首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among cell adhesion molecules, the classic Arg-Gly-Asp (RGD) motif is the best studied. We used combinatorial chemical and affinity immunochemical methods to find a novel motif of unnatural peptide ligands for the fibrinogen receptor of platelets, gpIIbIIIa (alphaIIbbeta3). The new d-amino acid motif, p(f/y)l, is unique among the ligands that bind the RGD pocket: It lacks the carboxylic acid group that is believed to coordinate with calcium in the MIDAS motif of the receptor. With an IC50 of 14 microM for the most potent compound, these linear p(f/y)l peptides had affinities similar to those of linear peptides containing RGD, and reversed sequences failed to compete with binding up to 1 mM. As the new motif was so different, molecular modeling was employed to suggest a model for molecular recognition. A reversed binding mechanism common for d-amino acid mimics of natural l-amino acid peptides offers an attractive hypothesis that suggests three points of contact similar to those made by the RGD-mimicking monoclonal antibody, OPG2. Interestingly, the model proposes that pi-electrons in the new motif may substitute for the carboxylate group present in all other RGD-types of ligands. Although modeling linear peptides is subjective, the pi-bonding model provides intriguing possibilities for medicinal chemistry after appropriate confirmatory studies.  相似文献   

2.

Human protein farnesyltransferase is a key enzyme for the lipid modification of a large and important number of proteins, which has been recognized as the promising therapeutic target of pain disorder and other diseases such as inflammation and cancer. In this study, we systematically investigated the binding behavior of existing peptide substrates and antagonists to farnesyltransferase at structural level and revealed that peptide’s C-terminus is primarily responsible for the binding, while exposing N-terminus to solvent. The amino acid property preference profile at each of the six core N-terminal residue positions of a cocrystallized chimera peptide substrate was defined, based on which a combinatorial library that contains more than twenty thousands of peptide-like compounds (PLCs) was generated using sixteen structurally diverse non-natural amino acids as building blocks. Subsequently, a systematic protocol was exhaustively carried out to perform virtual screening against the library, in order to discover those PLCs that match well the property preference profile and simultaneously exhibit high binding potency to farnesyltransferase. Consequently, ninety hits were identified from the library, in which five structurally diverse PLCs with high consensus scores were determined to have potent or moderate affinity to the active site of farnesyltransferase through nonbonded/coordination interactions. These identified PLCs can be considered as promising lead molecular entities to further develop peptidomimetic farnesyltransferase antagonists combating pain, inflammation and cancer.

  相似文献   

3.
The N-terminal domain of the GLP-1 receptor binds the putative helical region of the peptide agonists, GLP-1 and exendin-4. Here we demonstrate that this interaction also determines the magnitude of a separate interaction between the N-terminus of these peptides and the receptor's core domain. Enhancing the pre-formation of the C-terminal Trp-Cage motif of exendin-4, a motif critical for high-affinity binding, results in no improvement in receptor affinity, suggesting that this motif forms after the initial peptide-receptor binding event.  相似文献   

4.
Herein we report the preparation of a combinatorial library of compounds with potent CCR5 binding affinity. The library design was aided by SAR generated in a traditional medicinal chemistry effort. Compounds with novel combinations of subunits were discovered that have high binding affinity for the CCR5 receptor. A potent CCR5 antagonist from the library, compound 11 was found to have moderate anti-HIV-1 activity.  相似文献   

5.
There is a pressing need for new molecular tools to target protein surfaces with high affinity and specificity. Here, we describe cyclic messenger RNA display with a trillion-member covalent peptide macrocycle library. Using this library, we have designed a number of high-affinity, redox-insensitive, cyclic peptides that target the signaling protein G alpha i1. In addition to cyclization, our library construction took advantage of an expanded genetic code, utilizing nonsense suppression to insert N-methylphenylalanine as a 21st amino acid. The designed macrocycles exhibit several intriguing features. First, the core motif seen in all of the selected variants is the same and shares an identical context with respect to the macrocyclic scaffold, consistent with the idea that selection simultaneously optimizes both the cyclization chemistry and the structural placement of the binding epitope. Second, detailed characterization of one molecule, cyclic G alpha i binding peptide (cycGiBP), demonstrates substantially enhanced proteolytic stability relative to that of the parent linear molecule. Third and perhaps most important, the cycGiBP peptide binds the target with very high affinity ( K i approximately 2.1 nM), similar to those of many of the best monoclonal antibodies and higher than that of the betagamma heterodimer, an endogenous G alpha i1 ligand. Overall the work provides a general route to design novel, low-molecular-weight, high-affinity ligands that target protein surfaces.  相似文献   

6.
A fast and inexpensive strategy for the identification of peptide ligands by direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) analysis of peptide beads screened from one bead-one peptide combinatorial libraries is herein described. Streptavidin was used as the model protein. A combinatorial library of 6561 peptides was synthesized on ChemMatrix resin by the divide-couple-recombine method. 4-Hydroxymethylbenzoic acid was used as the linker and five residues of Gly were incorporated at the C termini to increase the final peptide molecular weight. Positive control peptides with the HPQ motif and negative control peptides without the HPQ motif evidenced that the linker and the five residues of Gly have neither impaired the specific binding nor facilitated unspecific binding. After screening the library, positive beads were isolated and washed with 8M guanidine hydrochloride. The beads were sliced into two or four pieces, deposited onto the stainless steel MALDI sample plate, and treated with ammonia vapor to release the peptides. In addition, 26 beads picked at random from the library were subjected to the same treatment. All samples were analyzed by MALDI-TOF-MS and the peptides were unambiguously identified with very good reproducibility between the bead pieces, thus evidencing the good homogeneity of the bead. All sequences obtained from the screening contained HPQ.  相似文献   

7.
A peptide screened from a combinatorial peptide library with the sequence EYKSWEYC performed best as a ligand for affinity chromatography of human blood coagulation factor VIII (FVIII). With this peptide immobilized on monolithic CIM columns via epoxy groups we were able to capture FVIII from diluted plasma. Rational substitution of amino acids by spot synthesis revealed that lysine and cysteine can be exchanged for almost all other proteinogenic amino acids without loss of affinity to FVIII. This offers the possibility of site-specific attachment via either one of these residues or the N- or C-terminus. The aliphatic positions O5 (tryptophan) and O7 (tyrosine), together with the charged position O6 (glutamic acid), seem to form the core of the binding unit. In the positions with aliphatic amino acids, substitution by tyrosine or phenylalanine, and in the positions with charged amino acids, substitution by aspartic acid or lysine, preserved the affinity to FVIII. The functionality of the selected peptides was confirmed by affinity chromatography. Selective binding and elution could be achieved.  相似文献   

8.
Virus-specific CD8(+) T cells play an important role in controlling HIV/SIV replication. These T cells recognize intracellular pathogen-derived peptides displayed on the cell surface by individual MHC class I molecules. In the SIV-infected rhesus macaque model, five Mamu class I alleles have been thoroughly characterized with regard to peptide binding, and a sixth was shown to be uninvolved. In this study, we describe the peptide binding of Mamu-A1*007:01 (formerly Mamu-A*07), an allele present in roughly 5.08% of Indian-origin rhesus macaques (n?=?63 of 1,240). We determined a preliminary binding motif by eluting and sequencing endogenously bound ligands. Subsequently, we used a positional scanning combinatorial library and panels of single amino acid substitution analogs to further characterize peptide binding of this allele and derive a quantitative motif. Using this motif, we selected and tested 200 peptides derived from SIV(mac)239 for their capacity to bind Mamu-A1*007:01; 33 were found to bind with an affinity of 500?nM or better. We then used PBMC from SIV-infected or vaccinated but uninfected, A1*007:01-positive rhesus macaques in IFN-γ Elispot assays to screen the peptides for T-cell reactivity. In all, 11 of the peptides elicited IFN-γ(+) T-cell responses. Six represent novel A1*007:01-restricted epitopes. Furthermore, both Sanger and ultradeep pyrosequencing demonstrated the accumulation of amino acid substitutions within four of these six regions, suggestive of selective pressure on the virus by antigen-specific CD8(+) T cells. Thus, it appears that Mamu-A1*007:01 presents SIV-derived peptides to antigen-specific CD8(+) T cells and is part of the immune response to SIV(mac)239.  相似文献   

9.
Discovery of high-affinity peptide binders to BLyS by phage display   总被引:2,自引:0,他引:2  
B lymphocyte stimulator (BLyS) is a tumor necrosis factor (TNF) family member and a key regulator of B cell responses. We employed a phage display-based approach to identify peptides that bind BLyS with high selectivity and affinity. Sequence analysis of first-generation BLyS-binding peptides revealed two dominant peptide motifs, including one containing a conserved DxLT sequence. Selected linear peptides with this motif were found to bind BLyS with K(D) values of 1-3 microM. In order to improve the binding affinity for BLyS, consensus residues flanking the DxLT sequence were seeded into a second-generation, BLyS affinity maturation library (BAML). BAML phage were subjected to stringent binding competition conditions to select for isolates expressing high-affinity peptide ligands for BLyS. Post-selection analysis of BAML peptide sequences resulted in the identification of a core decapeptide motif (WYDPLTKLWL). Peptides containing this core motif exhibited K(D) values as low as 26 nM, approximately 100-fold lower than that of first-generation peptides. A fluorescence anisotropy assay was developed to monitor the protein-protein interaction between BLyS labeled with a ruthenium chelate, and TACI-Fc, a soluble form of a BLyS receptor. Using this assay it was found that a BAML peptide disrupts this high-affinity protein-protein interaction. This demonstrates the potential of short peptides for disruption of high affinity cytokine-receptor interactions.  相似文献   

10.
The arginine-rich motif is a class of short arginine-rich peptides that bind to specific RNA structures that has been found to be a versatile framework for the design and selection of RNA-binding peptides. We previously identified novel peptides that bind to the Rev-response element (RRE) RNA of the HIV from an arginine-rich polypeptide library (ARPL) consisting of a polyarginine (15 mer) randomized at the N-terminal 10 positions. The selected peptides bound more strongly to the RRE than the natural binding partner, Rev, and contained glutamine residues that were assumed to be important for recognition of the G-A base pair. In addition, the peptides were predicted to bind to the RRE in an alpha-helical conformation. In this study, in order to understand the mechanism of the interaction between the RRE and the putative alpha-helical glutamine-containing peptides, the amino acid requirements for high affinity binding were analyzed by a combinatorial approach using a bacterial system for detecting RNA-peptide interactions. A consensus peptide, the DLA peptide, was elucidated, which consists of a single glutamine residue within a polyarginine context with the glutamine residue flanked at specific positions by three nonarginine residues, two of which appear to be important for alpha-helix stabilization. In addition, the DLA peptide was found to bind extremely tightly to the RRE with an affinity 50-fold higher than that of the Rev peptide as determined by a gel shift assay. A working model for the interaction of the DLA peptide to the RRE is proposed, which should aid in the development of peptide-based drugs that inhibit HIV replication, as well as in our understanding of polypeptide-RNA interactions. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
12.
We have screened a synthetic peptide combinatorial library composed of 2 x 10(7) beta-turn-constrained peptides in binding assays on four structurally related receptors, the human opioid receptors mu, delta, and kappa and the opioid receptor-like ORL1. Sixty-six individual peptides were synthesized from the primary screening and tested in the four receptor binding assays. Three peptides composed essentially of unnatural amino acids were found to show high affinity for human kappa-opioid receptor. Investigation of their activity in agonist-promoted stimulation of [(35)S]guanosine 5'-3-O-(thio)triphosphate binding assay revealed that we have identified the first inverse agonist as well as peptidic antagonists for kappa-receptors. To fine-tune the potency and selectivity of these kappa-peptides we replaced their turn-forming template by other turn mimetic molecules. This "turn-scan" process allowed the discovery of compounds with modified selectivity and activity profiles. One peptide displayed comparable affinity and partial agonist activity toward all four receptors. Interestingly, another peptide showed selectivity for the ORL1 receptor and displayed antagonist activity at ORL1 and agonist activity at opioid receptors. In conclusion, we have identified peptides that represent an entirely new class of ligands for opioid and ORL1 receptors and exhibit novel pharmacological activity. This study demonstrates that conformationally constrained peptide combinatorial libraries are a rich source of ligands that are more suitable for the design of nonpeptidal drugs.  相似文献   

13.
Identification of anti-TNFalpha peptides with consensus sequence   总被引:1,自引:0,他引:1  
Phage displayed peptide library was used to select tumor necrosis factor alpha (TNFalpha) binding peptides. After three sequential rounds of biopanning, some linear TNFalpha-binding peptides were identified from a 12-mer peptide library. A consensus sequence (L/M)HEL(Y/F)(L/M)X(W/Y/F), where X might be variable residue, was deduced from sequences of these peptides. The phages bearing these peptides showed specific binding to immobilized TNFalpha, with over 80% of phages bound being competitively eluted by free TNFalpha. To confirm the binding activity and to explore further functional properties, three peptides with typical structure were selected and expressed as GST-fused protein. These recombinant peptides effectively competed for [125I]TNFalpha binding to TNFR1 in a dose-dependent manner, with IC(50) from 10 to 160 microM. Furthermore, the GST-fused derivatives showed inhibitory effects on TNFalpha-induced cytotoxicity. Taken together, these data demonstrate that the TNFalpha-binding peptides are effective antagonists of TNFalpha and the deduced motif might be useful in development of novel low molecular weight anti-TNFalpha drugs.  相似文献   

14.
Characterization of the peptide‐binding specificity of swine leukocyte antigen (SLA) class I and II molecules is critical to the understanding of adaptive immune responses of swine toward infectious pathogens. Here, we describe the complete binding motif of the SLA‐2*0401 molecule based on a positional scanning combinatorial peptide library approach. By combining this binding motif with data achieved by applying the NetMHCpan peptide prediction algorithm to both SLA‐1*0401 and SLA‐2*0401, we identified high‐affinity binding peptides. A total of 727 different 9mer and 726 different 10mer peptides within the structural proteins of foot‐and‐mouth disease virus (FMDV), strain A24 were analyzed as candidate T‐cell epitopes. Peptides predicted by the NetMHCpan were tested in ELISA for binding to the SLA‐1*0401 and SLA‐2*0401 major histocompatibility complex class I proteins. Four of the 10 predicted FMDV peptides bound to SLA‐2*0401, whereas five of the nine predicted FMDV peptides bound to SLA‐1*0401. These methods provide the characterization of T‐cell epitopes in response to pathogens in more detail. The development of such approaches to analyze vaccine performance will contribute to a more accelerated improvement of livestock vaccines by virtue of identifying and focusing analysis on bona fide T‐cell epitopes.  相似文献   

15.
Prion diseases are rare and obligatory fatal neurodegenerative disorders caused by the accumulation of a misfolded isoform (PrPSc) of the host-encoded prion protein (PrPc). Prophylactic and therapeutic regimens against prion diseases are very limited. To extend such strategies we selected peptide aptamers binding to PrP from a combinatorial peptide library presented on the Escherichia coli thioredoxin A (trxA) protein as a scaffold. In a yeast two-hybrid screen employing full-length murine PrP (aa 23-231) as a bait we identified three peptide aptamers that reproducibly bind to PrP. Treatment of prion-infected cells with recombinantly expressed aptamers added to the culture medium abolished PrPSc conversion with an IC50 between 350 and 700 nM. For expression in eukaryotic cells, peptide aptamers were fused to an N-terminal signal peptide for entry of the secretory pathway. The C terminus was modified by a glycosyl-phosphatidyl-inositol-(GPI) anchoring signal, a KDEL retention motif and the transmembrane and cytosolic domain of LAMP-I, respectively. These peptide aptamers retained their binding properties to PrPc and, depending on peptide sequence and C-terminal modification, interfered with endogenous PrPSc conversion upon expression in prion-infected cells. Notably, infection of cell cultures could be prevented by expression of KDEL peptide aptamers. For the first time, we show that trxA-based peptide aptamers can be targeted to the secretory pathway, thereby not losing the affinity for their target protein. Beside their inhibitory effect on prion conversion, these molecules could be used as fundament for rational drug design.  相似文献   

16.
We cloned and expressed the SH2 domain of human GRB2 as glutathione S-transferase and maltose binding protein fusion proteins. We screened three phagemid-based fd pVIII-protein phage display libraries against SH2 domain fusion proteins. Sequence analysis of the peptide extensions yielded a variety of related peptides. By examining the ability of the phage clones to bind other SH2 domains, we demonstrated that the phage were specific for the SH2 domain of GRB2. Based on the sequence motif identified in the "random" library screening experiment, we also built and screened a phage display library based on a Tyr-X-Asn motif (X5-Tyr-X-Asn-X8). To examine the affinity of the phage derived peptides for GRB2, we set up a radioligand competition binding assay based on immobilized GRB2 and radiolabelled autophosphorylated EGFR ICD as the radioligand. Results obtained with peptide competitors derived from the phage sequences demonstrated that nonphosphotyrosine-containing peptides identified with the phage display technology had an affinity for the receptor similar to tyrosine-phosphorylated peptides derived from the EGFR natural substrate. Interestingly, when the phage display peptides were then phosphorylated on tyrosine, their affinity for GRB2 increased dramatically. We also demonstrated the ability of the peptides to block the binding of the GRB2 SH2 domain to EGFR in a mammalian cell-based binding assay.  相似文献   

17.
Calmodulin is known to bind to various amphipathic helical peptide sequences, and the calmodulin-peptide binding surface has been shown to be remarkably tolerant sterically. D-Amino acid peptides, therefore, represent potential nonhydrolysable intracellular antagonists of calmodulin. In the present study, synthetic combinatorial libraries have been used to develop novel D-amino acid hexapeptide antagonists to calmodulin-regulated phosphodiesterase activity. Five hexapeptides were identified from a library containing over 52 million sequences. These peptides inhibited cell proliferation both in cell culture using normal rat kidney cells and by injection via the femoral vein following partial hepatectomy of rat liver cells. These hexapeptides showed no toxic effect on the cells. Despite their short length, the identified hexapeptides appear to adopt a partial helical conformation similar to other known calmodulin-binding peptides, as shown by CD spectroscopy in the presence of calmodulin and NMR spectroscopy in DMSO. The present peptides are the shortest peptide calmodulin antagonists reported to date showing potential in vivo activity.  相似文献   

18.
It is now routine using automatic Edman microsequencing to determine the primary structure of peptides or proteins containing natural amino acids; however, a deficiency in the ability to readily sequence peptides containing unnatural amino acids remains. With the advent of synthetic peptide chemistry, combinatorial chemistry, and the large number of commercially available unnatural amino acids, there is a need for efficient and accurate structure determination of short peptides containing many unnatural amino acids. In this study, 35 commercially available alpha-unnatural amino acids were selected to determine their elution profile on an ABI protein sequencer. Using a slightly modified gradient program, 19 of these 35 PTH amino acids can be readily resolved and distinguished from common PTH amino acids at low picomole levels. These unnatural amino acids in conjunction with the 20 natural amino acids can be used as building blocks to construct peptide libraries, and peptide beads isolated from these libraries can be readily microsequenced. To demonstrate this, we synthesized a simple tripeptide "one-bead one-compound" combinatorial library containing 14 unnatural and 19 natural amino acids and screened this library for streptavidin-binding ligands. Microsequencing of the isolated peptide-beads revealed the novel motif Bpa-Phe(4-X)-Aib, wherein X = H, OH, and CH3.  相似文献   

19.
Chuman Y  Uren A  Cahill J  Regan C  Wolf V  Kay BK  Rubin JS 《Peptides》2004,25(11):1831-1838
Secreted Frizzled-related proteins (sFRPs) bind Wnts and modulate their activity. To identify putative sFRP-1 binding motifs, we screened an M13 phage displayed combinatorial peptide library. A predominant motif, L/V-VDGRW-L/V, was present in approximately 70% of the phage that bound sFRP-1. Use of peptide/alkaline phosphatase chimeras and alanine scanning confirmed that the conserved motif was important for sFRP-1 recognition. The dissociation constant for a peptide/sFRP-1 complex was 3.9 microM. Additional analysis revealed that DGR was the core of the binding motif. Although Wnt proteins lack this sequence, other proteins possessing the DGR motif may function as novel binding partners for sFRP-1.  相似文献   

20.
Bracci L  Lozzi L  Lelli B  Pini A  Neri P 《Biochemistry》2001,40(22):6611-6619
Peptide libraries allow selecting new molecules, defined as mimotopes, which are able to mimic the structural and functional features of a native protein. This technology can be applied for the development of new reagents, which can interfere with the action of specific ligands on their target receptors. In the present study we used a combinatorial library approach to produce synthetic peptides mimicking the snake neurotoxin binding site of nicotinic receptors. On the basis of amino acid sequence comparison of different alpha-bungarotoxin binding receptors, we designed a 14 amino acid combinatorial synthetic peptide library with five invariant, four partially variant, and five totally variant positions. Peptides were synthesized using SPOT synthesis on cellulose membranes, and binding sequences were selected using biotinylated alpha-bungarotoxin. Each variant position was systematically identified, and all possible combinations of the best reacting amino acids in each variant position were tested. The best reactive sequences were identified, produced in soluble form, and tested in BIACORE to compare their kinetic constants. We identified several different peptides that can inhibit the binding of alpha-bungarotoxin to both muscle and neuronal nicotinic receptors. Peptide mimotopes have a toxin-binding affinity that is considerably higher than peptides reproducing native receptor sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号