首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
V K Gordeev  M I Turkov 《Genetika》1983,19(2):211-216
Derepression of the ilv operon in rel strains of Escherichia coli is delayed when cells are transferred from rich to minimal medium and is completely blocked when the mixture of amino acids--serine, methionine and glycine is present in the minimal medium. It is shown that alterations in translation machinery caused by streptomycine resistance mutation can also lead to the delay of the ilv operon derepression in rel+ strains or to its complete inhibition in rel strains of E. coli. The possible mechanisms of high sensitivity of the ilv operon to different alterations in E. coli are discussed.  相似文献   

2.
3.
V K Gordeev  M I Turkov 《Genetika》1983,19(9):1433-1438
The rate of adaptation of Escherichia coli K-12 NF930 spoT1 cells with elevated intracellular level of ppGpp to various minimal media was studied. It has been found that the rate of adaptation of spoT cells, like that of parent and rel strains, depends mainly on the rate of derepression of the ilv operon. The maximal rate of the ilv operon derepression was observed when an optimal concentration of ppGpp was maintained in cells. Derepression of the ilv operon is sharply delayed when the level of ppGpp is elevated or reduced. Mutations altering the translation system do not change the rate of adaptation of spoT cells. Rifampicin resistance mutations which altered the structure of RNA polymerase change the rate of adaptation of spoT cells to minimal media, especially to those containing serine at high concentrations. The possible role of serine in the regulation of ppGpp degradation system is discussed.  相似文献   

4.
Summary The relative genetic position of the following four mutations of ribosomal protein S5 has been determined: spc-13, a mutation to spectinomycin resistance; str i N421 and str i d1023, mutations suppressing dependence on streptomycin and sup 0–1, a mutation suppressing partially the temperature-sensitive phenotype of an alanyl-tRNA synthetase mutation. The transduction experiments performed indicate that the spc-13 site is located in the S5 cistron proximal to the strA locus, that sup 0–1 maps proximal to the aroE gene and that the str i N421 and str i d1023 loci are located between these two mutational sites.Proteinchemical analysis of the amino acid replacement in protein S5 of strain N421 (carrying the str i N421 allele) has shown that an arginine residue is replaced by leucine which results in the appearance of a trypsin intensitive bond between the tryptic peptides T2 and T16. The same alteration has been previously found by Itoh and Wittmann (1973) in the S5 protein of strain d1023.Determination of the alteration of ribosomal protein S5 of strain 0–1 (sup 0–1 allele) revealed that the C-terminal tryptic peptide is altered. It differs from that of the wild-type protein by the lack of five amino acids and the appearance of a C-terminal glycine residue instead of a lysine residue. This change can be explained by the deletion of eleven nucleotides in the S5 cistron of strain 0–1.The recent determination of the primary structure of ribosomal protein S5 (Wittmann-Liebold and Greuer, 1975) allows the ordering of the S5 alterations employed: The order is spc-13-str i d1023 (str i N421)-sup 0–1 with the spc-13 amino acid replacement being located at the NH2-terminal portion of the S5 sequence and the alteration of strain 0–1 at the COOH-terminal end. The proteinchemical results are therefore in full agreement with the genetic data and unambiguously allow the conclusion that the S5 cistron is transcribed counterclock-wise on the Escherichia coli chromosome.  相似文献   

5.
6.
7.
The relative levels of ribosomes, ribosomal protein S1, and elongation factor G in the growth cycle of Escherichia coli were examined with two-dimensional polyacrylamide gel electrophoresis. Nonequilibrium pH gradient polyacrylamide gel electrophoresis was used in the first dimension, and polyacrylamide gradient-sodium dodecyl sulfate gel electrophoresis was used in the second dimension. The identities of protein spots containing S1 and elongation factor G were confirmed by radioiodination of the proteins and peptide mapping of the radiolabeled peptides. The levels of ribosomes and ribosomal protein S1 were coordinately reduced during transition from exponential phase to stationary phase. There was no accumulation of S1 in the stationary phase. In marked contrast, the level of elongation factor G showed no significant change from exponential phase to stationary phase. The relative level of elongation factor G compared with ribosomes or S1 increased by about 2.5-fold during transition from exponential phase to stationary phase. The results show that there are differences between the regulation of the levels of elongation factor G and of ribosomal proteins, including S1, apparent during the transition from exponential to stationary phase.  相似文献   

8.
Bacteriophage T7 expresses a serine/threonine-specific protein kinase activity during Infection of Its host, Escherichia coli. The protein kinase (gpO.7 PK), encoded by the T7 early gene 0.7, enhances phage reproduction under sub-optimal growth conditions. It was previously shown that ribosomal protein S1 and translation initiation factors IF1, IF2, and IF3 are phosphoryiated in T7-infected cells, and it was suggested that phosphorylation of these proteins may serve to stimulate translation of the phage late mRNAs. Using high-resolution two-dimensional gel electrophoresis and specific immunoprecipitation, we show that elongation factor G and ribosomal protein S6 are phosphorylated following T7 infection. The gel electro-phoretic data moreover indicate that elongation factor P is phosphorylated in T7-infected cells. T7 early and late mRNAs are processed by ribonuclease III, whose activity is stimulated through phosphorylation by gp0.7 PK. Specific overexpression and phosphorylation was used to locate the RNase III polypeptide in the standard two-dimensional gel pattern, and to confirm that serine is the phosphate-accepting amino acid. The two-dimensional gels show that the in vivo expression of gp0.7 PK results in the phosphorylation of over 90 proteins, which Is a significantly higher number than previous estimates. The protein kinase activities of the T7-related phages T3 and BA14 produce essentially the same pattern of phosphorylated proteins as that of T7. Finally, several experimental variables are analysed which influence the production and pattern of phosphorylated proteins in both uninfected and T7-rnfected cells.  相似文献   

9.
We have determined the nucleotide sequence of the Escherichia coli fus gene, which codes for elongation factor G. The protein product of the sequenced gene contains 703 amino acids, with a predicted molecular weight of 77,444. The fus gene shows the nonrandom pattern of codon usage typical of ribosomal proteins and other proteins synthesized at a high level. We have identified several potential promoter sequences within the gene. One of these sequences may correspond to the secondary promoter for expression of the downstream tufA gene (encoding elongation factor Tu) whose activity has been described previously (1,2). A comparison of the nucleotide and amino acid sequences of elongation factors G and Tu reveals a limited but significant homology between the two proteins within the 150 amino acid residues at their amino-terminal ends.  相似文献   

10.
The primary structure of protein S8 from the 30S subunit of Escherichia coli ribosomes has been determined by sequencing the peptides derived from tryptic, chymotryptic, thermolytic and staphylococcal protease digestion of the protein. Protein S8 has 129 amino acid residues which result in a molecular weight of 13996. The N-terminal part of the sequence up to position 68 is in complete agreement with the reported sequence data[1,2]. However, differences exist in the C-terminal half, where an additional hydrophobic tryptic peptide has been found.  相似文献   

11.
The translation elongation factor EF-1 alpha of the yeast Saccharomyces cerevisiae is coded for by two genes, called TEF1 and TEF2. Both genes were cloned. TEF1 maps on chromosome II close to LYS2. The location of TEF2 is unknown. TEF2 alone is sufficient to promote growth of the cells as shown with a strain deleted for TEF1. TEF1 and TEF2 were originally identified as two strongly transcribed genes, which most likely code for an identical or nearly identical protein as judged from S1 nuclease protection experiments with mRNA-DNA hybrids. The DNA sequence analysis of TEF1 allowed the prediction of the protein sequence. This was shown, by a search in the Dayhoff protein data bank, to represent the translation elongation factor EF-1 alpha due to the striking similarity to EF-1 alpha from the shrimp Artemia. A search for TEF1 homologous sequences in several yeast species shows, in most cases, duplicated genes and a much higher sequence conservation than among genes encoding amino acid biosynthetic enzymes.  相似文献   

12.
The structural gene for elongation factor EF-TS (tsf) and that for ribosomal protein S2 (rpsB) have been identified in E. coli. Both genes are carried by λ transducing phages that have been isolated as dapD?polC+ transducing phages. Synthesis of both S2 and EF-Ts was demonstrated in ultraviolet light-irradiated E. coli cells infected with these phages. Experiments were also done using other transducing phages that carry dapD+ but not polC+. The data indicate that both the tsf and rpsB genes map near dapD at about 4 min on the E. coli genetic map. This location is different from the two chromosomal locations, the str-spc region and the rif region, where many ribosomal protein genes, the genes for RNA polymerase components, as well as other elongation factor genes (fus, tufA, and tufB) are located.  相似文献   

13.
14.
15.
16.
The ribosome translocation step that occurs during protein synthesis is a highly conserved, essential activity of all cells. The precise movement of one codon that occurs following peptide bond formation is regulated by elongation factor G (EF-G) in eubacteria or elongation factor 2 (EF-2) in eukaryotes. To begin to understand molecular interactions that regulate this process, a genetic selection was developed with the aim of obtaining conditional-lethal alleles of the gene (fusA) that encodes EF-G in Escherichia coli. The genetic selection depends on the observation that resistant strains arose spontaneously in the presence of sublethal concentrations of the antibiotic kanamycin. Replica plating was performed to obtain mutant isolates from this collection that were restrictive for growth at 42 degrees C. Two tightly temperature-sensitive strains were characterized in detail and shown to harbor single-site missense mutations within fusA. The fusA100 mutant encoded a glycine-to-aspartic acid change at codon 502. The fusA101 allele encoded a glutamine-to-proline alteration at position 495. Induction kinetics of beta-galactosidase activity suggested that both mutations resulted in slower elongation rates in vivo. These missense mutations were very near a small group of conserved amino acid residues (positions 483 to 493) that occur in EF-G and EF-2 but not EF-Tu. It is concluded that these sequences encode a specific domain that is essential for efficient translocase function.  相似文献   

17.
Protein synthesis in Escherichia coli mutants that differ from one another in mutations which impart streptomycin resistance was investigated by the application of hydrostatic pressure. Increased pressure resistance was only observed in mutants which exhibited reduced rates of peptide chain elongation. These findings indicate that the major effect of pressure on protein synthesis in E. coli may involve the S12 ribosomal protein.  相似文献   

18.
19.
Starting from a synthetic modular gene (infA) encoding Escherichia coli translation initiation factor IF1, we have constructed mutants in which amino acids are deleted from the carboxyl terminus or in which His29 or His34 are replaced by Tyr or Asp residues. The mutant proteins were overproduced, purified and tested in vitro for their properties in several partial reactions of the translation initiation pathway and for their capacity to stimulate MS2 RNA-dependent protein synthesis. The results allow for the conclusion that: (i) Arg69 is part of the 30S ribosomal subunit binding site of IF1 and its deletion results in the substantial loss of all IF1 function; (ii) neither one of its two histidines is essential for the binding of IF1 to the 30S ribosomal subunit, for the stimulation of fMet-tRNA binding to 30S or 70S ribosomal particles or for MS2 RNA-dependent protein synthesis; but (iii) His29 is involved in the 50S subunit-induced ejection of IF1 from the 30S ribosomal subunit.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号