首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We recently reported the identification of a gene, TRF4 (for DNA topoisomerase related function), in a screen for mutations that are synthetically lethal with mutations in DNA topoisomerase I (top1). Here we describe the isolation of a second member of the TRF4 gene family, TRF5. Overexpression of TRF5 complements the inviability of top1 trf4 double mutants. The predicted Trf5 protein is 55% identical and 72% similar to Trf4p. As with Trf4p, a region of Trf5p is homologous to the catalytically dispensable N-terminus of Top1p. The TRF4/5 function is essential as trf4 trf5 double mutants are inviable. A trf4 (ts) trf5 double mutant is hypersensitive to the anti-microtubule agent thiabendazole at a semi-permissive temperature, suggesting that TRF4/5 function is required at the time of mitosis. Examination of nuclear morphology in a trf4 (ts) trf5 mutant at a restrictive temperature reveals the presence of many cells undergoing aberrant nuclear division, as well as many anucleate cells, demonstrating that the TRF4/5 function is required for proper mitosis. Database searches reveal the existence of probable Schizosaccharomyces pombe and human homologs of Trf4p, indicating that TRF4 is the canonical member of a gene family that is highly conserved evolutionarily.  相似文献   

2.
The hypothesis that DNA topoisomerase II facilitates the separation of replicated sister chromatids was tested by examining the consequences of chromosome segregation in the absence of topoisomerase II activity. We observed a substantial elevation in the rate of nondisjunction in top2/top2 cells incubated at the restrictive temperature for one generation time. In contrast, only a minor increase in the amount of chromosome breakage was observed by either physical or genetic assays. These results suggest that aneuploidy is a major cause of the nonviability observed when top2 cells undergo mitosis at the restrictive temperature. In related experiments, we determined that topoisomerase II must act specifically during mitosis. This latter observation is consistent with the hypothesis that the mitotic spindle is necessary to allow topoisomerase II to complete the untangling of sister chromatids.  相似文献   

3.
The fission yeast top2 locus is defined by five temperature-sensitive mutations that cause heat-labile activity of type II DNA topoisomerase in the cell extracts. We show that the top2 locus is a structural gene for type II topoisomerase by cloning a genomic DNA fragment that complements top2. The top2 mutants at restrictive temperature produce abnormal chromosomes at the time of mitosis; these are transiently extended into filamentous structures along with the elongating mitotic spindle but are not separated. A primary defect in top2 appears to be the formation of aberrant mitotic chromosomes inseparable by the force generated by the spindle apparatus. Consistently, the top2 cells that become lethal during mitosis contain a catenated dimer of an ARS plasmid. DNA and RNA continue to be synthesized if cytokinesis is blocked. Uncoordinated mitosis, that is the occurrence of spindle dynamics without chromosome separation, is revealed in top2, and is discussed in relation to mitotic regulation. Different phenotypes between top2 and top1-top2 described in the present paper can be explained by a previously proposed hypothesis that type II topoisomerase has dual in vivo functions: one that decatenates and unknots duplex DNAs is essential in mitosis, whereas the other which relaxes supercoils is required throughout the cell cycle if type I topoisomerase is absent.  相似文献   

4.
D Rose  W Thomas  C Holm 《Cell》1990,60(6):1009-1017
To understand better the similarities and differences between meiosis and mitosis, we examined the meiotic role of DNA topoisomerase II, an enzyme that is required mitotically to disentangle sister chromatids at the time of chromosome segregation. In meiosis, we found that topoisomerase II is required only at the time of nuclear division. When cold-sensitive top2 mutants are induced to sporulate at the restrictive temperature, they undergo premeiotic DNA synthesis and commitment to meiotic levels of recombination but fail to complete the first meiotic nuclear division. The introduction of a mutation blocking recombination relieves the requirement for topoisomerase II in meiosis I. These results suggest that topoisomerase II is required at the time of chromosome segregation in meiosis I for the resolution of recombined chromosomes.  相似文献   

5.
The decatenation activity of DNA topoisomerase II is essential for viability as eukaryotic cells traverse mitosis. Phosphorylation has been shown to stimulate topoisomerase II activity in vitro. Here we show that topoisomerase II is a phosphoprotein in yeast and that the level of incorporated phosphate is significantly higher at mitosis than in G1. Comparison of tryptic phosphopeptide maps reveals that the major phosphorylation sites in vivo are targets for casein kinase II. Incorporation of phosphate into topoisomerase II is nearly undetectable at the non-permissive temperature in a conditional casein kinase II mutant. The sites modified by casein kinase II are located in the extreme C-terminal domain of topoisomerase II. This domain is absent in prokaryotic and highly divergent among eukaryotic type II topoisomerases, and may serve to regulate functions of topoisomerase II that are unique to eukaryotic cells.  相似文献   

6.
The ability of the human DNA topoisomerase IIα and IIβ isozymes to complement functional defects conferred by conditionaltop2 mutations inSaccharomyces cerevisiae has been investigated. At the restrictive temperature,top2 strains show multiple abnormalities, including an inability to complete mitotic and meiotic division owing to a defect in chromosome segregation, and hyper-recombination within the repetitive rDNA gene cluster. We show that the human topoisomerases IIα and IIβ can each support both vegetative growth and the production of viable spores in atop2-4 mutant at the restrictive temperature. Similarly, both human isozymes can rescue a strain carrying atop2 gene disruption, and suppress hyper-recombination within the rDNA gene cluster. We conclude that the human topoisomerase IIα and IIβ isozymes are functionally interchangeable with yeast topoisomerase II and suggest that any isozyme-specific roles in human cells are likely to be dependent upon factors other than inherent differences in catalytic ability between the α and β isozymes.  相似文献   

7.
The physiological role of topoisomerase III is unclear for any organism. We show here that the removal of topoisomerase III in temperature sensitive topoisomerase IV mutants in Escherichia coli results in inviability at the permissive temperature. The removal of topoisomerase III has no effect on the accumulation of catenated intermediates of DNA replication, even when topoisomerase IV activity is removed. Either recQ or recA null mutations, but not helD null or lexA3, partially rescued the synthetic lethality of the double topoisomerase III/IV mutant, indicating a role for topoisomerase III in recombination. We find a bias against deleting the gene encoding topoisomerase III in ruvC53 or DeltaruvABC backgrounds compared with the isogenic wild-type strains. The topoisomerase III RuvC double mutants that can be constructed are five- to 10-fold more sensitive to UV irradiation and mitomycin C treatment and are twofold less efficient in transduction efficiency than ruvC53 mutants. The overexpression of ruvABC allows the construction of the topoisomerase III/IV double mutant. These data are consistent with a role for topoisomerase III in disentangling recombination intermediates as an alternative to RuvABC to maintain the stability of the genome.  相似文献   

8.
Two isoforms of DNA topoisomerase II, alpha and beta, coded by separate genes, are expressed in actively cycling vertebrate cells. Some previous studies have suggested that only topoisomerase II alpha remains associated with chromosomes at mitosis. Here, the distributions of topoisomerase II alpha and beta in mitosis were studied by subcellular fractionation and by immunolocalization. Both isoforms of topoisomerase II were found to remain associated with mitotic chromatin. Topoisomerase II alpha was distributed along chromosome arms throughout mitosis and was highly concentrated at centromeres until mid-anaphase, particularly in some cell types. Topoisomerase II beta showed weak concentration at centromeres in early mitosis in some cell types and was distributed along chromosome arms at every stage of mitosis through telophase. These studies suggest that in most cells both the major topoisomerase II isoforms may play roles in chromatin remodeling during M phase.  相似文献   

9.
We have examined the roles of eukaryotic DNA topoisomerases I and II in DNA replication by the use of a set of four isogenic strains of Saccharomyces cerevisiae that are TOP1+ TOP2+, TOP1+ top2 ts, delta top1 TOP2+, and delta top1 top2 ts. Cells synchronized by treatment with the alpha-mating factor, or by cycles of feeding and starvation, were released from cell-cycle arrest, and the size distribution of DNA chains that were synthesized after the cells reentered the S-phase was determined as a function of time. The results indicate that synthesis of short DNA chains several thousand nucleotides in length can initiate in the absence of both topoisomerases, but their further elongation requires at least one of the two topoisomerases. Inactivation of DNA topoisomerase II does not alter significantly the time dependence of the patterns of nascent DNA chain synthesis, which is consistent with the notion that the requirement of this enzyme for viability is due to its essential role during mitosis, when pairs of intertwined newly replicated chromosomes are being segregated. The absence of DNA topoisomerase I leads to a temporary delay in the extension of the short DNA chains; this delay in chain elongation is also reflected in the rate of total DNA synthesis in the delta top1 mutant during the early S-phase. Thus, in wild-type cells, DNA topoisomerase I is probably the major replication swivel. The patterns of DNA synthesis in asynchronously grown delta top1 top2 ts cells at permissive and non-permissive temperatures are also consistent with the above conclusions.  相似文献   

10.
The REC104 gene was initially defined by mutations that rescued the inviability of a rad52 spo 13 haploid strain in meiosis. We have observed that rec104 mutant strains undergo essentially no induction of meiotic gene conversion, and we have not been able to detect any meiotic crossing over in such strains. The REC104 gene has no apparent role in mitosis, since mutations have no observable effect on growth, mitotic recombination, or DNA repair. The DNA sequence of REC104 reveals that it is a previously unknown gene with a coding region of 549-bp, and genetic mapping has localized the gene to chromosome VIII near FUR1. Expression of the REC104 gene is induced in meiosis, and it appears that the gene is not transcribed in mitotic cells. Possible roles for the REC104 gene product in meiosis are discussed.  相似文献   

11.
M. A. McAlear  K. M. Tuffo    C. Holm 《Genetics》1996,142(1):65-78
We used genetic and biochemical techniques to characterize the phenotypes associated with mutations affecting the large subunit of replication factor C (Cdc44p or Rfc1p) in Saccharomyces cerevisiae. We demonstrate that Cdc44p is required for both DNA replication and DNA repair in vivo. Cold-sensitive cdc44 mutants experience a delay in traversing S phase at the restrictive temperature following alpha factor arrest; although mutant cells eventually accumulate with a G2/M DNA content, they undergo a cell cycle arrest and initiate neither mitosis nor a new round of DNA synthesis. cdc44 mutants also exhibit an elevated level of spontaneous mutation, and they are sensitive both to the DNA damaging agent methylmethane sulfonate and to exposure to UV radiation. After exposure to UV radiation, cdc44 mutants at the restrictive temperature contain higher levels of single-stranded DNA breaks than do wild-type cells. This observation is consistent with the hypothesis that Cdc44p is involved in repairing gaps in the DNA after the excision of damaged bases. Thus, Cdc44p plays an important role in both DNA replication and DNA repair in vivo.  相似文献   

12.
Studies were carried out on the repair and fixation of premutational damage induced in Haemophilus influenzae by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). The studies employed a temperature-sensitive DNA elongation mutant (dna9) and its combinations with mutants defective in pyrimidine dimer excision (uvr1, uvr2) and in recombination (rec1). The dna9 mutant is shown to be leaky, allowing about 1% of the normal rate of DNA synthesis at the restrictive temperature. Repair of premutational lesions was detected by a decline in mutation frequency with increasing delay in DNA replication in dna9 at the restrictive temperature. This repair is unaffected by the pyrimidine dimer excision system. Mutation fixation was detected by the ability of DNA from treated and then lysed cells to transfer mutants to recipient cells by transformation. Some fixation occurred at the restrictive temperature but much less than at the non-restrictive temperature suggesting that an appreciable minority of the mutations resulted from lesions introduced near the replication fork but that the majority of mutations arise from lesions introduced at some distance from the fork, perhaps randomly. The DNA synthesized immediately after MNNG treatment is of lower molecular weight than normal and returns to normal with time. This return is blocked in the rec1 mutant, suggesting that recombination is involved. The possible role of this process in MNNG mutagenesis is discussed.  相似文献   

13.
We isolated novel classes of Schizosaccharomyces pombe cold-sensitive dis mutants that block mitotic chromosome separation (nine mapped in the dis1 gene and one each in the dis2 and dis3 genes). Defective phenotype at restrictive temperature is similar among the mutants; the chromosomes condense and anomalously move to the cell ends in the absence of their disjoining so that they are unequally distributed at the two cell ends. Synchronous culture analyses indicate that the cells can enter into mitosis at normal timing but become lethal during mitosis. In comparison with the wild-type mitosis, defects are found in the early spindle structure, the mitotic chromosome structure, the poleward chromosome movement by the spindle elongation and the telophase spindle degradation. The dis mutants lose at permissive temperature an artificial minichromosome at higher rates than occur in the wild type. We found that all the dis mutants isolated are supersensitive to caffeine at permissive temperature. Furthermore, the mutant cells in the presence of caffeine produce a phenotype similar to that obtained at restrictive temperature. We suggest that the dis genes are required for the sister chromatid separation at the time of mitosis and that caffeine might affect the dis gene expression. We cloned, in addition to the dis2+ and dis3+ genes, multicopy extragenic suppressor sequences which complement dis1 and dis2 mutations. A complex regulatory system may exist for the execution of the dis+ gene functions.  相似文献   

14.
15.
DNA topoisomerase II is required for mitotic chromosome condensation and segregation. Here we characterize the effects of inhibiting DNA topoisomerase II activity in plant cells using the non-DNA damaging topoisomerase II inhibitor ICRF-193. We report that ICRF-193 abrogated chromosome condensation in cultured alfalfa (Medicago sativa L.) and tobacco (Nicotiana tabaccum L.) mitoses and led to bridged chromosomes at anaphase. Moreover, ICRF-193 treatment delayed entry into mitosis, increasing the frequency of cells having a pre-prophase band of microtubules, a marker of late G2 and prophase, and delaying the activation of cyclin-dependent kinase. These data suggest the existence of a late G2 checkpoint in plant cells that is activated in the absence of topoisomerase II activity. To determine whether the checkpoint-induced delay was a result of reduced cyclindependent kinase activity, mitotic cyclin B2 was ectopically expressed. Cyclin B2 bypassed the ICRF-193-induced delay before mitosis, and correspondingly, reduced the frequency of interphase cells with a pre-prophase band. These data provide evidence that plant cells possess a topoisomerase II-dependent G2 cell cycle checkpoint that transiently inhibits mitotic CDK activation and entry into mitosis, and that is overridden by raising the level of CDK activity through the ectopic expression of a plant mitotic cyclin.  相似文献   

16.
Secretion of invertase in mitotic yeast cells.   总被引:7,自引:0,他引:7  
M Makarow 《The EMBO journal》1988,7(5):1475-1482
In mammalian cells intracellular transport is inhibited during mitosis. Here we show that in the yeast Saccharomyces cerevisiae secretion continues uninterrupted during mitosis. S. cerevisiae cells were arrested in mitosis by treating wild-type cells with the microtubule-inhibitor nocodazole, or by incubating a temperature-sensitive cell division cycle mutant (cdc16) at the restrictive temperature. Secretion of invertase into the periplasmic space was equally efficient in mitotic and in unsynchronized cells. Electron microscopy of nocodazole-treated mitotic wild-type cells revealed stretches of rough endoplasmic reticulum, strongly fenestrated Golgi cisternae and clusters of vesicles with the diameter of 30-90 nm. Secretion of invertase was inhibited in mitotic sec7 cells at the restrictive temperature, but continued at the permissive temperature. Sec7 is a mutant strain where intracellular traffic is blocked in unsynchronized cells in the Golgi complex at the restrictive temperature. Thus, the elements of the mitotic Golgi complex appear to be able to support intracellular traffic.  相似文献   

17.
We have isolated mutants defective in DNA topoisomerases and an endonuclease from the fission yeast Schizosaccharomyces pombe by screening individual extracts of mutagenized cells. Two type I topoisomerase mutants (top1) and three endonuclease mutants (end1) were all viable. The double mutant top1 end1 was also viable and, in its extract, Mg2+- and ATP- dependent type II activity could be detected. Three temperature-sensitive (ts-) mutants having heat-sensitive (hs-) type II enzymes were isolated, and the ts- marker cosegregated with the hs- type II activity. All the ts- mutations fell in one gene (top2) tightly linked to leul in chromosome II. The nuclear division of single top2 mutants was blocked at the restrictive temperature, but the formation of a septum was not inhibited so that the nucleus was cut across with the cell plate. In contrast, the double top1 top2 mutants were rapidly arrested at various stages of the cell cycle, showing a strikingly altered nuclear chromatin region. The type II topoisomerase may have an essential role in the compaction and/or segregation of chromosomes during the nuclear division but also complement the defect of the type I enzyme whose major function is the maintenance of chromatin organization throughout the cell cycle.  相似文献   

18.
A potential region of drug-DNA interaction in the A subunit of DNA gyrase has previously been identified from crystallographic studies. The local amino acid sequence has been compared with similar regions in yeast topoisomerase II and human topoisomerase IIalpha. Three non- conserved, potentially solvent-accessible residues at positions 762, 763 and 766 in human topoisomerase IIalpha lie between well-conserved regions. The corresponding residues in GyrA (83, 84 and 87) have a high frequency of mutation in quinolone-resistant bacteria. Mutations in human topoisomerase IIalpha have been generated in an attempt to engineer ciprofloxacin sensitivity into this enzyme: M762S, S763A and M766D (each mutated to the identical amino acid present in gyrase), along with an M762S/S763A double mutant and a triple mutant. These enzymes were introduced into a temperature-sensitive yeast strain, deficient in topoisomerase II, for in vivo studies, and were overproduced for in vitro studies. The M766D mutation renders the enzyme incapable of supporting the temperature-sensitive strain at a non-permissive temperature. However, both M766D and the triple mutant enzymes can be overproduced and are fully active in vitro. The double mutant was impaired in its ability to cleave DNA and had reduced catalytic activity. The triple mutation confers a three-fold increase in sensitivity to ciprofloxacin in vitro and similar sensitivities to a range of other quinolones. The activity of the quinolone CP-115,953, a bacterial and eukaryotic topoisomerase II poison, was unaffected by any of these mutations. Mutations in this region were found to increase the sensitivity of the enzyme to the DNA intercalating anti-tumour agents m-AMSA and ellipticine, but confer resistance to the non-intercalating agents etoposide, teniposide and merbarone, an effect that was maximal in the triple mutant. We have therefore shown the importance of this region in determining the sensitivity of topoisomerase II to drugs and have engineered increased sensitivity to quinolones.  相似文献   

19.
20.
E36 ts24 is a temperature-sensitive cell cycle mutant which has been derived from the Chinese hamster lung cell line E36. This mutant is arrested in phase S when incubated at the restrictive temperature (40.3 degrees C) for growth. At this temperature, proliferation of the mutant cells ceases after 10 h. About 2 h earlier, DNA synthesis is arrested. These kinetic studies indicate that the execution point of the mutant cells is in early S phase well beyond the G1/S boundary. The pattern of replication bands in E36 ts24 cell grown for 9 h at 40.3 degrees C strengthen the kinetic studies and map the execution point to early S phase. The exact point of arrest of the mutant cells in phase S was mapped in early S phase near the execution point. At the point of arrest the cells continue to synthesize DNA at at a high rate but practically all of the newly synthesized DNA is degraded. This high rate of DNA degradation is limited to nascent DNA at the point of arrest. In the presence of 5-bromodeoxyuridine (5-BudR), the last E36 ts24 cells which reach mitosis at the restrictive temperature for growth show asymmetric replication bands which illustrate DNA degradation and resynthesis occurring in these cells at 40.3 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号