -producing bacteria (methanogens), net CH 4 fluxes are typically low in forested systems. We examined whether soil factors (aeration, substrate availability, peat size fractions) constrained net CH 4 production in peat from a Sphagnum -moss dominated, forested peatland in central New York State. The mean rate of net CH 4 production measured at 24° C was 79 nmol g -1 d -1 , and the mean rate of CO 2 production (respiration) was 5.7 w mol g -1 d -1 , in surface (0 to 10 cm) and subsurface (30 to 40 cm) peat. Saturated peat (900% water content) exposed to oxic conditions for 2 days or 14 days showed no net CH 4 production when subsequently exposed to anoxic conditions. Rates of CO 2 production, measured concomitantly, were essentially the same under oxic and anoxic conditions, and net CH 4 consumption under oxic conditions was barely affected by short-term exposure to anoxic conditions. Therefore, methanogens were particularly sensitive to aeration. Net CH 4 production in whole peat increased within hours of adding either acetate, glucose, or ethanol, substrates that methanogens can convert directly or indirectly into CH 4 , indicating that availability of these substrate might limit net CH 4 production in situ. In longer incubations of 30 days, only ethanol addition stimulated a large increase in net CH 4 production, suggesting growth in the population of methanogens when ethanol was available. We fractionated peat into size fractions and the largest sized fraction (> 1.19 mm), composed mostly of roots, showed the greatest net CH 4 production, although net CH 4 production in smaller fractions showed the largest response to ethanol addition. The circumstantial evidence presented here, that ethanol coming from plant roots supports net CH 4 production in forested sites, merits more research.  相似文献   

13.
Buffer-soluble extracts of acetate-grown Methanosarcina barkeri catalyzed methanogenesis from acetate in the presence of hydrogen and ATP. The rates of methane formation from either acetate plus ATP, or acetylphosphate without ATP added, were approximately doubled by the addition of coenzyme A (CoA). In vitro methyl group transfer from [2-14C]acetate to form [14CH3]methyl coenzyme M (14CH3S-CoM) was monitored by causing the accumulation of 14CH3S-CoM (14CH3-SCH2CH2SO3-) in the presence of 2-bromoethanesulfonate. The rate of 14CH3S-CoM formation was increased 2.5-fold by 0.2 mM CoA.  相似文献   

14.
The health‐promoting property of diets rich in fruits and vegetables is based, in part, on the additive and synergistic effects of multiple antioxidants. In an attempt to further enhance food quality, we introduced into crops the capability to synthesize a yellow antioxidant, aureusidin, that is normally produced only by some ornamental plants. For this purpose, the snapdragon (Antirrhinum majus) chalcone 4′‐O‐glucosyltransferase (Am4’CGT) and aureusidin synthase (AmAs1) genes, which catalyse the synthesis of aureusidin from chalcone, were expressed in tobacco (Nicotiana tabacum) and lettuce (Lactuca sativa) plants that displayed a functionally active chalcone/flavanone biosynthetic pathway. Leaves of the resulting transgenic plants developed a yellow hue and displayed higher superoxide dismutase (SOD) inhibiting and oxygen radical absorbance capacity (ORAC) activities than control leaves. Our results suggest that the nutritional qualities of leafy vegetables can be enhanced through the introduction of aurone biosynthetic pathways.  相似文献   

15.
Using the electron spin resonance/spin trapping system, 4-pyridyl 1-oxide N-tert-butylnitrone (4-POBN)/ethanol, hydroxyl radical was detected as the alpha-hydroxyethyl spin trapped adduct of 4-POBN, 4-POBN-CH(CH3)OH, from phorbol 12-myristate 13-acetate-stimulated human neutrophils and monocytes without the addition of supplemental iron. 4-POBN-CH(CH3)OH was stable in the presence of a neutrophil-derived superoxide flux. Hydroxyl radical formation was inhibited by treatment with superoxide dismutase, catalase, and azide. Treatment with a series of transition metal chelators did not appreciably alter 4-POBN-CH(CH3)OH, which suggested that hydroxyl radical generation was mediated by a mechanism independent of the transition metal-catalyzed Haber-Weiss reaction. Kinetic differences between transition metal-dependent and -independent mechanisms of hydroxyl radical generation by stimulated neutrophils were demonstrated by a greater rate of 4-POBN-CH(CH3)-OH accumulation in the presence of supplemental iron. Detection of hydroxyl radical from stimulated monocyte-derived macrophages, which lack myeloperoxidase, required the addition of supplemental iron. The addition of purified myeloperoxidase to an enzymatic superoxide generating system resulted in the detection of hydroxyl radical that was dependent upon the presence of chloride and was inhibited by superoxide dismutase, catalase, and azide. These findings implicated the reaction of hypochlorous acid and superoxide to produce hydroxyl radical. 4-POBN-CH(CH3)OH was not observed upon stimulation of myeloperoxidase-deficient neutrophils, whereas addition of myeloperoxidase to the reaction mixture resulted in the detection of hydroxyl radical. These results support the ability of human neutrophils and monocytes to generate hydroxyl radical through a myeloperoxidase-dependent mechanism.  相似文献   

16.
Soluble methane monooxygenase (sMMO) contains a nonheme, carboxylate-bridged diiron site that activates dioxygen in the catalytic oxidation of hydrocarbon substrates. Oxygen kinetic isotope effects (KIEs) have been determined under steady-state conditions for the sMMO-catalyzed oxidation of CH(3)CN, a liquid substrate analog. Kinetic studies of the steady-state sMMO reaction revealed a competition between fully coupled oxygenase activity, which produced glycolonitrile (HOCH(2)CN) and uncoupled oxidase activity that led to water formation. The oxygen KIE was measured independently for both the oxygenase and oxidase reactions, and values of 1.0152 +/- 0.0007 and 1.0167 +/- 0.0010 were obtained, respectively. The isotope effects and separate dioxygen binding studies do not support irreversible formation of an enzyme-dioxygen Michaelis complex. Additional mechanistic implications are discussed in the context of previous data obtained from single turnover and steady-state kinetic studies.  相似文献   

17.
Hirai S  Kim YI  Goto T  Kang MS  Yoshimura M  Obata A  Yu R  Kawada T 《Life sciences》2007,81(16):1272-1279
Obese adipose tissue is characterized by an enhanced infiltration of macrophages. It is considered that the paracrine loop involving monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)-alpha between adipocytes and macrophages establishes a vicious cycle that augments the inflammatory changes and insulin resistance in obese adipose tissue. Polyphenols, which are widely distributed in fruit and vegetables, can act as antioxidants and some of them are also reported to have anti-inflammatory properties. Tomato is one of the most popular and extensively consumed vegetable crops worldwide, which also contains many flavonoids, mainly naringenin chalcone. We investigated the effect of flavonoids, including naringenin chalcone, on the production of proinflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophages and in the interaction between adipocytes and macrophages. Naringenin chalcone inhibited the production of TNF-alpha, MCP-1, and nitric oxide (NO) by LPS-stimulated RAW 264 macrophages in a dose-dependent manner. Coculture of 3T3-L1 adipocytes and RAW 264 macrophages markedly enhanced the production of TNF-alpha, MCP-1, and NO compared with the control cultures; however, treatment with naringenin chalcone dose-dependently inhibited the production of these proinflammatory mediators. These results indicate that naringenin chalcone exhibits anti-inflammatory properties by inhibiting the production of proinflammatory cytokines in the interaction between adipocytes and macrophages. Naringenin chalcone may be useful for ameliorating the inflammatory changes in obese adipose tissue.  相似文献   

18.
The soluble methane monooxygenase system from Methylococcus capsulatus (Bath) catalyzes the oxidation of methane to methanol and water utilizing dioxygen at a non-heme, carboxylate-bridged diiron center housed in the hydroxylase (H) component. To probe the nature of the reductive activation of dioxygen in this system, reactions of an analogous molecule, nitric oxide, with the diiron(II) form of the enzyme (Hred) were investigated by both continuous and discontinuous kinetics methodologies using optical, EPR, and M?ssbauer spectroscopy. Reaction of NO with Hred affords a dinitrosyl species, designated Hdinitrosyl, with optical spectra (lambdamax = 450 and 620 nm) and M?ssbauer parameters (delta = 0.72 mm/s, DeltaEQ = 1.55 mm/s) similar to those of synthetic dinitrosyl analogues and of the dinitrosyl adduct of the reduced ribonucleotide reductase R2 (RNR-R2) protein. The Hdinitrosyl species models features of the Hperoxo intermediate formed in the analogous dioxygen reaction. In the presence of protein B, Hdinitrosyl builds up with approximately the same rate constant as Hperoxo ( approximately 26 s-1) at 4 degrees C. In the absence of protein B, the kinetics of Hdinitrosyl formation were best fit with a biphasic A --> B --> C model, indicating the presence of an intermediate species between Hred and Hdinitrosyl. This result contrasts with the reaction of Hred with dioxygen, in which the Hperoxo intermediate forms in measurable quantities only in the presence of protein B. These findings suggest that protein B may alter the positioning but not the availability of coordination sites on iron for exogenous ligand binding and reactivity.  相似文献   

19.
The alkyldiazenes RN = NH (R = CH3 or C2H5) react with reduced microsomal cytochrome P450 leading to complexes exhibiting a Soret peak at 446 nm. Upon oxidation of the [cytochrome P450-Fe(II)(CH3N = NH)] complex with limited amounts of dioxygen, a new complex characterized by a Soret peak at 486 nm is formed. The latter complex was also formed upon slow reaction of methyldiazene with microsomal cytochrome P450-Fe(III) or in situ oxidation of methylhydrazine by limited amounts of O2 or ferricyanide. This complex is rapidly destroyed by O2 or ferricyanide in excess and more slowly by excess dithionite in the presence of CO. Reactions of ethyldiazene or benzyldiazene with cytochrome P450-Fe(III) afforded similar complexes characterized by Soret peaks around 480 nm. These results, when compared to those recently described on reactions of monosubstituted hydrazines RNHNH2 and diazenes RN = NH with hemoglobin and iron-porphyrins, are consistent with a [cytochrome P450-Fe(II)(RN = NH)] structure for the 446-nm-absorbing complexes and a sigma-alkyl cytochrome P450-Fe(III)-R structure for the complexes characterized by a Soret peak around 480 nm. They also suggest a sigma-cytochrome P450-Fe(III)-Ph structure for the complex derived from phenylhydrazine oxidation, recently described in the literature. Finally, they provide the first evidence that cytochrome P450-Fe(III)-R complexes are formed upon microsomal oxidation of alkyl or phenylhydrazines.  相似文献   

20.
The synthesis and crystallographic characterization of a series of diiron(II) complexes with sterically hindered terphenyl carboxylate ligands and alkyl amine donors are presented. The compounds [Fe(2)(mu-O(2)CAr(Tol))(4)(L)(2)] (L=NH(2)(CH(2))(2)SBn (1); NH(2)(CH(2))(3)SMe (2); NH(2)(CH(2))(3)CCH (3)), where (-)O(2)CAr(Tol) is 2,6-di(p-tolyl)benzoate, and [Fe(2)(mu-O(2)CAr(Xyl))(2)(O(2)CAr(Xyl))(2)(L)(2)] (L=NH(2)(CH(2))(3)SMe (4); NH(2)(CH(2))(3)CCH (5)), where (-)O(2)CAr(Xyl) is 2,6-di(3,5-dimethylphenyl)benzoate, were prepared as small molecule mimics of the catalytic sites of carboxylate-bridged non-heme diiron enzymes. The compounds with the (-)O(2)CAr(Tol) carboxylate form tetrabridged structures, but those containing the more sterically demanding (-)O(2)CAr(Xyl) ligand have only two bridging ligands. The ancillary nitrogen ligands in these carboxylate-rich complexes incorporate potential substrates for the reactive metal centers. Their oxygenation chemistry was studied by product analysis of the organic fragments following decomposition. Compound 1 reacts with dioxygen to afford PhCHO in approximately 30% yield, attributed to oxidative dealkylation of the pendant benzyl group. Compound 3 decomposes to form Fe(II)Fe(III) and Fe(III)Fe(IV) mixed-valence species by established bimolecular pathways upon exposure to dioxygen at low temperatures. Upon decomposition, the alkyne-substituted amine ligand was recovered quantitatively. When the (-)O(2)CAr(Tol) carboxylate was replaced by the (-)O(2)CAr(Xyl) ligand in 5, different behavior was observed. The six-coordinate iron(III) complex with one bidentate and two monodentate carboxylate ligands, [Fe(O(2)CAr(Xyl))(3)(NH(2)(CH(2))(3)CCH)(2)] (6), was isolated from the reaction mixture following oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号