首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanisms involved in the neuroprotective effect of serotonin 5-HT1A receptor agonists on brain damage induced by ischemia remain to be fully elucidated. Given that serotonergic drugs may regulate N-methyl-D-aspartate (NMDA) receptor function, which is implicated in events leading to ischemia-induced neuronal cell death, this study sought to determine the effects of the selective 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), on the levels of NMDA receptor NR1 subunit in gerbil hippocampus after transient global cerebral ischemia. Pretreatment with 8-OH-DPAT (1 mg/kg) prevented the neuronal loss in CA1 subfield 72 h after ischemia. NMDA receptor NR1 levels in whole hippocampus were not affected 24 h after ischemia, but the levels of the subunit phosphorylated at the protein kinase A (PKA) site, pNR1(Ser897), were significantly increased, and this increase was prevented by the same 8-OH-DPAT dose, a probable consequence of the increased phosphatase 1 (PP1) enzyme activity found in ischemic gerbils pretreated with the 5-HT1A receptor agonist. The results suggest that NR1 subunit phosphorylation plays a role in the neuroprotective effect of 8-OH-DPAT on cell damage induced by global cerebral ischemia in the gerbil hippocampus and support the potential interest of 5-HT1A receptor activation in the search for neuroprotective strategies.  相似文献   

2.
5-HT(3) receptors cloned from NCB-20 cells were expressed in Xenopus oocytes, and the effects of forskolin and steroids on the function of the receptors were investigated using the two-electrode voltage-clamp technique. Forskolin, 17-beta-estradiol, and progesterone inhibited the currents activated by 1 microM 5-HT in a reversible and concentration-dependent manner, with IC(50) values of 12, 33, and 89 microM, respectively. The inhibitory effects of forskolin and 17-beta-estradiol were independent of the membrane potential. Forskolin and 17-beta-estradiol significantly reduced the maximal amplitude of the 5-HT concentration-response curve (E(max)) without significantly affecting the EC(50), indicating that these compounds act as noncompetitive inhibitors of the 5-HT(3) receptor. The cAMP analogue, 8-Br-cAMP (0.2 mM), and the protein kinase A activator, Sp-cAMP (0.1 mM), did not affect the amplitude of 5-HT(3) receptor-mediated currents. The membrane-permeable protein kinase A inhibitor Rp-cAMP (0.1 mM) and the estrogen-receptor antagonist tamoxifen (1 microM) did not affect the inhibition of 5-HT-activated current. In addition, 5-HT(3) receptor-mediated currents were inhibited by both 1,9-dideoxy forskolin (30 microM), which does not activate adenylyl cyclase, and wForskolin (30 microM), a charged hydrophilic analogue of forskolin that is membrane impermeable. These results indicate that both forskolin and 17-beta-estradiol inhibit the function of the 5-HT(3) receptor in a noncompetitive manner and that this inhibition is independent of cAMP levels.  相似文献   

3.
Abstract: Transient forebrain or global ischemia in rats induces selective and delayed damage of hippocampal CA1 neurons. In a previous sludy, we have shown that expression of GIuR2, the kainate/a-amino-3-hydroxy-5- methyl-4-isoxazolepropionic acid (AMPA) receptor subunit that governs Ca' permeability, is preferentially reduced in CA1 at a time point proceeding neuronal degeneration. Postischemic administration of the selective AMPA receptor antagonist, 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX), protects CAI neurons against delayed death. In this study we examined the effects of NBQX (at a neuroprotective dose) and of MK-801 (a selective NMDA receptor anltagonist, not protective in this model) on kainate/AMPA receptor gene expression changes after global ischemia. We also examined the effects of transient forebrain ischemia on expression of the NMDA receptor subunit NMDARI. In ischemic rats treated with saline, GIuR2 and (31uR3 mRNAs were markedly reduced in CAI but were unchanged in CA3 or dentate gyrus. GluRl and NMDAR1 mRNAs were not significantly changed in any region examined. Administration of NBQX or MK-801 did not alter the ischemia-induced changes in kainate/AMPA receptor gene expression. These findings suggest that NBQX affords neuroprotection by a direct blockade of kainate/AMPA receptors, rather than by a modificatian of GIuR2 expression changes  相似文献   

4.
Dopamine receptor agonists play an important role in the treatment of Parkinson's disease and hyperprolactinemic conditions. Proterguride (n-propyldihydrolisuride) was already reported to be a highly potent dopamine receptor agonist, thus its action at different non-dopaminergic monoamine receptors, alpha(1A/1B/1D), 5-HT(2A/2B)- and histamine H(1), was investigated using different functional in vitro assays. The drug behaved as an antagonist at alpha(1)-adrenoceptors without the ability to discriminate between the subtypes (pA(2) values: alpha(1A) 7.31; alpha(1B) 7.37; alpha(1D) 7.35) and showed antagonistic properties at the histamine H(1) receptor. In contrast, at serotonergic receptors (5-HT(2A), 5-HT(2B)) proterguride acted as a partial agonist. The drug stimulated 5-HT(2A) receptors of rat tail artery in lower concentrations than 5-HT itself but failed to evoke comparable efficacy (proterguride: pEC(50) 8.34, E(max) 53% related to the maximum response to 5-HT; 5-HT: pEC(50) 7.03). Agonism at 5-HT(2B) receptors is presently considered to be involved in drug-induced valvular heart disease. Activation of 5-HT(2B) receptors in porcine pulmonary arteries by proterguride (pEC(50) 7.13, E(max) 49%; E(max) (5-HT) 69%), however, occurred at concentrations much higher than plasma concentrations achieving dopaminergic efficacy in humans. The results are discussed focussing on the relevance of action at 5-HT(2B) receptors as well as their significance for a transdermal administration of proterguride. Since it is well accepted that pulsatile dopaminergic stimulation is associated with treatment-related motor complications in the dopaminergic therapy of Parkinson's disease, the transdermal route of administration is of great clinical interest due to the possibility to achieve constant plasma concentrations.  相似文献   

5.
Muscarinic acetylcholine M1 receptors play an important role in synaptic plasticity in the hippocampus and cortex. Potentiation of NMDA receptors as a consequence of muscarinic acetylcholine M1 receptor activation is a crucial event mediating the cholinergic modulation of synaptic plasticity, which is a cellular mechanism for learning and memory. In Alzheimer's disease, the cholinergic input to the hippocampus and cortex is severely degenerated, and agonists or positive allosteric modulators of M1 receptors are therefore thought to be of potential use to treat the deficits in cognitive functions in Alzheimer's disease. In this study we developed a simple system in which muscarinic modulation of NMDA receptors can be studied in vitro. Human M1 receptors and NR1/2B NMDA receptors were co-expressed in Xenopus oocytes and various muscarinic agonists were assessed for their modulatory effects on NMDA receptor-mediated responses. As expected, NMDA receptor-mediated responses were potentiated by oxotremorine-M, oxotremorine or xanomeline when the drugs were applied between subsequent NMDA responses, an effect which was fully blocked by the muscarinic receptor antagonist atropine. However, in oocytes expressing NR1/2B NMDA receptors but not muscarinic M1 receptors, oxotremorine-M co-applied with NMDA also resulted in a potentiation of NMDA currents and this effect was not blocked by atropine, demonstrating that oxotremorine-M is able to directly potentiate NMDA receptors. Oxotremorine, which is a close analogue of oxotremorine-M, and xanomeline, a chemically distinct muscarinic agonist, did not potentiate NMDA receptors by this direct mechanism. Comparing the chemical structures of the three different muscarinic agonists used in this study suggests that the tri-methyl ammonium moiety present in oxotremorine-M is important for the compound's interaction with NMDA receptors.  相似文献   

6.
Accumulating evidence has indicated that vertebrate oocytes are arrested at late prophase (G2 arrest) by a G protein coupled receptor (GpCR) that activates adenylyl cyclases. However, the identity of this GpCR or its regulation in G2 oocytes is unknown. We demonstrated that ritanserin (RIT), a potent antagonist of serotonin receptors 5-HT2R and 5-HT7R, released G2 arrest in denuded frog oocytes, as well as in follicle-enclosed mouse oocytes. In contrast to RIT, several other serotonin receptor antagonists (mesulergine, methiothepine, and risperidone) had no effect on oocyte maturation. The unique ability of RIT, among serotonergic antagonists, to induce GVBD did not match the antagonist profile of any known serotonin receptors including Xenopus 5-HT7R, the only known G(s)-coupled serotonin receptor cloned so far in this species. Unexpectedly, injection of x5-HT7R mRNA in frog oocytes resulted in hormone-independent frog oocyte maturation. The addition of exogenous serotonin abolished x5-HT7R-induced oocyte maturation. Furthermore, the combination of x5-HT7R and exogenous serotonin potently inhibited progesterone-induced oocyte maturation. These results provide the first evidence that a G-protein coupled receptor related to 5-HT7R may play a pivotal role in maintaining G2 arrest in vertebrate oocytes.  相似文献   

7.
Midbrain slices containing the dorsal and medial raphe nuclei were prepared from rat brain, loaded with [3H]serotonin ([3H]5-HT), superfused, and the electrically induced efflux of radioactivity was determined. The nonselective 5-HT receptor agonist 5-carboxamido-tryptamine (5-CT; 0.001 to 1 microM) inhibited the electrically stimulated [3H]5-HT overflow from raphe nuclei slices (IC50 of 3.34 +/- 0.37 nM). This effect of 5-CT on [3H]5-HT overflow was antagonized by the 5-HT7 receptor antagonist SB-258719 (10 microM) and the 5-HT(1B/1D) antagonist SB-216641 (1 microM), the IC50 values for 5-CT in the presence of SB-258719 and SB-216641 were 94.23 +/- 4.84 and 47.81 +/- 4.66 nM. The apparent pA2 values for SB-258719 and SB-216641 against 5-CT were 6.43 and 7.12, respectively. The inhibitory effect of 5-CT on [3H]5-HT overflow was weakly antagonized by 10 microM of WAY-100635, a 5-HT1A receptor antagonist (IC50 6.65 +/- 0.56 nM, apparent pA2 4.99). The antagonist effect of SB-258719 (10 microM) on 5-CT-evoked [3H]5-HT overflow inhibition was also determined in the presence of 1 microM SB-216641 or 1 microM SB-216641 and 10 microM WAY-100635, and additive interactions were found between the antagonists of 5-HT7 and 5-HT1 receptor subtypes. Addition of the Na+ channel blocker tetrodotoxin (1 microM) in the presence of SB-216641 (1 microM) and WAY-100635 (10 microM) attenuated the inhibitory effect of 5-CT on KCl-induced [3H]5-HT overflow. These findings indicate that 5-CT inhibits [3H]5-HT overflow from raphe nuclei slices of the rat by stimulation of 5-HT7 and 5-HT(1B/1D receptors, whereas the role of 5-HT1A receptors in this inhibition is less pronounced. They also suggest that 5-HT7 receptors are probably not located on serotonergic neurons and thus may serve as heteroreceptors in regulation of 5-HT release in the raphe nuclei. 5-CT (0.1 microM) also inhibited [3H]glutamate release, and SB-258719 (10 microLM) suspended this effect. We therefore speculated that the axon terminals of the glutamatergic cortico-raphe neurons may possess 5-HT7 receptors that inhibit glutamate release, which consequently leads to decreased activity of serotonergic neurons. The postulated glutamatergic-serotonergic interaction in the raphe nuclei was further evidenced by the finding that N-methyl-D-aspartate and AMPA enhanced [3H]5-HT release.  相似文献   

8.
Using sodium azide (NaN3)-induced anoxia plus aglycaemia as a model of chemically-induced ischemia in the hippocampal slice, we have evaluated the effects of the novel 5-HT(1A) partial agonist/5-HT(2) receptor antagonist adatanserin and the 5-HT(1A) receptor agonist BAYx3702 on the efflux of endogenous glutamate, aspartate and GABA. BAYx3702 (10-1000 nM) produced a significant (P<0.05) dose-related attenuation of ischemic efflux of both glutamate and GABA with maximum decrease being observed at 100 nM (73 and 69%, respectively). This attenuation was completely reversed by the addition of the 5-HT(1A) antagonist, WAY-100635 (100 nM). Similarly, adatanserin (10-1000 nM) produced a significant (P<0.05) dose-related attenuation in glutamate and GABA efflux with a maximum of 72 and 81% at 100 nM, respectively. This effect was completely reversed by the 5-HT(2A/C) receptor agonist, DOI but unaffected by WAY-100635. The 5-HT(2A) receptor antagonist MDL-100907 produced a comparable attenuation of glutamate when compared to adatanserin, while the 5-HT(2C) receptor antagonist, SB-206553, had no effect on ischemic efflux. None of these compounds significantly altered aspartate efflux from this preparation. In conclusion, the 5-HT(1A) receptor partial agonist 5-HT(2) receptor antagonist, adatanserin is able to attenuate ischemic amino acid efflux in a comparable manner to the full 5-HT(1A) agonist BAYx3702. However, in contrast to BAYx3702, adatanserin appears to produce it effects via blockade of the 5-HT(2A) receptor. This suggests that adatanserin may be an effective neuroprotectant, as has been previously demonstrated for full 5-HT(1A) receptor agonists such as BAYx3702.  相似文献   

9.
Amyloid beta (Aβ) oligomers accumulate in the brain tissue of Alzheimer disease patients and are related to disease pathogenesis. The precise mechanisms by which Aβ oligomers cause neurotoxicity remain unknown. We recently reported that Aβ oligomers cause intracellular Ca(2+) overload and neuronal death that can be prevented by NMDA receptor antagonists. This study investigated whether Aβ oligomers directly activated NMDA receptors (NMDARs) using NR1/NR2A and NR1/NR2B receptors that were heterologously expressed in Xenopus laevis oocytes. Indeed, Aβ oligomers induced inward non-desensitizing currents that were blocked in the presence of the NMDA receptor antagonists memantine, APV, and MK-801. Intriguingly, the amplitude of the responses to Aβ oligomers was greater for NR1/NR2A heteromers than for NR1/NR2B heteromers expressed in oocytes. Consistent with these findings, we observed that the increase in the cytosolic concentration of Ca(2+) induced by Aβ oligomers in cortical neurons is prevented by AP5, a broad spectrum NMDA receptor antagonist, but slightly attenuated by ifenprodil which blocks receptors with the NR2B subunit. Together, these results indicate that Aβ oligomers directly activate NMDA receptors, particularly those with the NR2A subunit, and further suggest that drugs that attenuate the activity of such receptors may prevent Aβ damage to neurons in Alzheimer?s disease.  相似文献   

10.
In the present study, human NT2 neurons obtained from embryonic teratocarcinoma (NT2) cells were established as human in-vitro model to investigate the mechanisms associated with hypoxia/ischemia-induced neuronal injury. NT2 neurons express functional NMDA receptors that are of particular significance for hypoxia/ischemia-related neuronal damage. In patch-clamp recordings under normoxic conditions, NMDA (plus 10 microM glycine)-induced inward currents (EC(50)=43.7 microM) were distinctly antagonized by memantine, a blocker of the receptor channel, but only slightly by 5,7-dichlorokynurenic acid (DCKA), a glycine(B) binding site antagonist. Immunohistochemistry demonstrated that the NT2 neurons are mostly GABAergic; they predominantly express the NMDA receptor subunits NR2B and NR2C, and lower levels of NR1 and, particularly, of NR2A. Upon glucose and oxygen deprivation for 3h the loss of cell viability measured directly after 3h was higher than after application of either hypoxia or aglycemia as assessed by propidium iodide flow cytometry. Ischemic conditions significantly reduced the NMDA responses associated with a decrease in EC(50) and decreased mitochondrial membrane potential as detected by JC-1 flow cytometry. Memantine (50 microM) and CGS19755 (a competitive NMDA receptor antagonist; 10 microM) reduced ischemia-induced cell death, in contrast to DCKA (10 microM). In conclusion, in the present human in-vitro model for studying the molecular mechanisms associated with ischemic injury, neuroprotection could be achieved with NMDA receptor antagonists but not with a glycine(B) binding site antagonist. Accordingly, glycine antagonists might not represent an optimal therapeutic strategy for preventing ischemic neuronal damage in contrast to NMDA receptor antagonists like memantine.  相似文献   

11.
Serotonin receptors are potential targets for treating functional bowel disorders. This study investigated the functional roles and expression of the 5-HT4 and the 5-HT7 receptor, which coexist in human colon circular smooth muscle. 5-HT3 receptor expression was also investigated. Part of the relaxant response to 5-HT was due to activation of 5-HT4 receptors as the apparent pKB value of the selective 5-HT4 antagonist, GR 113808, was 9.36. 5-HT4 mRNA levels were low in five tissues and undetectable in four others, but all responded to 5-HT with an EC50 value of 102.54+/-19.32 nM. The contribution of 5-HT7 receptors to the response was not readily demonstrated using the selective 5-HT7 antagonist, SB-269970, as its apparent pKB value of 7.19 (5-HT4 block with 1 microM GR 113808) was lower than the value obtained using the 5-HT7 guinea pig ileum assay (8.62). Nevertheless, the 5-HT7 receptor was expressed more consistently than the 5-HT4, but at similar levels. The 5-HT(3Ashort) and 5-HT(3B) subunits were co-expressed at similar levels, but the 5-HT(3Along) subunit was detected in only five of the nine samples tested. The findings show that 5-HT4-induced relaxation occurs at low to undetectable levels of tissue mRNA, as measured by qPCR. Although 5-HT7 receptor mRNA is detected at low, but consistent levels, the functional activity of this receptor is not readily identified given the currently available drugs.  相似文献   

12.
Mohanan VV  Khan R  Paulose CS 《Life sciences》2006,78(14):1603-1609
5-HT receptors are predominantly located in the brain and are involved in pancreatic function and cell proliferation through sympathetic nervous system. The objective of this study was to investigate the role of hypothalamic 5-HT, 5-HT1A and 5-HT2C receptor binding and gene expression in rat model of pancreatic regeneration using 60% pancreatectomy. The pancreatic regeneration was evaluated by 5-HT content, 5-HT1A and 5-HT2C receptor gene expression in the hypothalamus of sham operated, 72 h and 7 days pancreatectomised rats. 5-HT content was quantified by HPLC. 5-HT1A receptor assay was done by using specific agonist [3H]8-OH DPAT. 5-HT2C receptor assay was done by using specific antagonist [3H]mesulergine. The expression of 5-HT1A and 5-HT2C receptor gene was analyzed by RT-PCR. 5-HT content was higher in the hypothalamus of 72 h pancreatectomised rats. 5-HT1A and 5-HT2C receptors were down-regulated in the hypothalamus. RT-PCR analysis revealed decreased 5-HT1A and 5-HT2C receptor mRNA expression. The 5-HT1A and 5-HT2C receptors gene expression in the 7 days pancreatectomised rats reversed to near sham level. This study is the first to identify 5-HT1A and 5-HT2C receptor gene expression in the hypothalamus during pancreatic regeneration in rats. Our results suggest the hypothalamic serotonergic receptor functional regulation during pancreatic regeneration.  相似文献   

13.
Methamphetamine (MAP) is one of the most commonly abused drugs in Asia, and previous studies suggest that serotonin 3 receptors (5-HT(3)) are involved in MAP-induced locomotion and reward. However, little is known about the role of 5-HT(3) receptors in MAP-induced behavioral sensitization. Here, we measured the effects of MDL 72222, a 5-HT(3) antagonist, and SR 57227 A, a 5-HT(3) agonist, on the development and expression of MAP-induced behavioral sensitization, and alternations of 5-HT(3) receptor binding labeled with the 5-HT(3)-selective antagonist, [(3)H]GR65630, in mice. In addition, we investigated the effects of MAP on 5-HT(3A) receptor channel activity in Xenopus laevis oocytes expressing 5-HT(3A) receptors. We found that MDL 72222 attenuated both the development and expression of behavioral sensitization to MAP (1.0 mg/kg, i.p.), and that this attenuating effect of MDL 72222 was reversed by pre-treatment with SR 57227 A. In oocytes expressing 5-HT(3A) receptor, MAP exhibited a dual modulation of 5-HT(3A) receptor channel activity, i.e. pre-treatment with a low dose of MAP (0.1 microm) enhanced 5-HT-induced inward peak current (I(5-HT)) but a high dose of MAP (100 microm) inhibited I(5-HT). The acute administration of MDL 72222 with MAP decreased [(3)H]GR65630 binding versus MAP alone in the mouse striatum. Our results suggest that MDL 72222 attenuates MAP-induced behavioral sensitization via 5-HT(3) receptors in the caudate putamen, and that 5-HT(3) receptor antagonists like MDL 72222 have potential as novel anti-psychotic agents for the treatment of MAP dependence and psychosis.  相似文献   

14.
非NMDA受体参与双相呼气和吸气神经元电活动的调节   总被引:1,自引:1,他引:0  
Pan BX  Wu ZH 《生理学报》2001,53(2):89-92
在新生大鼠延髓脑片上同步记录舌下神经根和双相呼气神经元/吸气神经元单位的放电活动,并在灌流的改良Kredbs液中先后加以非NMDA受体的激动剂KA和拮抗剂DNQX,观察对神经元单位放电的影响,以进一步探讨非NMDA受体在对双相呼气神经元之间交互兴奋和吸气神经元兴奋性突触输入中的作用,结果表明,使用非NMDA受体激动剂KA以后,双相呼气神经元的放电频率和蜂频率都明显增大,吸气神经元中期放电的频率和非NMDA受体激动剂KA以后,双相呼气神经元的放电频率和峰频率都明显增大,吸气神经元中期放电的频率和峰频率也显著增大,而早期和晚期放电的频率无明显改变,用相应拮抗剂以后,上述效应明显被抑制,结果提示,非NMDA受体参与了双相呼气神经元之间的交互兴奋作用,并且也介导了吸气神经元的兴奋性突触输入/  相似文献   

15.

Caffeine, a stimulant largely consumed around the world, is a non-selective adenosine receptor antagonist, and therefore caffeine actions at synapses usually, but not always, mirror those of adenosine. Importantly, different adenosine receptors with opposing regulatory actions co-exist at synapses. Through both inhibitory and excitatory high-affinity receptors (A1R and A2R, respectively), adenosine affects NMDA receptor (NMDAR) function at the hippocampus, but surprisingly, there is a lack of knowledge on the effects of caffeine upon this ionotropic glutamatergic receptor deeply involved in both positive (plasticity) and negative (excitotoxicity) synaptic actions. We thus aimed to elucidate the effects of caffeine upon NMDAR-mediated excitatory post-synaptic currents (NMDAR-EPSCs), and its implications upon neuronal Ca2+ homeostasis. We found that caffeine (30–200 μM) facilitates NMDAR-EPSCs on pyramidal CA1 neurons from Balbc/ByJ male mice, an action mimicked, as well as occluded, by 1,3-dipropyl-cyclopentylxantine (DPCPX, 50 nM), thus likely mediated by blockade of inhibitory A1Rs. This action of caffeine cannot be attributed to a pre-synaptic facilitation of transmission because caffeine even increased paired-pulse facilitation of NMDA-EPSCs, indicative of an inhibition of neurotransmitter release. Adenosine A2ARs are involved in this likely pre-synaptic action since the effect of caffeine was mimicked by the A2AR antagonist, SCH58261 (50 nM). Furthermore, caffeine increased the frequency of Ca2+ transients in neuronal cell culture, an action mimicked by the A1R antagonist, DPCPX, and prevented by NMDAR blockade with AP5 (50 μM). Altogether, these results show for the first time an influence of caffeine on NMDA receptor activity at the hippocampus, with impact in neuronal Ca2+ homeostasis.

  相似文献   

16.
朱辉  朱幸 《生理学报》1995,47(1):1-10
两栖类卵母细胞表达系统经注射鲫鱼脑mRNA后可表达多种神经递质受体和某些离子通道。本工作利用电压箝方法结合药理学手段对GABA受体和谷氨酸离子型受体作了较详细的研究。结果表明,由GABA诱发的电流反应中,约90%由GABAA受体介导,乘余约10%的成分对GABAA受体的专一性拮抗剂Bicuculline不敏感,而GABAB受体的专一性激动剂Baclofen不能引进电流反应,因此这部分受体特性与GA  相似文献   

17.
A channel-associated protein PSD-95 has been shown to induce clustering of N-methyl D-aspartate (NMDA) receptors, interacting with the COOH terminus of the epsilon subunit of the receptors. The effects of PSD-95 on the channel activity of the epsilon2/zeta1 heteromeric NMDA receptor were examined by injection of PSD-95 cRNA into Xenopus oocytes expressing the NMDA receptors. Expression of PSD-95 decreased the sensitivity of the NMDA receptor channels to L-glutamate. Mutational studies showed that the interaction between the COOH terminus of the epsilon2 subunit of the NMDA receptor and the second PSD-95/Dlg/Z0-1 domain of PSD-95 is critical for the decrease in glutamate sensitivity. It is known that protein kinase C markedly potentiates the channel activity of the NMDA receptor expressed in oocytes. PSD-95 inhibited the protein kinase C-mediated potentiation of the channels. Thus, we demonstrated that PSD-95 functionally modulates the channel activity of the epsilon2/zeta1 NMDA receptor. PSD-95 makes signal transmission more efficient by clustering the channels at postsynaptic sites. In addition to this, our results suggest that PSD-95 plays a protective role against neuronal excitotoxicity by decreasing the glutamate sensitivity of the channels and by inhibiting the protein kinase C-mediated potentiation of the channels.  相似文献   

18.
The serotonin1A (5-HT1A) receptor is an important member of the superfamily of seven transmembrane domain G-protein coupled receptors (GPCRs). We report here that guanine nucleotide sensitivity of agonist binding to hippocampal 5-HT1A receptors is dependent on the concentration of Mg2+. Our results show that agonist binding to 5-HT1A receptors is relatively insensitive to guanine nucleotides in the absence of Mg2+. In contrast to this, the specific antagonist binding is insensitive to guanine nucleotides, even in the presence of Mg2+. These results point out the requirement of an optimal concentration of Mg2+ which could be used in assays toward determining guanine nucleotide sensitivity of ligand binding to GPCRs such as the 5-HT1A receptor. Our results provide novel insight into the requirement and concentration dependence of Mg2+ in relation to guanine nucleotide sensitivity for the 5-HT1A receptor in particular, and GPCRs in general.  相似文献   

19.
We previously reported that ginseng, a well-known herbal medicine, inhibited NMDA receptors in cultured hippocampal neurons. Here, we further examined the detailed mechanism of ginseng-mediated inhibition using its main active ingredient, ginsenoside Rg3. Co-application of ginsenoside Rg3 with increasing concentrations of NMDA did not change the EC50 of NMDA to the receptor, suggesting that ginsenoside Rg3 inhibits NMDA receptors without competing with the NMDA-binding site. Ginsenoside Rg3-mediated inhibition also occurred in a distinctive manner from the well-characterized NMDA receptor open channel blocker, MK-801. However, ginsenoside Rg3 produced its effect in a glycine concentration-dependent manner and shifted the glycine concentration-response curve to the right without changing the maximal response, suggesting the role of ginsenoside Rg3 as a competitive NMDA receptor antagonist. We also demonstrated that ginsenoside Rg3 significantly protected neurons against NMDA insults. Therefore, these results suggest that ginsenoside Rg3 protects NMDA-induced neuronal death via a competitive interaction with the glycine-binding site of NMDA receptors in cultured hippocampal neurons.  相似文献   

20.
Metabotropic glutamate receptors have recently been envisaged as involved in both potentiation and prevention of ischemic and excitotoxic neuronal damage. The release of the inhibitory amino acid taurine is markedly enhanced in ischemia in both the immature and mature mouse hippocampus. The modulation of [3H]taurine release by metabotropic receptor agonists and antagonists was studied in hippocampal slices from developing (7-day-old) and adult (3-month-old) mice using a superfusion system. Agonists of group I, II and III metabotropic glutamate receptors generally reduced the ischemia-induced release in adult animals. In the immature hippocampus the group I agonists (S)-3,5-dihydroxyphenylglycine and (1±)-1-aminocyclopentane-trans-1,3-dicarboxylate, which mainly enhance neuronal excitation, potentiated initial taurine release in ischemia. Ionotropic glutamate receptor agonists also enhance the ischemia-induced taurine release in developing mice. This glutamate-activated taurine release may thus constitute an important protective mechanism against excitotoxicity in the immature hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号