首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
G.F. Azzone  T. Pozzan  E. Viola  P. Arslan 《BBA》1978,501(2):317-329
1. The aerobic uptake of inorganic ions, such as 86Rb+ or 125I?, by submitochondrial particles, is about one order of magnitude lower than the uptake of organic ions, such as acridines or 8-anilino-1-naphthalene sulphonate. The values of ΔpH, the transmembrane pH differential, and Δψ, the transmembrane membrane potential are between 60 and 100 mV when calculated on the inorganic ions and between 150 and 240 mV when calculated on the organic ions. The discrepancy between the ΔpH and Δψ values from organic and inorganic ions is large at high but not at low ion/protein ratios.2. In the absence of weak bases and strong acids the values of Δ\?gmH, the proton electrochemical potential difference, are close to 100 mV and the magnitude of ΔpH and Δψ are similar. Weak bases decrease ΔpH and enhance Δψ. Strong acids decrease Δψ and enhance ΔpH. Interchangeability of ΔpH with Δψ occurs at low concentrations of weak bases and strong acids. High concentrations of weak bases and strong acids cause depression of Δ\?gmH.3. Concentrations of weak bases capable of abolishing ΔpH, do not affect ATP synthesis. Concentrations of strong acids capable of abolishing Δψ affect only slightly ATP synthesis. Concentrations of weak bases and strong acids capable of causing a decline of ΔpH + Δψ inhibit ATP synthesis.4. Depression of Δ\?gmH is paralleled by inhibition of ATP synthesis and decline of ΔGp, the phosphate potential. Abolition of ATP synthesis occurs only when Δ\?gmH is below 20 mV. The ΔGp\?gmH ratio increases hyperbolically with the decrease of Δ\?gmH.  相似文献   

2.
Proton electrochemical gradient and phosphate potential in mitochondria   总被引:4,自引:0,他引:4  
The paper reports an analysis of the relationship between deltamuH the proton electrochemical potential difference, and deltaGp, the phosphate potential. Depression of deltamuH and deltaGp has been obtained by titration with: (a) carbonylcyanide trifluoromethoxyphenylhydrazone; (b) nigericin (+ valinomycin); (c) KCl (+ valinomycin); and (d) rotenone. The uncoupler depresses deltamuH more than nigericin (+ valinomycin), KCl (+ valinomycin) and rotenone at equivalent deltaGp. The deltaGp/deltamuH ratio is about 3 at high values of deltamuH. When deltaGp and deltamuH are depressed by nigericin (4 valinomycin) the deltaGp/deltamuH ratio remains constant. When deltaGp and deltamuH are depressed by uncouplers, the deltaGp/deltamuH ratio increases hyperbolically tending to infinity while deltamuH tends to zero. The absence of constant proportionality between deltaGp and deltamuH indicates that the proton gradients driving ATP synthesis presumably operate within microscopic environments.  相似文献   

3.
Proteoliposome vesicles containing both bacteriorhodopsin of Halobacterium halobium and H+-translocating ATPase [EC 3.6,1.3] of a thermophilic bacterium, PS3, (TF0-F1) were reconstituted by either the dialysis method or the sonication method. Generation of the electrochemical proton gradient (deltamuH+) in these vesicles was measured using 9-aminoacridine for estimation of the chemical (deltapH) component and 8-anilinonaphthalene sulfonate for the electrical (deltaphi) component). In illuminated bacteriorhodopsin-vesicles the deltamuH+ reached 180-190 mV when reconstituted by the dialysis method and 210-220 mV when reconstituted by the sonication method. Vesicles reconstituted from both TF0-F1 and bacteriorhodopsin by the dialysis method generated a deltapH+ of about 200 mV on addition of ATP, while vesicles prepared by the sonication method generated very little deltamuH+, if any. These vesicles generated similar deltamuH+ on illumination to that found in bacteriorhodopsin-vesicles. Using vesicles reconstituted from both TF0-F1 and bacteriorhodopsin by the dialysis method, light dependent ATP synthesis was measured in relation to deltamuH+ formation. It was necessary to generate a deltamuH+ of above 170 mV for demonstration of appreciable formation of ATP and the greater the deltamuH+, the faster the rate of ATP synthesis.  相似文献   

4.
The relation between the intramitochondrial and extramitochondrial ratio ATP/ADP, the transmembrane potential and pH gradient is investigated in the present communication. For this purpose mitochondria are equilibrated with added [14C]ATP in the presence of substrate and oligomycin for eliminating phosphate transfer by ATPase. The membrane potential was measured by the distribution of 86Rb+ in the presence of valinomycin, the deltapH by the distribution of [14C]acetate. In the energized state by varying deltapsi between 60 and 160 mV, the internal (ATP/ADP)i is decreased 30-fold, the external (ATP/ADP)e remains largely constant. As a result, the deltalog (ATP/ADP)e/(ATP/ADP)i = deltalogphi is increased linerly with deltapsi according to the following relation: deltalogphi = 0.85 deltapsi - 0.35. The deltapH was changed between 0.1 and 0.8 by increasing the Pi concentration causing only a minor decrease of deltalogphi would be expected if the ATP-ADP exchange has a significant electroneutral portion. Also in the uncoupled and respiration-inhibited state the same function between deltalogphi and deltapsi is found as in the energized states. It is concluded that under these conditions the ATP-ADP exchange is largely electrical.  相似文献   

5.
S Ramos  H R Kaback 《Biochemistry》1977,16(19):4270-4275
Experiments are presented in which the proton electrochemical gradient (deltamuH+) IN Escherichia coli membrane vesicles (interior negative and alkaline) was measured under a variety of conditions and compared with steady-state levels of accumulation of lactose, proline, D-lactate, and glucose-6-P measured under identical conditions. Accumulation of lactose and proline is proportional to the magnitude of deltamuH+ at pH 5.5, where the pH gradient (deltapH) and the electrical potential (deltapsi) both contribute to deltamuH+, and at pH 7.5, where deltapsi represents the only component of deltamuH+. Moreover, the proportionality constants between deltamuH+ and lactose or proline accumulation indicate that the proton:substrate stoichiometries are 1:1 at pH 5.5 and 2:1 at pH 7.5. Evidence is also presented which indicates that the functional group responsible for the increase in proton:proline stoichiometry has a pK of approximately 6.8. Accumulation of D-lactate and glucose-6-P is directly related to the magnitude of deltapH at pH 5.5, and stoichiometry values of one and approximately 1.7 are obtained for D-lactate and glucose-6-P, respectively, at this pH. At pH 7.5, on the other hand, accumulation of each organic acid bears a linear relationship to deltapsi, and proton:substrate stoichiometries of unity are observed in both instances. The results are consistent with the models discussed by Rottenberg (Rottenberg, H. (1976), FEBS Lett. 66, 159).  相似文献   

6.
The light-dependent uptake of triphenylmethylphosphonium (TPMP+) and of 5,5-dimethyloxazolidine-2,4-dione (DMO) by starved purple cells of Halobacterium halobium was investigated. DMO uptake was used to calculate the pH difference (deltapH) across the membrane, and TPMP+ was used as an index of the electrical potential difference, deltapsi. Under most conditions, both in the light and in the dark, the cells are more alkaline than the medium. In the light at pH 6.6, deltapH amounts to 0.6-0.8 pH unit. Its value can be increased to 1.5-2.0 by either incubating the cells with TPMP+ (10(-3) M) or at low external pH (5.5). --deltapH can be lowered by uncoupler or by nigericin. The TPMP+ uptake by the cells indicates a large deltapsi across the membrane, negative inside. It was estimated that in the light, at pH 6.6, deltapsi might reach a value of about 100 mV and that consequently the electrical equivalent of the proton electrochemical potential difference, deltamuH+/F, amounts under these conditions to about 140 mV. The effects of different ionophores on the light-drive proton extrusion by the cells were in agreement with the effects of these compounds on --deltapH.  相似文献   

7.
Bacteria transduce and conserve energy at the plasma membrane in the form of an electrochemical gradient of hydrogen ions (deltap). Energized cells of Streptococcus lactis accumulate K+ ions presumably in exchange for H+. We reasoned that if the movement of H+ is limited, then an increase in H+ efflux, effected by potassium transport inward, should result in changes in the steady-state deltap. We determined the electrical gradient (deltapsi) from the fluorescence of a membrane potential-sensitive cyanine dye, and the chemical H+ gradient (deltapH) from the distribution of a weak acid. The deltap was also determined independently from the accumulation levels of the non-metabolizable sugar thiomethyl-beta-galactoside. KCl addition to cells fermenting glucose or arginine at pH 5 changed the deltap very little, but lowered the deltapsi, while increasing the deltapH. At pH 7, the deltapH only increased slightly; thus, the decrease in deltapsi, effected by addition of potassium ions, resulted in a lowered steady-state deltap. These effects were shown not to be due to swelling or shrinking of the cells. Thus, in these nongrowing cells, under conditions of energy utilization for the active transport of K+, the components of deltap can vary depending on the limitations on the net movement of protons.  相似文献   

8.
The possibility is analyzed that the pH of the water space localized inside the invagination of a membrane can differ from the pH of the external bulk buffer outside the invagination. The proton flow responsible for decreased pH values inside mitochondrial cristae and membrane invaginations of cyanobacteria has been calculated. If deltapsi (electric potential difference) inside and outside the invaginations is the same, there may exist a lateral microheterogeneity of transmembrane deltapH, and hence deltamu-H+. It seems that the invagination is a kind of buffer for accumulating deltamu-H+ in membrane systems. In eutrified waters (pH > 9) and also under the conditions of a sudden decrease or increase of light, or of a respiratory substrate of O2, ATP synthesis should proceed in the invaginated rather than in the flat regions of a membrane.  相似文献   

9.
The electrochemical proton gradient in Escherichia coli membrane vesicles.   总被引:25,自引:0,他引:25  
S Ramos  H R Kaback 《Biochemistry》1977,16(5):848-854
Membrane vesicles isolated from Escherichia coli grown under various conditions generate a transmembrane pH gradient (delta pH) of about 2 pH units (interior alkaline) under appropriate conditions when assayed by flow dialysis. Using the distribution of weak acids to measure delta pH and the distribution of the lipophilic cation triphenylmethylphosphonium to measure the electrical potential (delta psi) across the membrane, the vesicles are demonstrated to develop an electrochemical proton gradient (delta-muH+) of almost - 200 mV (interior negative and alkaline) at pH 5.5 in the presence of reduced phenazine methosulfate or D-lactate, the major component of which is a deltapH of about - 120 mV. As external pH is increased, deltapH decreases, reaching 0 at about pH 7.5 and above, while delta psi remains at about - 75 mV and internal pH remains at pH 7.5-7.8. The variations in deltapH correlate with changes in the oxidation of reduced phenazine methosulfate or D-lactate, both of which vary with external pH in a manner similar to that described for deltapH. Finally, deltapH and delta psi can be varied reciprocally in the presence of valinomycin and nigericin with little change in delta-muH+ and no change in respiratory activity. These data and those presented in the following paper (Ramos and Kaback 1976) provide strong support for the role of chemiosmotic phenomena in active transport and extend certain aspects of the chemiosmotic hypothesis.  相似文献   

10.
Most nutrients and ions in bacteria, yeasts, algae, and plants are transported uphill at the expense of a gradient of the electrochemical potential of protons deltamu-H+ (a type of secondary active transport). Diagnosis of such transports rests on the determination of the transmembrane electrical potential difference deltapsi and the difference of pH at the two membrane sides. The behavior of kinetic parameters K(T) (the half-saturation constant) and J(max), (the maximum rate of transport) upon changing driving ion concentrations and electrical potentials may be used to determine the molecular details of the transport reaction. Equilibrium accumulation ratios of driven solutes are expected to be in agreement with the deltapsi and deltapH measured independently, as well as with the Haldane-type expression involving K(T) and J(max). Different stoichiometries of H+/solute, as well as intramembrane effects of pH and deltapsi, may account for some of the observed inconsistencies.  相似文献   

11.
The electrical and chemical components of the electrochemical proton gradient of submitochondrial particles can be monitored simultaneously by continuously recording optical signals from the probes oxonol-VI and 9-aminoacridine. Either respiration or ATP hydrolysis causes a red shift in the absorption spectrum of oxonol-VI indicative of a membrane potential and a decrease of the fluorescence of 9-aminoacridine indicative of a pH gradient. The magnitude of the membrane potential and pH gradient formed by respiring submitochondrial particles can be modulated by the thermodynamic phosphorylation potential (deltaGp) of the adenine nucleotide system. deltaGp is the Gibbs free energy of ATP synthesis and is defined by the relationship deltaGp = -deltaG'o + RTln([ATP]/[ADP][Pi] where deltaG'o is the standard free energy of ATP hydrolysis. Increasing values of deltaGp cause an increase in the steady state magnitudes of both the membrane potential and pH gradient. Thermodynamic phosphorylation potential titration experiments indicate that the electrochemical proton gradient normally maintained by respiring submitochondrial particles has an energy equivalent to 10.5 to 10.9 kcal/mol.  相似文献   

12.
The rates of both forward and reverse electron transfer in phosphorylating submitochondrial particles from bovine heart can be controlled by the thermodynamic phosphorylation potential (deltaGp) of the adenine nucleotide system. deltaGp is the Gibbs free energy of ATP synthesis and is defined by the relationship deltaGp = -deltaG'o + RTln([ATP]/[ADP][Pi]) where deltaG'o is the standard free energy of ATP hydrolysis. Studies of the effects of deltaGp on NADH respiration and the reduction of NAD+ by succinate show that increasing values of deltaGp cause an inhibition of forward electron transfer and a stimulation of reverse electron transfer. Between deltaGp values of 7.6 and 13.0 kcal/mol the rate of NADH respiration decreased 3-fold and the rate of NAD+ reduction by succinate increased 3-fold. Indirect phosphorylation potential titration experiments as well as direct chemical measurements indicate that steady state levels of ATP, ADP, and Pi are established during NADH respiration which correspond to a deltaGp equal to 10.7 to 11.4 kcal/mol.  相似文献   

13.
The H(+)/ATP ratio and the standard Gibbs free energy of ATP synthesis were determined with a new method using a chemiosmotic model system. The purified H(+)-translocating ATP synthase from chloroplasts was reconstituted into phosphatidylcholine/phosphatidic acid liposomes. During reconstitution, the internal phase was equilibrated with the reconstitution medium, and thereby the pH of the internal liposomal phase, pH(in), could be measured with a conventional glass electrode. The rates of ATP synthesis and hydrolysis were measured with the luciferin/luciferase assay after an acid-base transition at different [ATP]/([ADP][P(i)]) ratios as a function of deltapH, analysing the range from the ATP synthesis to the ATP hydrolysis direction and the deltapH at equilibrium, deltapH (eq) (zero net rate), was determined. The analysis of the [ATP]/([ADP][P(i)]) ratio as a function of deltapH (eq) and of the transmembrane electrochemical potential difference, delta micro approximately (H)(+) (eq), resulted in H(+)/ATP ratios of 3.9 +/- 0.2 at pH 8.45 and 4.0 +/- 0.3 at pH 8.05. The standard Gibbs free energies of ATP synthesis were determined to be 37 +/- 2 kJ/mol at pH 8.45 and 36 +/- 3 kJ/mol at pH 8.05.  相似文献   

14.
The transmembrane electrical potential (deltaphi), the proton flux (H+), the rate of electron transport (e), the pH gradient (deltapH) and the rate of phosphorylation (ATP) were measured in chloroplasts of spinach. Photosynthesis was excited periodically with flashes of variable frequencies and intensities. A new method is described for determining the rate of electron transport and proton flux. Under conditions where the rate of electron transport and proton flux are not pH controlled the following correlations were found in the range 50 mV less than or equal to deltaphi less than or equal to 125 mV and 1.8 less than or equal to deltapH less than or equal to 2.7: (1) The pH gradient, deltapH, increases with H+ independently of Phout between 7-9. (2) The rate of phosphorylation, ATP, depends exponentially on deltapH (at constant deltaphi) and is independent of pHout between 7-9. (3) The rate of phosphorylation, ATP, depends also on deltaphi (at constant deltapH and at constant proton flux H+). (4) The proton flux via the ATPase pathway, Hp+, depends non-linearly on the ratio of the proton concentrations: Hp+ approximately (Hin+/Hout+)b, (b=2.3--2.6). The proton flux via the basal pathway, Hb+, depends linearly on the ratio of the proton concentrations: Hb+ approximately (Hin/Hout). (5) The ratio deltaH+/ATP (e/ATP, i.e. the ratio of the total proton flux, Hp+ + Hb+, and the rate of ATP formation, ATP, depends strongly on deltaphi and on deltapH. The ratio is deltaH+/ATP approximately 3 (e/ATP approximately 1.5) at deltapH 2.7 and deltaphi = 125 mV. (6) It is supposed that the reason for the dependence of deltaH+/ATP on deltaphi anddeltapH is the different functional dependence of the basal proton flux Hb+ and the phosphorylating proton flux Hp+ on deltapH and deltaphi. The calculation of deltaH+/ATP on the basis of this assumption is in fair agreement with the experimental values. Also the "threshold" effects can be explained in this way. (7) The ratio of deltaHp+/ATP, i.e. the ratio of the phosphorylating proton flux Hp+ and ATP, is deltaHp+/ATP APPROXIMATELY 2.4.  相似文献   

15.
The biodiversity of growth and energetics in Leuconostoc sp. has been studied in MRS lactose medium with and without citrate. On lactose alone, Ln. lactis has a growth rate double that of Ln. cremoris and Ln. mesenteroides. The pH is a more critical parameter for Ln. mesenteroides than for Ln. lactis or Ln. cremoris; without pH control Ln. mesenteroides is unable to acidify the medium under pH 4.5, while with pH control and as a consequence of a high Y(ATP) its growth is greater than Ln. lactis and Ln. cremoris. In general, lactose-citrate co-metabolism increases the growth rate, the biomass synthesis, the lactose utilisation ratio, and the production of lactate and acetate from lactose catabolism. The combined effect of the pH and the co-metabolism lactose-citrate on the two components of the proton motive force (deltap = deltapsi - ZdeltapH) has been studied using resting-cell experiments. At neutral pH deltap is nearly entirely due to the deltapsi, whereas at acidic pH the deltapH is the major component. On lactose alone, strains have a different aptitude to regulate their intracellular pH value, for Ln. mesenteroides it drastically decreases at acidic pH values (pH, = 5.2 for pH 4), while for Ln. lactis and Ln. cremoris it remains above pH 6. Lactose-citrate co-metabolism allows a better control of pH homeostasis in Ln. mesenteroides, consequently the pHi becomes homogeneous between the three strains studied, for pH 4 it is in an interval of 0.3 pH unit (from pHi = 6.4 to pHi = 6.7). In this metabolic state, and as a consequence of the variation in deltapH, and to some extent in the deltapsi, the difference of deltap between the three strains is restricted to an interval of 20 mV.  相似文献   

16.
The influence of ammonium and urea on the components of the proton electrochemical potential (delta p) and de novo synthesis of ATP was studied with Bacillus pasteurii ATCC 11859. In washed cells grown at high urea concentrations, a delta p of -56 +/- 29 mV, consisting of a membrane potential (delta psi) of -228 +/- 19 mV and of a transmembrane pH gradient (delta pH) equivalent to 172 +/- 38 mV, was measured. These cells contained only low amounts of potassium, and the addition of ammonium caused an immediate net decrease of both delta psi and delta pH, resulting in a net increase of delta p of about 49 mV and de novo synthesis of ATP. Addition of urea and its subsequent hydrolysis to ammonium by the cytosolic urease also caused an increase of delta p and ATP synthesis; a net initial increase of delta psi, accompanied by a slower decrease of delta pH in this case, was observed. Cells grown at low concentrations of urea contained high amounts of potassium and maintained a delta p of -113 +/- 26 mV, with a delta psi of -228 +/- 22 mV and a delta pH equivalent to 115 +/- 20 mV. Addition of ammonium to such cells resulted in the net decrease of delta psi and delta pH without a net increase in delta p or synthesis of ATP, whereas urea caused an increase of delta p and de novo synthesis of ATP, mainly because of a net increase of delta psi. The data reported in this work suggest that the ATP-generating system is coupled to urea hydrolysis via both an alkalinization of the cytoplasm by the ammonium generated in the urease reaction and a net increase of delta psi that is probably due to an efflux of ammonium ions. Furthermore, the findings of this study show that potassium ions are involved in the regulation of the intracellular pH and that ammonium ions may functionally replace potassium to a certain extent in reducing the membrane potential and alkalinizing the cytoplasm.  相似文献   

17.
The correlation between deltamuH, the proton electrochemical potential difference, and the rate of controlled respiration is analyzed. deltamuH (the proton concentration gradient) is measured on the distribution of [3H]acetate, and deltapsi (the membrane potential) on the distribution of 86Rb+, 45Ca2+ and [3H]triphenylmethylphosphonium used either alone or simultaneously. The effects of the addition of ADP + hexokinase (state-3 ADP) and of carbonylcyanide trifluoromethoxyphenylhydrazone (state-3 uncoupler) on respiration and deltamuH are not equivalent: the uncoupler depresses deltamuH more than ADP at equivalent respiratory rates. The effects of the additions of nigericin-valinomycin and of ionophore A23187 (state-3 cation transport) and of carbonylcyanide trifluoromethoxy-phenylhydrazone (state 3-uncoupler) on respiration and deltamuH are also not equivalent: the uncoupler depresses deltamuH more than A23187 and nigericin + valinomycin at equivalent respiratory rate. A23187 is very efficient in stimulating respiration with negligible deltamuH changes.  相似文献   

18.
Evidence is presented indicating that the carrier-mediated uptake of 3-deoxy-2-oxo-D-gluconate and D-glucuronate in Escherichia coli K12 is driven by the deltapH and deltapsi components of the protonmotive force. 1. Approximately two protons enter the cells with each sugar molecule, independent of the sugar and the strain used. 2. In respiring cells, the magnitude of the pH gradient alone, as measured by distribution of [3H]acetate, appears to be insufficient to account for the chemical gradient of 3-deoxy-2-oxo-D-gluconate that is developed between pH 6.0 and 8.0. 3. If the external pH is varied between 5.5 and 8.0, 3-deoxy-2-oxo-D-gluconate uptake is gradually inhibited by valinomycin plus K+ ions, whereas the inhibition caused by nigericin is concomitantly relieved, thus reflecting the relative contribution of deltapH and deltapsi to the total protonmotive force at each external pH. 4. 3-Deoxy-2-oxo-D-gluconate can be transiently accumulated into isolated membrane vesicles in response to an artificially induced pH gradient. The process is stimulated when the membrane potential is collapsed by valinomycin in the presence of K+ ions.  相似文献   

19.
Transmembrane electrical and pH gradients have been measured across human erythrocytes and peripheral blood lymphocytes using equilibrium distributions of radioactively labelled lipophilic ions, and of weak acids and weak bases, respectively. The distributions of methylamine, trimethylamine, acetic acid and trimethylacetic acid give calculated transmembrane pH gradients (pHe-pHi) for erythrocytes of between 0.14-0.21 for extracellular pH values of 7.28-7.16. The distributions of trimethylacetic acid. DMO and trimethylamine were determined for lymphocytes, establishing upper and lower limits of the calculated pH gradient over the external pH range of 6.7 to 7.7. Tritiated triphenylmethyl phosphonium ion (TPMP) and 14C-thiocyanate ion (SCN) equilibrium distributions were measured in order to calculate transmembrane electrical potentials, using tetraphenylboron as a catalyst to facilitate TPMP equilibrium. Transmembrane potentials of -7 to -10 mV were calculated from SCN and TPMP, respectively for red cells, and -35 to -52 mV respectively, in the case of lymphocytes. Distributions of TPMP and potassium ions were determined in the presence of valinomycin over a wide range of extracellular potassium concentrations for red cells and the calculated Nernst potentials for TPMP compared to the calculated potential using the Goldman equation for chloride and potassium ions. Distributions of TPMP, SCN and potassium ions were also determined for lymphocyte suspensions as a function of extracellular potassium and the calculated Nernst potentials for TPMP and SCN compared to the calculated potassium diffusion potential.  相似文献   

20.
Lactose-grown cells of Bacillus alcalophilus actively transported methylthio-beta, D-galactoside (TMG) in a range of pH values from 7.5 to 10.5 with a pH optimum at 8.5. The TMG was accumulated in a chemically unmodified form, and cell extracts failed to catalyze either ATP or P-enolpyruvate-dependent phosphorylation of TMG. At pH 8.5, the lactose-grown cells exhibited a transmembrane proton gradient (deltapH) of 1.38 units, interior acid, and a transmembrane electrical potential (delta psi) of -132 mV. Accordingly, the total protonmotive force at this pH was very low, -51mV. Several lines of evidence indicate that the protonmotive force or delta psi did not directly energize TMG transport but, rather, that ATP was directly required: (a) in cells treated with arsenate so that the delta psi was unaffected and cellular ATP levels were markedly lowered, TMG transport was inhibited in proportion to the reduction of cellular ATP, while electrogenic alpha-aminoisobutyric acid transport was not; (b) when a valinomycin-induced potassium diffusion potential was established in starved cells, alpha-aminoisobutyric acid transport, but not TMG transport, was stimulated; and (c) in a series of experiments in which the delta psi was rapidly abolished by treatment with gramicidin, ATP levels declined slowly and the rate of TMG transport correlated directly with ATP levels rather than with the delta psi. Consumption of cellular ATP concomitant with TMG transport could be demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号