首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J P Quigley 《Cell》1979,17(1):131-141
The tumor promoter phorbol myristate acetate (PMA) induces the production of the serine protease plasminogen activator (PA) in cultures of normal chick embryo fibroblasts (CEF) and synergistically enhances PA production in Rous sarcoma virus-transformed chick embryo fibroblasts (RSVCEF). Following PMA treatment of serum-free RSVCEF cultures, PA induction is accompanied by distinct morphological changes, including enhanced cell clustering and the formation of dense cellular aggregates. These alterations in the morphology of the PMA-treated transformed cells are inhibited by several protease inhibitors, including leupeptin, NPGB, SBTI, benzamidine and DFP, the specific inhibitor of serine enzymes. A number of protease inhibitors are ineffective in preventing the PMA-induced morphological changes; these include inhibitors of trypsin, chymotrypsin, elastase, thrombin and, most importantly, plasmin. The use of a fluorescent substrate to assay PA directly demonstrated that the pattern of inhibiton of PA activity correlates exactly with the inhibition of morphological changes. The of 3H-DFP to label and characterize serine zymes in the culture fluid from PMA-treated cells further indicated that PA is the serine protease responsible for the morphological changes. Thus PA itself can catalytically alter cellular behavior in culture independent of plasminogen, until not its only known natural substrate.  相似文献   

2.
Recently, we have shown that plasminogen activators (PAs) of both types, urokinase-type (uPA) as well as tissue-type (tPA), are involved in the in vitro invasiveness of human melanoma cells. The present study is focused on the generation and importance of cell surface-bound plasmin in this process. The human melanoma cell lines MelJuso and MeWo expressed plasminogen binding sites on the cell surface. Plasminogen binding was saturable and not species-specific, since human and bovine plasminogen bound to the cells with comparable efficiency. The activation of the proenzyme plasminogen bound on MelJuso cells, which expressed surface-associated uPA activity, occurred almost synchronously with binding to the cell surface. Removal of cell-associated uPA considerably reduced plasmin generation on these cells. In contrast, plasminogen activation on MeWo cells, which secreted tPA into the culture supernatant and which were devoid of surface-associated PA activity, was by far less effective. The efficiency of the activation process could be increased by addition of exogenous tPA. With both cell lines, plasmin generation on the cell surface was suppressed by inhibitory monoclonal antibodies specific for the respective PA type. Selective inhibition of cell surface-associated plasmin by preincubating the cells with an inhibitory monoclonal antibody or with aprotinin, as well as removal of plasmin from the cell surface, led to a significant decrease in cellular invasiveness of both cell lines into various biological substrates such as fibrin gel, the basement membrane extract Matrigel, or intact extracellular matrix. Both cell lines were able to penetrate an intact cell layer of the human keratinocyte line HaCaT, a process, which also proved to be dependent on cell-associated plasmin. In conclusion, these data provide evidence that plasminogen activation associated with the surface of human melanoma cells is catalyzed much more efficiently by cell-associated uPA (MelJuso) than by secreted tPA (MeWo). Cell-associated plasmin, which is protected from inactivation by serum inhibitors, represents the essential component of the proteolytic cascade of plasminogen activation during in vitro invasiveness of human melanoma cells.  相似文献   

3.
Earlier it was shown that anti-plasminogen monoclonal antibody IV-1c was able to induce a catalytic activity in plasminogen. IV-1c activates plasminogen by binding to plasminogen protease domain with antigen binding site and to lysine-binding sites by C-terminal lysines of gamma-chains. The effect of plasminogen and IV-1c concentration on rate of catalytic activity induce in Pg-IV-1c complex has been investigated. It was found that IV-1c inhibited an activation reaction at concentrations higher of equimolar to Glu-Pg. Glu-Pg did not inhibit reaction of activation in higher to IV-1c concentrations. Role of IV-1c gamma-chain C-terminal lysine concentration in Pg activation is discussed.  相似文献   

4.
This study evaluates the contribution of two types of plasminogen activators (PAs; tissue-type PA (tPA) versus urokinase-type PA (uPA) toward the invasiveness of human melanoma cells in a novel in vitro assay. We identified two human melanoma cell lines, MelJuso and MeWo, expressing uPA or tPA as shown at mRNA, protein, and enzyme activity level. MelJuso cells produced uPA as well as plasminogen activator inhibitor-1 (PAI-1). The latter was, however, not sufficient to neutralize the cell-associated or secreted uPA activity. MeWo cells secreted tPA, but the enzyme was not found to be cell-associated. PAI-1 production by these cells was not detectable. Plasminogen activation and fibrinolytic capacity of both cell lines were reduced by anticatalytic monoclonal antibodies specific for the respective type of PA or by aprotinin. In a novel in vitro invasion assay, antibodies to PA as well as aprotinin decreased the invasiveness of both cell lines into a fibrin gel, Matrigel, or intact extracellular matrix. Our results confirm the importance of uPA-catalyzed plasminogen activation in tumor cell invasiveness. Furthermore, we provide evidence that tPA, beyond its key role in thrombolysis, can also be involved in in vitro invasion of human melanoma cells.  相似文献   

5.
Recently, we have shown that plasminogen activators (PAs) of both types, urokinase-type (uPA) as well as tissue-type (tPA), are involved in the in vitro invasiveness of human melanoma cells. The present study is focused on the generation and importance of cell surface-bound plasmin in this process. The human melanoma cell lines MelJuso and MeWo expressed plasminogen binding sites on the cell surface. Plasminogen binding was saturable and not species-specific, since human and bovine plasminogen bound to the cells with comparable efficiency. The activation of the proenzyme plasminogen bound on MelJuso cells, which expressed surface-associated uPA activity, occurred almost synchronously with binding to the cell surface. Removal of cell-associated uPA considerably reduced plasmin generation on these cells. In contrast, plasminogen activation on Me Wo cells, which secreted tPA into the culture supernatant and which were devoid of surface-associated PA activity, was by far less effective. The efficiency of the activation process could be increased by addition of exogenous tPA. With both cell lines, plasmin generation on the cell surface was suppressed by inhibitory monoclonal antibodies specific for the respective PA type. Selective inhibition of cell surface-associated plasmin by preincubating the cells with an inhibitory monoclonal antibody or with aprotinin, as well as removal of plasmin from the cell surface, led to a significant decrease in cellular invasiveness of both cell lines into various biological substrates such as fibrin gel, the basement membrane extract Matrigel, or intact extracellular matrix. Both cell lines were able to penetrate an intact cell layer of the human keratinocyte line HaCaT, a process, which also proved to be dependent on cell-associated plasmin. In conclusion, these data provide evidence that plasminogen activation associated with the surface of human melanoma cells is catalyzed much more efficiently by cell-associated uPA (MelJuso) than by secreted tPA (MeWo). Cell-associated plasmin, which is protected from inactivation by serum inhibitors, represents the essential component of the proteolytic cascade of plasminogen activation during in vitro invasiveness of human melanoma cells.  相似文献   

6.
Investigation of the influence of divalent metal cations on the induction of plasminogen catalytic activity by monoclonal antibody IV-Ic showed that the presence of metal cations in the reaction medium changes the induction by slowing down or accelerating the process. Ions of Zn2+, Mn2+, and Cu2+ completely inhibit activation. Ions of Co2+ and Ni2+ decrease the rate of the first and second phases of the reaction more than 2 times. Ca2+ ions do not have any effect on the activation rate. Ions of Mg2+, Ba2+, and Sr2+ increase the rate of the first phase of the reaction by 1.5, 2.0, and 2.0 times and the rate of the second phase by 2.0, 3.8, and 4.7 times, correspondingly. Sr2+ ions have the strongest stimulating effect on plasminogen activation by monoclonal antibody IV-Ic. Investigation of the dose dependent effect of Sr2+ on the rate of plasminogen activation by monoclonal antibody IV-Ic showed stimulating effect of Sr2+ at concentrations from 0.1 to 1.0 mM with half maximum at 0.6 mM. However, Sr2+ ions do not affect amidolytic activity of plasmin and activation of plasminogen by streptokinase. Sr2+ ions also do not affect monoclonal antibody IV-Ic binding to plasminogen. The effect of Sr2+ is specific and mediated by the IV-Ic component. The presence of metal cations affects conformational changes in the process of active site formation. Metal cations also affect structure of the plasminogen molecule active site in the complex with monoclonal antibody IV-Ic and enzyme-substrate interaction. The effect of α2-antiplasmin on the induction of plasminogen catalytic activity by monoclonal antibody IV-Ic in range of concentrations from 5 to 30 nM has been studied. α2-Antiplasmin at concentration 30 nM almost completely inhibits induction of plasminogen catalytic activity by monoclonal antibody IV-Ic at the ratio plasminogen/α2-antiplasmin of 3:1. This can be explained by competition of α2-antiplasmin and monoclonal antibody IV-Ic for the lysine-binding sites of plasminogen and inhibition of the active center in activated complex plasminogen*—mAB IV-Ic. Divalent metal cations and α2-antiplasmin are important factors in induction of plasminogen catalytic activity by monoclonal antibody IV-Ic. Published in Russian in Biokhimiya, 2006, Vol. 71, No. 6, pp. 778–785.  相似文献   

7.
A monoclonal antibody L8 specific to fibronectin was shown to inhibit fibronectin incorporation into the fibroblast extracellular matrix. Antibody L8 could not interact with fibronectin complexed with gelatin. The results suggest the existence of a specific site on the fibronectin molecule playing a critical role in the assembly of the fibronectin extracellular matrix. This site is located near the collagen-binding domain.  相似文献   

8.
纤溶酶原在金黄色葡萄球菌感染中的作用   总被引:1,自引:0,他引:1  
金黄色葡萄球菌菌体表面有多种纤溶酶原受体,包括次黄嘌呤单核苷酸脱氢酶、核糖核苷酸还原酶、α-烯醇化酶和3-磷酸甘油醛脱氢酶等,它们均可以与纤溶酶原结合。与细菌结合的纤溶酶原可被宿主的纤溶酶原激活剂(组织型纤溶酶原激活剂和尿激酶型纤溶酶原激活剂)或葡萄菌属的纤溶酶原激活剂(葡激酶)激活为纤溶酶。细菌表面的纤溶酶有利于其降解宿主胞外基质,穿越组织屏障,因此哺乳动物的纤溶酶原可能在金黄色葡萄球菌感染宿主过程中起重要作用。  相似文献   

9.
10.
Thrombospondin (TSP), an adhesive glycoprotein found in platelets and extracellular matrix, has been shown previously to interact with plasminogen and tissue plasminogen activator, resulting in efficient plasmin generation. We now demonstrate specific complex formation of TSP with both the single-chain and two-chain forms of urokinase (scuPA and uPA). Binding of uPA and scuPA to immobilized TSP was detected and quantified using colorimetric immunoassays and a functional amidolytic assay. Binding was time and concentration dependent with apparent affinity constants of 40-50 nM. Binding was not affected by serine protease inhibitors, EDTA, or epsilon-aminocaproic acid. scUPA and uPA bound to TSP retained functional activity. Using a sensitive amidolytic assay we found that TSP. scuPA complexes were efficiently converted to TSP. uPA by catalytic plasmin concentrations. Additionally, TSP.uPA complexes were found to have plasminogen-activating activity equivalent to fluid-phase uPA and to be protected from inhibition by plasminogen activator inhibitor type 1, the major plasma and matrix plasminogen activator inhibitor. Using immunohistochemical techniques, we also demonstrated co-distribution of TSP and uPA in normal and malignant breast tissue. Complex formation of TSP with uPA may serve to localize, concentrate, and protect these enzymes on cell surfaces and within the extracellular matrix, thereby providing a reservoir of plasminogen activator activity.  相似文献   

11.
导向性纤溶酶原激活剂的研究   总被引:5,自引:0,他引:5  
溶栓疗法是血栓治疗中的一种重要措施.研制具有高选择性的导向性纤溶酶原激活剂有着重大的理论意义和实用价值.采用血栓特异的单克隆抗体及其片段来介导溶栓剂已展示出较好的应用前景.双功能抗体以及同时具有抗栓,抗凝活性的小肽正逐渐拓宽人们有关导向分子研制的视野.所有这一切都将随着分子生物学技术的不断完善而付诸实现.  相似文献   

12.
We have examined the effect that microinjection of a monoclonal antibody directed against human DNA polymerase-alpha (SJK-287) has on DNA synthesis in exponentially growing human, mouse, and hamster cell lines. We show that the SJK-287 antibody, when microinjected directly into the nuclei of cells is capable of inhibiting DNA synthesis in all three cell lines tested. Moreover, the effectiveness with which this antibody can inhibit ongoing DNA synthesis by the microinjection assay is closely correlated with the ability of the antibody to neutralize DNA polymerase-alpha activity fractionated from each cell line in vitro. Two other monoclonal antibodies of the same class, one directed against the cellular p53 protein (PAb122), and one directed against the c-myc protein (PM-8) were also tested for their ability to inhibit ongoing DNA synthesis by direct microinjection and in lysolecithin permeabilized cells. Both monoclonal antibodies failed to inhibit ongoing DNA synthesis in exponentially growing cells by these assays.  相似文献   

13.
The secreted gelatinase matrix metalloprotease-2 (MMP-2) and the membrane-anchored matrix metalloprotease MT1-MMP (MMP-14), are central players in pericellular proteolysis in extracellular matrix degradation. In addition to possessing a direct collagenolytic and gelatinolytic activity, these enzymes take part in a cascade pathway in which MT1-MMP activates the MMP-2 proenzyme. This reaction occurs in an interplay with the matrix metalloprotease inhibitor, TIMP-2, and the proposed mechanism involves two molecules of MT1-MMP in complex with one TIMP-2 molecule. We provide positive evidence that proMMP-2 activation is governed by dimerization of MT1-MMP on the surface of fibroblasts and fibrosarcoma cells. Even in the absence of transfection and overexpression, dimerization of MT1-MMP markedly stimulated the formation of active MMP-2 products. The effect demonstrated here was brought about by a monoclonal antibody that binds specifically to MT1-MMP as shown by immunofluorescence experiments. The antibody has no effect on the catalytic activity. The effect on proMMP-2 activation involves MT1-MMP dimerization because it requires the divalent monoclonal antibody, with no effect obtained with monovalent Fab fragments. Since only a negligible level of proMMP-2 activation was obtained with MT1-MMP-expressing cells in the absence of dimerization, our results identify the dimerization event as a critical level of proteolytic cascade regulation.  相似文献   

14.
Plasminogen activation (PA) is involved in a variety of extracellular proteolytic events, such as fibrinolysis, cell migration (e.g. angiogenesis, tumour cell invasion, inflammation, wound healing, bacterial invasion), ovulation, tissue remodelling and the activation of other protease classes and growth factors. These diverse roles are due to the specific localization of components of the PA system to extracellular matrices, basement membranes, fibrin and cell surfaces. We have previously reported that PA is dramatically elevated during cycloheximide (CHX)-induced apoptosis in U937 cells due to a concomitant increase in both plasminogen receptors (PLG-R; i.e. specific PLG binding) and cell-surface urokinase plasminogen activator. We now extend this study by showing that the increase in PLG-R (resulting in an increase in specific PLG binding) is a late apoptotic event coincident with propidium iodide uptake and internucleosomal DNA fragmentation but occurring after elevations in phosphatidylserine exposure. Plasminogen was also observed to dramatically increase the rate of CHX-induced apoptosis. We conclude that PA may play a role in the degradative (i.e. late-stage) events of cellular apoptosis.  相似文献   

15.
In previous research, we found α-enolase to be inversely correlated with progression-free and overall survival in lung cancer patients and detected α-enolase on the surface of lung cancer cells. Based on these findings, we hypothesized that surface α-enolase has a significant role in cancer metastasis and tested this hypothesis in the current study. We found that α-enolase was co-immunoprecipitated with urokinase-type plasminogen activator, urokinase-type plasminogen activator receptor, and plasminogen in lung cancer cells and interacted with these proteins in a cell-free dot blotting assay, which can be interrupted by α-enolase-specific antibody. α-Enolase in lung cancer cells co-localized with these proteins and was present at the site of pericellular degradation of extracellular matrix components. Treatment with antibody against α-enolase in vitro suppressed cell-associated plasminogen and matrix metalloproteinase activation, collagen and gelatin degradation, and cell invasion. Examination of the effect of treatment with shRNA plasmids revealed that down regulation of α-enolase decreases extracellular matrix degradation by and the invasion capacity of lung cancer cells. Adoptive transfer of α-enolase-specific antibody to mice resulted in accumulation of antibody in subcutaneous tumor and inhibited the formation of tumor metastasis in lung and bone. This study demonstrated that surface α-enolase promotes extracellular matrix degradation and invasion of cancer cells and that targeting surface α-enolase is a promising approach to suppress tumor metastasis.  相似文献   

16.
We have previously demonstrated that plasminogen activator inhibitor (PAI-1) is associated with the extracellular matrix of cultured bovine smooth muscle cells (Knudsen, B.S., Harpel, P.C., Nachman, R.L. (1987) J. Clin. Invest. 80, 1082-1089). In this report we describe the physiologic role of PAI-1 during the interaction of the tissue plasminogen activator (t-PA) secreting Bowes human melanoma cell line with endothelial extracellular matrices. In addition we have characterized the t-PA.PAI complexes formed during this interaction in the presence and absence of plasminogen. In the absence of plasminogen, a 104-kDa complex between Bowes t-PA and PAI-1 appears in the supernatant. In the presence of plasminogen, PAI initially prevents plasmin formation on the matrix and protects the matrix from degradation by plasmin. The 104-kDa t-PA.PAI complex is degraded into a 68 and a 47-kDa complex by small amounts of plasmin generated from secreted Bowes t-PA and plasminogen. Analysis of these complexes revealed that t-PA is rapidly cleaved by plasmin within the complex whereas complexed PAI-1 is not further degraded. Matrix-associated PAI-1 may play an important role in the protection of extracellular matrices from remodeling and degradation by cellular t-PA and plasminogen.  相似文献   

17.
On the basis of 125I-labeled plasminogen activator binding analysis we have found that bovine adrenal capillary endothelial cells have specific receptors for human urinary-type plasminogen activator on the cell membrane. Each cell exposes about 37,000 free receptors with a Kd of 0.8958 x 10(-9) M [corrected]. A monoclonal antibody against the 17,500 proteolytic fragment of the A chain of the plasminogen activator, not containing the catalytic site of the enzyme, impaired the specific binding, thus suggesting the involvement of a sequence present on the A chain in the interaction with the receptor, as previously shown in other cell model systems. Both the native molecule and the A chain are able to stimulate endothelial cell motility in the Boyden chamber, when used at nanomolar concentrations. The use of the same monoclonal antibody that can inhibit ligand-receptor interaction can impair the plasminogen activator and A-chain-induced endothelial cell motility, suggesting that under the conditions used in this in vitro model system, the motility of bovine adrenal capillary endothelial cells depends on the specific interaction of the ligand with free receptors on the surface of endothelial cells.  相似文献   

18.
The human 66 000 mol. wt. plasminogen activator (HPA66; tissue-type plasminogen activator) has been purified from melanoma cells by a one-step affinity method with a monoclonal antibody. HPA66 purified in this way consists mainly of a one-polypeptide chain form with small amounts (15%) of a form containing two polypeptide chains held together by one or more disulphide bridges. The one-chain form was converted to the two-chain form by catalytic amounts of plasmin. During the conversion, the enzyme activity of HPA66, as measured by an [125I]plasminogen conversion assay and with a chromogenic substrate, increased linearly with the percentage of the two-chain form. A linear regression analysis showed that all enzyme activity could be accounted for by the two-chain form, while the one-chain form had no measurable enzyme activity (detection limit approximately 5% of the activity of the two-chain form). Together with previous findings of inactive proenzymes to murine and human approximately 50 000 mol. wt. (urokinase-type) plasminogen activators, these findings indicate that plasminogen activators are generally formed from inactive one-chain proenzymes which are converted to active two-chain enzymes by limited proteolysis, thus demonstrating a third step in a cascade reaction leading to extracellular proteolysis.  相似文献   

19.
The main physiological function of plasmin is blood clot fibrinolysis and restoration of normal blood flow. To date, however, it became apparent that in addition to thrombolysis, the plasminogen/plasmin system plays an important physiological and pathological role in a number of other essential processes: degradation of the extracellular matrix, embryogenesis, cell migration, tissue remodeling, wound healing, angiogenesis, inflammation, and tumor cell migration. This review focuses on structural features of plasminogen, regulation of its activation by physiological plasminogen activators, inhibitors of plasmin, and plasminogen activators, and the role of plasminogen binding to fibrin, cellular receptors, and extracellular ligands in various functions performed by plasmin thus formed.  相似文献   

20.
Chicken embryo fibroblasts (CEF) transformed by Rous sarcoma virus (RSVCEF) secrete a 70-kDa metallo-gelatinase at elevated levels over that of normal CEF. The 70-kDa enzyme has been purified from RSVCEF conditioned medium and represents 1-3% of the total protein in the RSVCEF conditioned medium. A 22-kDa protein, which appears to be the avian form of the tissue inhibitor of metalloproteases (TIMP), is co-isolated in association with the 70-kDa enzyme and can be separated from the enzyme by gel filtration carried out under denaturing conditions. The isolated 70-kDa species is in the zymogen form. It can be activated by treatment with the organomercurial, p-aminophenylmercuric acetate (APMA), yielding a 62-kDa active species derived by an apparent autoproteolytic cleavage from the 70-kDa proenzyme as determined by both substrate gel analysis and immunoblots using a monospecific antibody to the 70-kDa proenzyme. The proenzyme is poorly activated by trypsin and not activated by plasmin. The APMA-activated enzyme rapidly degrades denatured collagens but under identical conditions is unable to degrade native collagens, including basement membrane type IV collagen. Only at very high enzyme to substrate ratios (1:2) will native type IV collagen be hydrolyzed. Partial N-terminal amino acid sequencing of both the 70-kDa proenzyme and the 62-kDa active enzyme indicates that the avian enzyme is a member of the matrix metalloprotease family (MMP-2). When CEF cultures, infected with a temperature sensitive mutant of RSV, conditional for the expression of the transforming src oncogene, were incubated at the permissive and nonpermissive temperatures, differential levels of the 70-kDa enzyme were produced in direct proportion to the functioning of the src oncogene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号