首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unidirectional influx of hypoxanthine across cerebral capillaries, the anatomical locus of the blood=brain barrier, was measured with an in situ rat brain perfusion technique employing [3H]hypoxanthine. Hypoxanthine was transported across the blood-brain barrier by a saturable system with a one-half saturation concentration of approximately 0.4 mM. The permeability-surface area product was 3×10–4 sec–1 with a hypoxanthine concentration of 0.02 M in the perfusate. Adenine (4 mM) and uracil and theophylline (both 10 mM), but not inosine (10 mM) or leucine (1 mM), inhibited hypoxanthine transfer through the blood-brain barrier. Thus, hypoxanthine is transported through the blood-brain barrier by a high-capacity, saturable transport system with a half-saturation concentration about 100 times the plasma hypoxanthine concentration. Although involved in the transport hypoxanthine from blood into brain, this system is not powerful enough to transfer important quantities of hypoxanthine from blood into brain.  相似文献   

2.
The unidirectional transport of [3H]myo-inositol across cerebral capillaries, the anatomical locus of the blood-brain barrier, was measured using an in situ rat brain perfusion technique. Myo-inositol was transported across the blood-brain barrier by a low capacity, saturable system with a one-half saturation concentration of 0.1 mM. The permeability surface-area product was 6.2×10–5S–1 with a myo-inositol concentration of 0.02 mM in the perfusate. The myo-inositol stereoisomer scyllo-inositol but not (+)-chiro-inositol (both 1 mM) inhibited myo-inositol transfer through the blood-brain barrier. These observations provide evidence that myo-inositol is transferred through the blood-brain barrier by simple diffusion and a stereospecific, saturable transport system.  相似文献   

3.
Iron transport kinetics through blood-brain barrier endothelial cells   总被引:1,自引:0,他引:1  

Background

Transferrin and its receptors play an important role during the uptake and transcytosis of iron through blood-brain barrier (BBB) endothelial cells (ECs) to maintain iron homeostasis in BBB endothelium and brain. Any disruptions in the cell environment may change the distribution of transferrin receptors on the cell surface, which eventually alter the homeostasis and initiate neurodegenerative disorders. In this paper, we developed a comprehensive mathematical model that considers the necessary kinetics for holo-transferrin internalization and acidification, apo-transferrin recycling, and exocytosis of free iron and transferrin-bound iron through basolateral side of BBB ECs.

Methods

Ordinary differential equations are formulated based on the first order reaction kinetics to model the iron transport considering their interactions with transferrin and transferrin receptors. Unknown kinetics rate constants are determined from experimental data by applying a non-linear optimization technique.

Results

Using the estimated kinetic rate constants, the presented model can effectively reproduce the experimental data of iron transports through BBB ECs for many in-vitro studies. Model results also suggest that the BBB ECs can regulate the extent of the two possible iron transport pathways (free and transferrin-bound iron) by controlling the receptor expression, internalization of holo-transferrin-receptor complexes and acidification of holo-transferrin inside the cell endosomes.

Conclusion

The comprehensive mathematical model described here can predict the iron transport through BBB ECs considering various possible routes from blood side to brain side. The model can also predict the transferrin and iron transport behavior in iron-enriched and iron-depleted cells, which has not been addressed in previous work.  相似文献   

4.
The possibility that red cell-sequestered amino acids such as phenylalanine are available for transport through the brain capillary wall, i.e., the blood-brain barrier (BBB), in vivo was investigated in the present studies with the carotid artery injection technique. Control studies included the examination of the availability of red cell-sequestered solutes such as phenylalanine ord-glucose to liver cells in vivo using a portal vein injection technique. The results show that red cell-sequestered phenylalanine is not available for transport through the BBB or into rat liver in vivo, but human red cell-sequesteredd-glucose is available for uptake by liver following portal injection. Therefore, given favorable kinetics it is possible for red cell-sequestered solute to be available for uptake by tissues. However, in the case of neutral amino acids such as phenylalanine, red cell-sequestered amino acid is not available for transport through the BBB in vivo.  相似文献   

5.
Clearing amyloid through the blood-brain barrier   总被引:4,自引:0,他引:4  
According to the amyloid hypothesis, accumulation of amyloid beta-peptide (A beta) in the brain is the primary pathogenic event in Alzheimer's disease (AD). Recent evidence indicates that A beta within the intravascular space is linked to A beta deposited in the brain suggesting that transport of A beta between the brain, blood and cerebrospinal fluid, and across the blood-brain barrier, regulates brain A beta. Thus, understanding A beta exchanges between brain and blood, and vice versa, and developing transport-based systemic A beta-lowering strategies may provide new important insights into pathogenesis and therapeutic control of AD.  相似文献   

6.
The existence of the blood-brain barrier is due to tight junctions between endothelial cells preventing the passage of liquid and solute material at the capillary level. Substances can thus pass across the blood-brain barrier if they are lipophilic or if they have transport systems in the membranes of endothelial cells. The luminal membrane brings metabolites needed for the brain function, the abluminal one plays an important part in removing substances from brain, this can happen against a concentration gradient and thus needs energy. Ions are transported differently by the 2 membranes. Sodium and chloride have carriers and potassium is transported very actively by the sodium-potassium ATPase of the abluminal membrane. Blood-brain glucose influx is very important and happens by carrier transport at the 2 membranes. Efflux seems to use the same transport system as the influx. Transport of ketone bodies seems to happen only from blood to brain, the carriers being reversibly used for brain-blood transport of pyruvic and lactic acid. Amino-acid transport is very different on the luminal and abluminal membranes. On the luminal membrane there are 2 transport systems, one for basic amino acids, the other one, the L system, for neutral amino-acids. All neutral amino-acids are transported through the abluminal membrane by the L, A and ASC systems. There exists a system of transport for basic amino-acids, and a very active one for acid amino-acids. Some systems for the transport of hormones, vitamins and for some peptides exist also at the blood-brain barrier which thus plays a very important role in the regulation of brain metabolism.  相似文献   

7.
8.
血脑屏障与脑药物转运   总被引:10,自引:1,他引:10  
血脑屏障的存在使大分子药物难以进入脑中发挥疗效。成为中枢神经系统疾病治疗的瓶颈。本就血脑屏障的结构特点、大分子药物转运入脑的途径及药物与载体间的连接策略等问题进行了综述。  相似文献   

9.
10.
11.
12.
Saturable transport of peptides across the blood-brain barrier   总被引:3,自引:0,他引:3  
W A Banks  A J Kastin 《Life sciences》1987,41(11):1319-1338
Peptides can be transported across the blood-brain barrier by saturable transport systems. One system, characterized with radioactively labeled Tyr-MIF-1 (Tyr-Pro-Leu-Gly-amide), is specific for some of the small peptides with an N-terminal tyrosine, including Tyr-MIF-1, the enkephalins, beta-casomorphin, and dynorphin (1-8). Another separate system transports vasopressin-like peptides. The choroid plexus has at least one system distinguishable from those above that is capable of uptake and possibly transport of opiate-like peptides. The possibility of saturable transport of other peptides has been investigated to a varying degree. Specificity, stereo-specificity, saturability, allosteric regulation, modulation by physiologic and pharmacologic manipulations, and noncompetitive inhibition have been demonstrated to occur in peptide transport systems and suggest a role for them in physiology and disease.  相似文献   

13.
14.
Many steroid and thyroid hormones and some drugs are bound by circulating red cells. Red cell-bound ligand may not be physiologically inert, as recent studies show that red cell-bound drug is available for uptake by brain. To investigate whether triiodothyronine (T3) is available for uptake by brain in vivo from the circulating red cell pool, the present investigations measure the effects of human erythrocytes on rat brain uptake of [125I]T3 in vivo. The fraction of circulating T3 available for uptake in vivo in the presence of 0, 2, 5, 10, 22, or 44% red cells was essentially identical to the fraction of [125I]T3 unbound in vitro. Therefore, [125I]T3 bound to red cells obtained from normal volunteers is not available for uptake by brain in vivo.  相似文献   

15.
Neutral amino acid transport at the human blood-brain barrier   总被引:4,自引:0,他引:4  
Transport regulates nutrient availability in the brain, and many pathways of brain amino acid metabolism are influenced by precursor supply. Therefore, amino acid transport through the blood-brain barrier (BBB) plays an important rate-affecting role in brain metabolism. Information on the Km of BBB amino acid transport provides the quantitative basis for understanding the physiological importance of BBB transport competition effects. For example, the uniquely low Km values of BBB amino acid transport as compared to other organs in the rat provides the basis for the selective vulnerability of the rat brain to changes in amino acid supply caused by nutritional factors. The development of amino acid imbalances in the human brain in parallel with amino acid imbalances in blood is likely to occur if the Km of BBB neutral amino acid transport in humans is low, e.g., 25-100 microM, as is the case for the rat. A new model system of the human BBB, the isolated human brain capillary, has been developed. Recent studies with this system indicate that the Km of phenylalanine transport into human brain microvessels is approximately the same as that found during in vivo studies with laboratory rats. These results support the emerging hypothesis that the human brain, like the rat brain, is subject to acute regulation by dietary-related amino acid imbalances, and that the major site of this regulation is the amino acid transport system at the BBB.  相似文献   

16.
Lactoferrin (Lf) is an iron-binding protein involved in host defense against infection and severe inflammation; it accumulates in the brain during neurodegenerative disorders. Before determining Lf function in brain tissue, we investigated its origin and demonstrate here that it crosses the blood-brain barrier. An in vitro model of the blood-brain barrier was used to examine the mechanism of Lf transport to the brain. We report that differentiated bovine brain capillary endothelial cells exhibited specific high (Kd = 37.5 nM; n = 90,000/cell) and low (Kd = 2 microM; n = 900,000 sites/cell) affinity binding sites. Only the latter were present on nondifferentiated cells. The surface-bound Lf was internalized only by the differentiated cell population leading to the conclusion that Lf receptors were acquired during cell differentiation. A specific unidirectional transport then occurred via a receptor-mediated process with no apparent intraendothelial degradation. We further report that iron may cross the bovine brain capillary endothelial cells as a complex with Lf. Finally, we show that the low density lipoprotein receptor-related protein might be involved in this process because its specific antagonist, the receptor-associated protein, inhibits 70% of Lf transport.  相似文献   

17.
Capillaries were isolated from bovine brain cortex and used for phosphate transport studies. The influx of phosphate through capillary membranes was studied by incubation with [32Pi]phosphate followed by a rapid filtration technique. Phosphate uptake by brain capillaries was mediated by a saturable high-affinity system which is independent of the sodium concentration in the incubation medium. The apparent half-saturation constant (Km) and maximal influx (Vmax) were estimated to 160 microM and 0.37 nmol/mg protein/30 s. Transport was inhibited by the phosphate analogues arsenate and phosphonoformic acid with apparent inhibition constants of 5 and 11 mM, respectively. The metabolic inhibitors cyanide and ouabain had no effect on the transport activity. Competition experiments showed that phosphate uptake was inhibited up to 41% by various anions (pyruvate, acetate, citrate, glutamate, and sulfate). In addition, phosphate uptake was significantly decreased by two selective inhibitors of anionic exchangers, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid. Chloride was not a substrate of the phosphate carrier as the replacement of external chloride, by nitrate, thiocyanate, or gluconate, did not increase phosphate transport. Aminohippuric acid and N'-methylnicotinamide, two specific substrates of anionic and cationic drug exchangers, did not compete with the phosphate carrier of cerebral capillaries. However, trans-stimulation with bicarbonate increased phosphate transport by 28%, and this stimulation was inhibited by 1 mM 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, suggesting that the carrier of the cerebral capillaries could exchange phosphate with bicarbonate.  相似文献   

18.
The brain capillary endothelium is a formidable barrier to entry of foreign chemicals into the central nervous system (CNS). For the most part it poorly distinguishes between therapeutics and neurotoxins and thus the blood-brain barrier both protects the brain from toxic chemicals and limits our ability to treat a variety of CNS disorders. Two elements underlie the barrier function of the brain capillary endothelium: 1). a physical barrier comprised of tight junctions, which form an effective seal to intercellular diffusion, and the cells themselves, which exhibit a low rate of endocytosis, and 2). a metabolic/active barrier, comprised of specific membrane transporters expressed by the endothelial cells. We have recently developed an experimental system based on confocal microscopy to study mechanisms of transport in freshly isolated brain capillaries. Here I review studies demonstrating a major role for the ATP-driven, xenobiotic export pump, p-glycoprotein, in barrier function and recent experiments showing that transient inhibition of pump function can have substantial benefit for chemotherapy in an animal model of brain cancer.  相似文献   

19.
Nutrient transport and the blood-brain barrier in developing animals   总被引:2,自引:0,他引:2  
Structural alterations in the development of the blood-brain barrier (BBB) can be seen in capillary profiles from the rat cortex. The neonatal luminal membrane is amplified with irregular folds, a possible adaptation to reduced cerebral blood flow rates. By 21 days the capillaries have resolved to a smooth-surfaced, adult-like appearance. Developmental alterations in the basement membrane, tight junctions, capillary seams, Golgi, pinocytotic vesicles, and cytoplasmic thickness are observed. Two studies have addressed developmental modulations in BBB polarity; both indicate that brain-to-blood transport mechanisms that were inoperative in the early neonatal rat become functional in weanlings. Six of the seven major independent BBB nutrient transport systems that regulate plasma-to-brain uptake have been kinetically characterized in the newborn rabbit, and comparisons have been made in the weanling (28-day-old) rabbit. All of these saturable transport systems are operative at birth, which suggests that the immature rabbit has a mature BBB with respect to regulation of nutrients. Purine base permeability, affinity, and uptake velocities are virtually unchanged during postnatal development. Subtle alterations in amino acid and amine transport were suggested by the lower-affinity (high-capacity) transport mechanisms characterized in the newborn as compared to the 28-day-old BBB. Under conditions of elevated plasma levels (typical of the neonate), these higher-capacity mechanisms would facilitate a relative increase in metabolite influx to the developing brain. Significant differences in kinetics were also observed for the monocarboxylic acid and hexose transport systems in the absence of developmental changes in permeability times surface area products. A low-affinity, high-capacity monocarboxylic acid transport system operates at birth. It supplies the developing brain with increased quantities of ketone bodies, but is seen as a high-affinity, low-capacity mechanism in the 28-day-old rabbit. Concomitantly, the higher-affinity glucose carrier defined in newborn rabbits modulates, and by 28 days becomes a lower-affinity, high-capacity mechanism capable of delivering about 2 mumol X min-1 X g-1 of glucose to the (anesthetized) brain.  相似文献   

20.
Neutral amino acid transport at the human blood-brain barrier   总被引:9,自引:0,他引:9  
The kinetics of human blood-brain barrier neutral amino acid transport sites are described using isolated human brain capillaries as an in vitro model of the human blood-brain barrier. Kinetic parameters of transport (Km, Vmax, and KD) were determined for eight large neutral amino acids. Km values ranged from 0.30 +/- 0.08 microM for phenylalanine to 8.8 +/- 4.6 microM for valine. The amino acid analogs N-methylaminoisobutyric acid and 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid were used as model substrates of the alanine- and leucine-preferring transport systems, respectively. Phenylalanine is transported solely by the L-system (which is sensitive to 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid), and leucine is transported equally by the L- and ASC-system (which is sodium-dependent and N-methylaminoisobutyric acid-independent). Dose-dependent inhibition of the high affinity transport system by p-chloromercuribenzenesulfonic acid is demonstrated for phenylalanine, similar to the known sensitivity of blood-brain barrier transport in vivo. The Km values for the human brain capillary in vitro correlate significantly (r = 0.83, p less than 0.01) with the Km values for the rat brain capillary in vivo. The results show that the affinity of human blood-brain barrier neutral amino acid transport is very high, i.e. very low Km compared to plasma amino acid concentrations. This provides a physical basis for the selective vulnerability of the human brain to derangements in amino acid availability caused by a selective hyperaminoacidemia, e.g. hyperphenylalaninemia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号