首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract. The magnitude of DNA modulation in rat 9L gliosarcoma cells after a brief exposure to bromodeoxyuridine (BrdU) was studied by assaying colony-forming efficiency (CFE) and the number of sister chromatid exchanges (SCEs) per metaphase. The CFE assay showed that a 1-hr exposure to BrdU, at concentrations ranging from 10 to 1000 μ M, produced a maximum cell kill of 5%. After a 2-hr exposure to 20 μ M BrdU, the surviving fraction was 0.99, and even at a BrdU concentration of 1000 μ M, 77% of the 9L cells survived. Compared with control cultures, the relative number of SCEs per metaphase in treated cultures was increased after a 1-hr exposure to BrdU at concentrations of 100 μ M or more and after a 2-hr exposure to concentrations of 20 μ M or more; no increase was observed in cells treated for 30 min with BrdU at concentrations up to 1000 μ M. When the treated cells were allowed to grow in BrdU-free growth medium, the number of SCEs per metaphase returned to the control level within 24 hr, even after exposure to BrdU at concentrations as high as 1000 μ M. These results demonstrate that exposure to BrdU at concentrations of up to 1000 μ M for 30 min, 100 μ M for 1 hr, and 20 μ M for 2 hr causes little modulation of DNA.  相似文献   

2.
The magnitude of DNA modulation in rat 9L gliosarcoma cells after a brief exposure to bromodeoxyuridine (BrdU) was studied by assaying colony-forming efficiency (CFE) and the number of sister chromatid exchanges (SCEs) per metaphase. The CFE assay showed that a 1-hr exposure to BrdU, at concentrations ranging from 10 to 1000 microM, produced a maximum cell kill of 5%. After a 2-hr exposure to 20 microM BrdU, the surviving fraction was 0.99, and even at a BrdU concentration of 1000 microM, 77% of the 9L cells survived. Compared with control cultures, the relative number of SCEs per metaphase in treated cultures was increased after a 1-hr exposure to BrdU at concentrations of 100 microM or more and after a 2-hr exposure to concentrations of 20 microM or more; no increase was observed in cells treated for 30 min with BrdU at concentrations up to 1000 microM. When the treated cells were allowed to grow in BrdU-free growth medium, the number of SCEs per metaphase returned to the control level within 24 hr, even after exposure to BrdU at concentrations as high as 1000 microM. These results demonstrate that exposure to BrdU at concentrations of up to 1000 microM for 30 min, 100 microM for 1 hr, and 20 microM for 2 hr causes little modulation of DNA.  相似文献   

3.
Large quantities of mitotic cells may be collected by mitotic detachment from a population of Chinese hamster ovary cells growing on positively charged dextran microcarriers in suspension culture. Exponentially growing cells are treated for 2.5 h with colcemid and mitotic cells are detached from the microcarriers by increasing the stirring speed. A yield of 4-6% of the total population is obtained and, of the cells collected, 85-95% are arrested in metaphase. Using this means to synchronize cells we have determined the cell cycle dependence of the toxic and mutagenic effects of 5-bromo-2'-deoxyuridine (BUdR) and ethyl methanesulfonate (EMS). Mutation was measured at two independent loci: resistance to 6-thioguanine and resistance to ouabain. Both mutagens were more toxic during S phase as compared to G1 or G2 or mitosis. BUdR induced significant mutation only during S phase. The maximum induction of 6-thioguanine resistance was observed in cultures treated 10 h after plating of mitotic cells (2 h into S phase), while the maximum induction of ouabain resistance was observed in cultures treated 10-12 h after plating of mitotic cells (2-4 h into S phase). EMS induced significant mutation at all points in the cell cycle. Mutation induction reached a minimum during S phase but the magnitude of difference between any two points in the cell cycle was found to be less than two-fold.  相似文献   

4.
Summary Two 30 g/ml BrdU-resistant sublines and two 60 g/ml BrdU-resistant sublines are induced from a Chinese hamster cell line Wg3h (HGPRT) by one-step and two-step selections, respectively. By inoculating the cells into BrdU-free medium or by adding more BrdU into the culture medium for 26–27 h, it was found that the two BrdU-resistant sublines analysed have very clear sister chromatid differential (SCD) staining patterns. This indicates that some of the nuclear DNA of the BrdU-resistant cells incorporate with BrdU to reach a kinetic balance. Frequencies of sister chromatid exchange (SCE) of the resistant cells are twice to four times as high as those of the Wg3h cells, depending on which BrdU-resistant subline is analysed. The SCE frequencies of the resistant cells also increase with the BrdU concentration in the medium. Analysis of silver-stained nucleolar organizer regions (NORs) indicates that the NOR activity of three out of the four BrdU-resistant sublines is significantly suppressed, i.e., averages of the Ag-NOR number and number of the chromosomes bearing Ag-NORs per cell decrease significantly. The degree of suppression for different BrdU-resistant sublines may be quite different. The suppressed NOR activity of the resistant cells can gradually be restored when the cells are inoculated into BrdU-free medium, but the recovery speed is far lower than that of the Wg3h cells. The suppression of the NOR activity of the BrdU-resistant sublines should be due to BrdU toxicity.  相似文献   

5.
Chemical induction of 6-thioguanine resistance was studied in synchronized human fibroblast cells. Cells initially grown in a medium lacking arginine and glutamine for 24 h ceased DNA synthesis and failed to enter the S phase. After introduction of complete medium, the cells progressed to the S phase after 16 h. DNA synthesis peaked 20 h after removal of nutrient stress and declined.Mutations were induced in S-phase cells by methyl methanesulfonate (MMS), N-acetoxy-2-acetylaminofluorene (NA-AAF) and N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). Chemical treatments resulted in an increase in the absolute number of mutant colonies and in a dose-dependent mutation frequency. In this report, we show that NA-AAF evokes a temporal pattern of mutation in synchronized cells, with such mutations being induced only during the S phase. Evidence indicates that presence of S-phase cells in the treated cultures is a prerequisite for the induction of mutations.  相似文献   

6.
Abstract. The effects of extreme hypoxia on cell cycle progression were studied by simultaneous determination of DNA and bromodeoxyuridine (BrdU) contents of individual cells. V79-379A cells were pulse-labelled with BrdU (1 μM, 20 min, 37°C) and then incubated for up to 12 hr in BrdU-free medium under either aerated or extremely hypoxic conditions. After the incubation interval (0-12 hr), the cells were trypsinized and fixed in 50% EtOH. Propidium iodide and a fluorescein-labelled monoclonal antibody to BrdU were then used to quantify DNA content and incorporated BrdU, respectively. Measurements in individual cells were made by simultaneous detection of green and red fluorescence upon excitation at 488 nm using flow cytometry. Bivariate analysis revealed progression of BrdU-labelled cells in aerated cultures out of S phase, into G2 and cell division, with halving of mean fluorescence, and back into S phase by approximately 9 hr after the BrdU pulse. Hypoxia immediately arrested cells in all phases of the cell cycle. Both the DNA distribution and the bivariate profile of cells that were fixed from 2 to 12 hr after induction of hypoxia were identical to the 0 hr controls. the percent of cells with green fluorescence in a mid-S phase window remained 100% and the mean fluorescence of these cells remained at control (0 hr) levels. This indicates that, under hypoxic conditions, cells were moving neither into nor out of S phase. Cultures that had been hypoxic for 12 hr exhibited an increasing rate of BrdU uptake with time after re-aeration. Re-aerated cells were able to complete or initiate DNA synthesis, but their rates of progression through the cell cycle were markedly reduced. A large fraction of cells appeared unable to divide up to 12 hr following release from hypoxia.  相似文献   

7.
The mechanisms of intestinal absorption have not been clearly elucidated for cadmium, a toxic metal. In this work, we show the implication of distinct proteins in cadmium transport, and the transport step where these proteins are involved. We first validated the HT-29 model by evaluating nontoxic doses of cadmium (ranging from 1 to 20 μmol/L), and by quantifying metal uptake and transepithelial transport. The time-course of 1 μmol/L cadmium uptake at pH 7.5 showed three steps: a rapid one during the first 4 min, probably due to cadmium binding to the membrane; a slower one, characterized by K m of 1.65±0.54 μmol/L and V max of 3.9±0.3 pmol/min per mg protein; and a third, corresponding to slow accumulation that was not equilibrated even after 48 h of cadmium exposure. Intracellular metallothionein content following 1 or 5 μmol/L cadmium exposure showed a significant increase after 6 h of exposure, and was not equilibrated even after 72 h, allowing cadmium accumulation. After 24 h of exposure, metallothionein content was 5-fold, 14-fold, 26-fold, and 50-fold, respectively, for cells grown in the presence of 1, 5, 10, and 20 μmol/L cadmium, compared to control cells. The second step of uptake, characterized by carrier-mediated transport, was markedly increased at pH 5.5, compared to pH 7.5, and strongly inhibited by the metabolic inhibitor dinitrophenol. Moreover Nramp2 transporter cDNA was present in HT-29 cells. These data suggest the involvement of a proton-coupled transporter, which may be the divalent cation transporter Nramp2 (natural resistance-associated macrophage protein 2). Cadmium uptake was also inhibited by copper, zinc, and para-chloromercuribenzenesulfonate (pCMBS), but not by verapamil or ouabain. Taken together, our results indicate that cadmium could enter HT-29 cell by Nramp2 proton-coupled active transport and by diffusion, and accumulates in the cell as long as it binds to metallothionein. Cadmium toxicity could depend partly on the activity of Nramp2, and partly on metallothionein content. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Three UV-sensitive (UVs) mutants isolated from a CHO cell line were analyzed for survival after exposure to H2O2, EMS, MMC, CCNU, X-rays and for mutation induction after UV-irradiation. The UVs mutants showed normal sensitivities to EMS and H2O2, whereas they were hypersensitive to the bifunctional alkylating agents MMC and CCNU and to hypoxic X-irradiation. Compared to parental cells, one of the UV-sensitive clones showed approximately 3- and 7-fold enhancement in the mutagenic response per unit UV dose for 6-thioguanine and ouabain resistance, respectively.  相似文献   

9.
Summary In this article we report that 5-bromodeoxyuridine (BrdU) significantly suppresses the nucleolar organizer regions (NORs) activity of Chinese hamster cells (both dipliod cells and cell line Wg3-h) (P<0.001). One of the most obvious characteristics of the suppression is a significant decrease in the total number of the Ag-NORs per cell rather than in a frequency variation of the associated Ag-NORs. The decrease in the Ag-NORs number is mainly because of the decrease in number of chromosomes bearing 2 Ag-NORs. The degree of the suppression increases with increase in BrdU concentration in the culture medium. There is a close relationship between the suppression and the BrdU-treatment time, i.e. for a given concentration of the BrdU, the longer the BrdU-treatment time, the stronger the suppression. When the BrdU-treated cells are transferred into BrdU-free medium and allowed to grow in it for another 30 h, NORs activity can be restored. Therefore, the suppression of NORs activity may be due to BrdU toxicity. When deoxycytidine (dC) is added into medium containing 30 g/ml of BrdU, the total number of both the Ag-NORs and the chromosomes bearing Ag-NORs per cell increases to the level of untreated cells. Our results thus indicate that the addition of dC reverses the suppression of the NORs activity caused by BrdU.  相似文献   

10.
The cytotoxic and mutagenic effects of the incorporation of 5-bromodeoxyuridine (BrdU)_followed by exposure to black light were investigated with Chinese hamster ovary (CHO) cells in cell culture. Mutation induction at the hypoxanthine-guanine phosphoribosyl transferase (hgprt) locus was determined by selection for 6-thioguanine resistant (TGr) mutants (CHO/HGPRT system). BrdU alone has been shown to be mutagenic only at concentrations of 50 μM or greater. This study was performed in an effort to determine whether BrdU is actually incorporated into the hgprt gene when lower, nonmutagenic concentrations are employed. Neither BrdU (1–20 μM) nor exposure to black light alone was mutagenic, but the combined treatment did result in the induction of TGr mutants. The mutant frequency increased with increasing light exposure at constant BrdU and with inreasing BrdU at constant light exposure. These results show that BrdU is incorporated into the hgprt gene, but that this does not result in mutation induction in the absence of light exposure. Such a BrdU-plus-light procedure might be applied to studies of DNA repair at this locus, since mutation induction requires both BrdU incorporation and subsequent exposure to black light.  相似文献   

11.
Summary The coculture of mouse PG19 cells with human MGC cells can significantly suppress nucleolar organizer region (NORs) activity of both PG19 and MGC cells. 5-bormodeoxyuridine (BrdU) can also significantly suppress the NOR activity of rat RC cells, human MGC and Hela cells, and mouse PG19 cells: i.e. the average number of Ag-NORs and the number of chromosomes bearing Ag-NORs per cell decrease significantly. The degree of the suppression increases with increase in both BrdU concentration in the culture medium and BrdU treatment time. The suppressed NOR activity of the PG19 cells can gradually be restored when the BrdU-treated cells are transferred into BrdU-free medium for 50 h. In PG19 cells deoxycytidine (dC) can reverse the suppression of NOR activity caused by BrdU. Coculture plus BrdU treatment suppress the NOR activity of PG19 cells more severely than BrdU treatment alone. In coculture medium containing 30 g BrdU/ml, dC can also reverse the suppression of the NOR activity of PG19 cells but not that of the MGC cells. The degree of the reversion in the coculture plus BrdU treatment is significantly lower than that found with BrdU-treatment alone.  相似文献   

12.
Summary Parenchymal hepatocytes from neonatal rats were isolated, cultured about 24 h, exposed to cadmium with or without calcium, and processed for scanning electron microscopy. To assess the severity of cadmium-induced changes, exposed hepatocytes were categorized based upon the extent of morphological damage. Differences in surface blebbing, alterations in microvilli, variations in the degree of swelling, and changes in cell shape were used to categorize the severity of cell damage. A double-blind morphometric analysis (a geometricostatistical processing of two-dimensional data for the collection of three-dimensional information) of cellular changes was conducted for each exposure time and for each concentration of cadmium in the presence or absence of calcium. Significant decreases occurred in the percent relative volume of normal, flattened cells present in cultures exposed for 30 min to 50 or 100 μM cadmium in the absence of calcium. In contrast, the percent relative volume of severely damaged spherical cells was significantly increased after exposure to solutions containing 50 or 100 μM cadmium and lacking calcium. Percent relative volume of intermediate cells (which were slightly swollen and showed changes in microvillar number) was significantly increased following a 30 min exposure to all cadmium concentrations in the absence of calcium. The examination of hepatocytes exposed for 60 min showed that the degree of cadmium-induced cytotoxicity was more severe in the absence of calcium than was the case for the hepatocyte cultures exposed for 30 min: approximately 30% more spherical cells and 30% fewer flattened cells were present if cultures were exposed in the absence of calcium for 60 min compared to those exposed for 30 min. The degree of blebbing was significantly greater at all cadmium concentrations in the absence of calcium. The presence of calcium, therefore, reduced cadmium-induced cytotoxicity in primary cultures of rat hepatocytes subjected to morphometric analysis after scanning electron microscopy.  相似文献   

13.
Cells from the T-lymphoblastoid cell line, CCRF-CEM, have been exposed in vitro to a quasirectangular, asymmetric electromagnetic field pulsed at 72 Hz at 37 degrees for periods of 30 min to 24 h. RNA synthesis, assessed by incorporation of 3H-uridine, increased (relative to control cells) 2-fold after 30 min in exposed cells and achieved its greatest increase of 3.2-fold relative to controls after 2 h exposure. Increased precursor incorporation was observed at all subsequent exposure times up to 24 h. Synthesis of mRNA was similar, but not identical to that observed with total cellular RNA. Additionally, protein synthesis, determined by incorporation of radioactive precursor into acid-precipitable material, was increased 2.8-fold, compared to controls, after 2 h exposure. Longer exposure times resulted in an exponential decrease in precursor incorporation to 1.1-times control levels after 24 h. Using a dye reduction assay, mitochondrial activity was also found to be increased over a 24 h exposure period. No effect of electromagnetic field exposure was found on cellular synthesis of DNA. These data are generally consistent with other reports documenting effects of electromagnetic field exposure on macromolecular synthesis in vitro.  相似文献   

14.
The effects of norcantharidin (NCTD) on the growth of highly-metastatic human breast cancer cells were investigated by in vitro and ex vivo assays. Our results indicated that norcantharidin inhibited the in vitro growth of human breast cancer MDA-MB-231 cell line in dose- and time-dependent manners after the cancer cells were treated with norcantharidin at the concentrations of 6, 30 and 60 μmol/L for 24, 48 and 72 h. Moreover, the sera from the NCTD-treated rabbits after intravenous injection of NCTD at 15 and 30 min significantly suppressed the growth of the cancer cells ex vivo. The analyses by Hoechst 33258 staining and flow cytometry showed that the typical apoptotic morphological changes appeared and cell cycles arrested at G2/M phase in MDA-MB-231 cells after the cells were treated for 48 h with NCTD. In addition, NCTD down-regulated the expressions of anti-apoptotic protein Bcl-2 and up-regulated the expressions of pro-apoptotic protein Bax, eventually leading to the reduction of Bcl-2/Bax ratio in MDA-MB-231 cells. Furthermore, NCTD at concentrations of 6, 30 and 60 μmol/L dose-dependently reduced the phosphorylation of Akt and NF-κB expression in the breast cancer cell line. Induction of apoptosis and cell cycle arrest as well as reduction of Bcl-2/Bax ratio by NCTD may be the important mechanisms of action of NCTD suppressing the growth of MDA-MB-231 cells, which are associated with inhibition of the Akt and NF-κB signaling. Our findings suggest that norcantharidin may have a wide therapeutic and/or adjuvant therapeutic application in the treatment of human breast cancer.  相似文献   

15.
Somatic cells of whole Syrian hamster fetuses (gestation day 13) were isolated and tested by an in vivo/in vitro mutation assay for spontaneous mutation frequencies using independent 6-thioguanine (6-TG), diphtheria toxin (DT), and ouabain mutation selection systems. Optimum conditions were ascertained. For 6-TG mutants, a total of 21 mutants were found in cells from 24 litters on 1993 plates, for an overall mutant frequency of 1.8 x 10(-7) per viable cell with 12 positive litters. In all, 26 litters were tested using DT; 77 mutants were found in 840 plates, yielding an overall mutant frequency of 2.6 x 10(-7), with 20 positive litters. No correlations or familial effects were found among 23 litters tested for both DT and 6-TG. Of 14 litters which were tested for ouabain mutants, 4 were positive, with a total of 5 mutants found on 988 plates, for an overall mutant frequency of 7.6 x 10(-8). For 14 F344 rat fetuses, the overall 6-TG spontaneous mutation frequency was determined to be 1.6 x 10(-7). From the data, estimates of mutation rates were calculated. For mutation to 6-TG resistance the rate was 8.3 x 10(-8), for mutation to DT resistance the rate was 8.1 x 10(-8) and for ouabain, the spontaneous mutation rate was 5.7 x 10(-8). For F344 rat, the spontaneous mutation rate was 1.1 x 10(-7). Induced mutant frequencies after in utero exposure to 1 mmol/kg N-ethyl-N-nitrosourea (ENU) were 311, 135 and 200 times the spontaneous value for 6-TG, DT and ouabain, respectively, for Syrian hamster fetal cells and 125 times the spontaneous 6-TG value for fetal F344 rat cells. Both spontaneous mutation frequencies and underlying spontaneous mutation rates are low, consistent with the view that fetal cells exercise extremely tight control over DNA fidelity.  相似文献   

16.
Studies demonstrated that cholecystokinin (CCK) system involved in morphine dependence and withdrawal. Our previous study showed that endogenous CCK system were up-regulated after chronic morphine exposure. Additionally, CCK1 receptor significantly blocked the inhibitory effect of exogenous CCK-8 on morphine dependence, but CCK2 receptor appears to be necessary for low concentrations of endogenous CCK to potentiate morphine dependence. Therefore, CCK1R and CCK2R function differently in chronic morphine dependence, but the mechanism is still unclear. In this study, HEK-293 cells co-transfected with µ-opioid receptors (HEK293-hMOR) and CCK1R or CCK2R were established. Cells were treated with 10 µM morphine for 6, 12, 16, 24 h and 100 µM naloxone precipitation for 15 min. cAMP overshoot was appeared at 12 h and was increased time dependently after morphine exposure in HEK293-hMOR cells. The cAMP overshoot did not appear in CCK1R-overexpressing HEK293-hMOR cells, while still appeared in CCK2R-overexpressing HEK293-hMOR cells. Over-expression of CCK1R reversed CREB and ERK1/2 activation in HEK293-hMOR cells exposed to morphine. Our study identifies over-expression of CCK1R significantly blocked morphine dependence, which was related with phosphorylation of CREB, and ERK1/2 signaling activation. While over-expression of CCK2R promoted morphine dependence, which was related with phosphorylation of CREB but not ERK1/2 signaling activation.  相似文献   

17.
We investigated the impacts of aluminium (Al) on the structural organisation of microtubules (MTs) in suspension-cultured tobacco ( Nicotiana tabacum L. cv. Samsun) cells using monoclonal anti-tubulin antibodies coupled with confocal microscopy. Cells were treated with Al (50 μ M ) in a simple calcium solution (3 m M CaCl2 and 3% [w/v] sucrose, pH 4.5) up to 24 h. The impacts of Al on tobacco cells were found to be distinct, depending on the growth phase of cells. Cells at logarithmic (log) phase lost their structural integrity of phragmoplasts and spindle MTs during Al treatments. In log-phase cells, the cortical microtubules (CMTs) showed no visible changes in the initial 1 h, but progressive alteration, such as less prominent (after 6 h) and intensive (from 12 h onwards) depolymerisation of MTs, was registered upon increasing Al treatment duration, which accompanied Al-induced callose formation. The growth of log-phase cells showed a tendency of inhibition between 6 and 12 h Al treatment, which led to significant growth inhibition from 12 h onwards, suggesting that Al-induced depolymerisation of CMTs in log-phase cells is closely linked to the Al-induced inhibition of cell growth. In contrast, Al-induced stabilisation of CMTs was found in stationary-phase cells and these cells required higher Al levels (100 μ M ) for the depolymerisation of CMTs. These results provide first circumstantial evidence for both depolymerisation and stabilisation of MTs induced by Al, depending on the phases of plant cell growth.  相似文献   

18.
Mechanisms underlying the tissue-specific impact of cardiotonic steroids (CTS) on cell survival and death remain poorly understood. This study examines the role of Na+,K+-ATPase α subunits in death of Madin-Darby canine kidney (MDCK) cells evoked by 24-h exposure to ouabain. MDCK cells expressing a variant of the α1 isoform, CTS-sensitive α1S, were stably transfected with a cDNA encoding CTS-resistant α1R-Na+,K+-ATPase, whose expression was confirmed by RT–PCR. In mock-transfected and α1R-cells, maximal inhibition of 86Rb influx was observed at 10 and 1000 μM ouabain, respectively, thus confirming high abundance of α1R-Na+,K+-ATPase in these cells. Six-hour treatment of α1R-cells with 1000 μM ouabain led to the same elevation of the [Na+]i/[K+]i ratio that was detected in mock-transfected cells treated with 3 μM ouabain. However, in contrast to the massive death of mock-transfected cells exposed to 3 μM ouabain, α1R-cells survived after 24-h incubation with 1000 μM ouabain. Inversion of the [Na+]i/[K+]i ratio evoked by Na+,K+-ATPase inhibition in K+-free medium did not affect survival of α1R-cells but increased their sensitivity to ouabain. Our results show that the α1R subunit rescues MDCK cells from the cytotoxic action of CTS independently of inhibition of Na+,K+-ATPase-mediated Na+ and K+ fluxes and inversion of the [Na+]i/[K+]i ratio.  相似文献   

19.
Soluble CaCrO4 and insoluble PbCrO4 were tested for induction of mutation to 6-thioguanine (base-substitution, deletion, addition, and frameshift mutations) or ouabain (base-substitution mutations) resistance in Chinese hamster ovary cells and morphological transformation in C3H/101/2 mouse embryo cells. CaCrO4 induced dose-dependent cytotoxicity and mutation to 6-thioguanine resistance, but did not induce mutation to ouabain resistance or morphological transformation. Highly cytotoxic amounts of CaCrO4 induced conversion of 10T1/2 cells to adipocytes, but cell lines derived from such cells were not transformed. PbCrO4 was not mutagenic in either mutation assay but induced a dose-dependent, low frequency of focus formation. Cell lines established from these foci had a 3–5-fold increased saturation density, grew in soft agarose, and were tumorigenic in nude mice. Chronic exposure to CaCrO4 or PbCl2 did not induce transformation, PbCl2 was inactive even at acutely cytotoxic concentrations, and sequential treatments with CaCrO4 and PbCl2 did not induce transformation. Light and scanning electron microscopy showed progressive cytoplasmic engulfment of PbCrO4 particles and extensive vacuolization of cells in contact with the particles. No particles were observed inside of vacuoles. We suggest that internalization of PbCrO4 and the associated cellular stress response may be related to PbCrO4-induced neoplastic transformation of 10T1/2 cells.  相似文献   

20.
One group of adult C3H×101 hybrid male mice was given 3 injections of 12.5 μCi of [3H]thymidine at 9-h intervals and irradiated 24 h after the last injection with X-ray doses of 100, 300, 500, 600, 1000 R or the first fraction of a split 1000-R dose given as two 500-R exposures 24 h apart. Mice were killed 207 and 414 h after irradiation. A second group of mice was given a single injection of 12.5 μCi of [3H]thymidine 1 h before irradiation with single exposures of 300, 500, 600, 1000 R, or the first fraction of a 1000-R exposure given as two 500-R fractions 24 h apart. Mice were killed 120 and 207 h after irradiation. In both experiments, parallel groups of mice were given X-ray only as a control for the effect of [3H]thymidine. Two sets of slides were prepared for each mouse receiving [3H]thymidine: one set was not autoradiographed and was used for scoring cell survival; the second set was coated with emulsion and used for scoring percentage of labeled cells. The dose-response curves for survival at 120 and 207 h were curvilinear, with no evidence of discontinuity over the 100–1000-R range. After multiple injections of [3H]thymidine and irradiation 24 h later, percentage of labeled cells at 207 h was comparable for controls, 100, 300, and 600 R; significantly lower than controls for 1000 R; and significantly above controls after 500 + 500 R. Thus the surviving stem-cell population was qualitatively the same for that portion of the dose-response curve giving a linear increase in mutation rate but was different for both 1000-R and 500 + 500-R exposures, and the single and fractionated 1000-R exposures differed from each other. This parallelism between survival of labeled cells and mutation frequency in spermatogonial stem cells suggests that a stage in the cell cycle 24–42 h after DNA synthesis is resistant to cell killing but sensitive to mutation induction. The mutation rate after a single 1000-R exposure is low because labeled, mutation-sensitive cells have been selectively killed. Mutation frequency after the 500 + 500-R dose is increased because of synchronization induced by the first dose combined with selective killing of unlabeled cells by the second fraction. Irradiation 1 h after labeling with [3H]-thymidine demonstrated that the S phase of the spermatogonial stem-cell cycle is sensitive to radiation-induced cell killing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号