首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Most laboratory strains of the yeast Saccharomyces cerevisiae contain many copies of an autonomously replicating plasmid called 2-micron circle DNA. This plasmid codes for a site-specific recombinase, the FLP protein which promotes recombination across two 599-base pair inverted repeats of the plasmid DNA. We have cloned the FLP gene under the control of a strong Escherichia coli promoter and have hyperproduced the protein in that organism. Cell-free extracts from this source promote highly efficient site-specific recombination in vitro and we have used this activity to purify the FLP protein substantially. The enzyme acts efficiently on circular and linear substrates and requires only monovalent or divalent cations for activity.  相似文献   

3.
G F Crouse 《Gene》1985,40(1):151-155
A plasmid, pgam, has been constructed which expresses the phage lambda gene, gam, under the control of the lambda late promoter, p'R, contained in a form of a p'R-qut-t'R1 module. Lambda red- gam-, which normally do not grow on recA- hosts, are able to grow on recA- hosts containing pgam, because their Q function can turn on the gam gene expression. This facilitates cloning with lambda red- gam- vectors in recA- hosts.  相似文献   

4.
Cloning the polB gene of Escherichia coli and identification of its product   总被引:4,自引:0,他引:4  
Using an in vivo mini-Mu cloning system, we have cloned the polB gene of Escherichia coli into the multicopy plasmid, pUC18. A chromosomal insert of 4.9 kilobases gave 30-40-fold overproduction of DNA polymerase II, and the cells containing the plasmid showed normal growth. The restriction pattern of the polB gene does not match that of either the polA gene or polC gene. Plasmid-directed protein synthesis demonstrates peptides of 99 and 82 kDa which are not expressed by derivative plasmids without DNA polymerase II activity. It appears from in situ gel assays and high performance liquid chromatography that 82- and 55-kDa proteins are derived from the 99-kDa protein by degradation, but all retain activity. DNA polymerase I or DNA polymerase III antibody does not inhibit the synthesis reaction of partially purified DNA polymerase II, but DNA polymerase II antibody does. By the criteria of restriction pattern of the polB gene, molecular weight of the protein, and antibody inhibition of reaction, DNA polymerase II can be demonstrated to be a distinct DNA polymerase.  相似文献   

5.
PY54 is a temperate phage isolated from Yersinia enterocolitica. Lysogenic Yersinia strains harbour the PY54 prophage as a plasmid (pY54). The plasmid has the same size (46 kb) as the PY54 genome isolated from phage particles. By electron microscopy, restriction analysis and DNA sequencing, it was demonstrated that the phage and the plasmid DNAs are linear, circularly permuted molecules. Unusually for phages of Gram-negative bacteria, the phage genome has 3'-protruding ends. The linear plasmid pY54 has covalently closed ends forming telomere-like hairpins. The equivalent DNA sequence of the phage genome is a 42 bp perfect palindrome. Downstream from the palindrome, an open reading frame (ORF) was identified that revealed strong DNA homology to the telN gene of Escherichia coli phage N15 encoding a protelomerase. Similar to PY54, the N15 prophage is a linear plasmid with telomeres. The N15 protelomerase has cleaving/joining activity generating the telomeres by processing a 56 bp palindrome (telomere resolution site tel RL). To study the activity of the PY54 protein, the telN-like gene was cloned and expressed in E. coli. A 77 kDa protein was obtained and partially purified. The protein was found to process recombinant plasmids containing the 42 bp palindrome. Telomere resolution of plasmids under in vivo conditions was also investigated in Yersinia infected with PY54. Processing required a plasmid containing the palindrome as well as adjacent DNA sequences from the phage including an additional inverted repeat. Regions on the phage genome important for plasmid maintenance were defined by the construction of linear and circular miniplasmid derivatives of pY54, of which the smallest miniplasmid comprises a 4.5 kb DNA fragment of the plasmid prophage.  相似文献   

6.
The replication protein ORF904 from the plasmid pRN1 is a multifunctional enzyme with ATPase-, primase- and DNA polymerase activity. Sequence analysis suggests the presence of at least two conserved domains: an N-terminal prim/pol domain with primase and DNA polymerase activities and a C-terminal superfamily 3 helicase domain with a strong double-stranded DNA dependant ATPase activity. The exact molecular function of the helicase domain in the process of plasmid replication remains unclear. Potentially this motor protein is involved in duplex remodelling and/or origin opening at the plasmid replication origin. In support of this we found that the monomeric replication protein ORF904 forms a hexameric ring in the presence of DNA. It is able to translocate along single-stranded DNA in 3′–5′ direction as well as on double-stranded DNA. Critical residues important for ATPase activity and DNA translocation activity were identified and are in agreement with a homology model of the helicase domain. In addition we propose that a winged helix DNA-binding domain at the C-terminus of the helicase domain could assist the binding of the replication protein specifically to the replication origin.  相似文献   

7.
The ruv gene of Escherichia coli, which is associated with inducible mechanisms of DNA repair and recombination, has been cloned into the low-copy plasmid vector pHSG415. The recombinant plasmid pPVA101 fully complements the DNA repair-deficient phenotype of ruv mutants. Restriction endonuclease analysis of this plasmid revealed a 10.6-kilobase (kb) HindIII DNA insert which contained a 7.7-kb PstI fragment identified as being from the chromosomal ruv region. Deletion analysis and Tn1000 insertional inactivation of ruv function located the ruv coding region to a 2.2-kb section of the cloned DNA fragment. A comparison of the proteins encoded by ruv wild-type and mutant plasmids identified the gene product as a protein of molecular weight 41,000.  相似文献   

8.
9.
The dnaJ and dnaK genes are essential for replication of Escherichia coli DNA, and they constitute an operon, dnaJ being downstream from dnaK. The amount of the dnaJ protein in E. coli is substantially less than that of the dnaK protein, which is produced abundantly. In order to construct a system that over-produces the dnaJ protein, we started our study by determining the DNA sequence of the entire dnaJ gene, and an operon fusion was constructed by inserting the gene downstream of the lambda PL promoter of an expression vector plasmid, pPL-lambda. Cells containing the recombinant plasmid produced dnaJ protein amounting to 2% of the total cellular protein when cells were induced. The overproduced protein was purified, and Edman degradation of the protein indicated that the NH2-terminal methionine was found to be processed. From the DNA sequence of the dnaJ gene, the processed gene product is composed of 375 amino acid residues, and its molecular weight is calculated to be 40,975.  相似文献   

10.
The ada gene of Escherichia coli encodes O6-methylguanine-DNA methyltransferase, which serves as a positive regulator of the adaptive response to alkylating agents and as a DNA repair enzyme. The gene which can make an ada-deficient strain of E. coli resistant to the cell-killing and mutagenic effects of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) has been cloned from Salmonella typhimurium TA1538. DNA sequence analysis indicated that the gene potentially encoded a protein with a calculated molecular weight of 39,217. Since the nucleotide sequence of the cloned gene shows 70% similarity to the ada gene of E. coli and there is an ada box-like sequence (5'-GAATTAAAACGCA-3') in the promoter region, we tentatively refer to this cloned DNA as the adaST gene. The gene encodes Cys-68 and Cys-320, which are potential acceptor sites for the methyl group from the damaged DNA. The multicopy plasmid carrying the adaST gene significantly reduced the frequency of mutation induced by MNNG both in E. coli and in S. typhimurium. The AdaST protein encoded by the plasmid increased expression of the ada'-lacZ chromosome fusion about 5-fold when an E. coli strain carrying both the fusion operon and the plasmid was exposed to a low concentration of MNNG, whereas the E. coli Ada protein encoded by a low-copy-number plasmid increased it about 40-fold under the same conditions. The low ability of AdaST to function as a positive regulator could account for the apparent lack of an adaptive response to alkylation damage in S. typhimurium.  相似文献   

11.
We report here the molecular isolation of a DNA fragment which encodes Tag-like activity from the Gram-negative bacterium Serratia marcescens. A recombinant plasmid encoding Tag-like activity was isolated from a S. marcescens plasmid gene library by complementation of an Escherichia coli tag mutant, which is deficient in 3-methyladenine DNA glycosylase I. The clone complements E. coli tag, recA, alkA, but not alkB, mutants for resistance to the DNA-damaging agent methyl methanesulphonate (MMS). The coding region of the Tag activity, initially isolated on a 6.5kb BamHI fragment, was defined to a 1.8kb BglII-SmaI fragment. Labelling of plasmid-encoded proteins using maxicells revealed that the 1.8kb fragment encodes two proteins of molecular weights 42,000 and 16,000. Data presented here suggest that the cloned fragment encodes a DNA repair protein(s) that has similar activity to the 3-methyladenine DNA glycosylase I of E. coli.  相似文献   

12.
The sequence of a 1,693-base-pair plasmid DNA fragment from Flavobacterium sp. strain ATCC 27551 containing the parathion hydrolase gene (opd) was determined. Within this sequence, there is only one open reading frame large enough to encode the 35,000-dalton membrane-associated hydrolase protein purified from Flavobacterium extracts. Amino-terminal sequence analysis of the purified Flavobacterium hydrolase demonstrated that serine is the amino-terminal residue of the hydrolase protein. The amino-terminal serine corresponds to a TCG codon located 87 base pairs downstream of the presumptive ATG initiation codon in the nucleotide sequence. The amino acid composition of the purified protein agrees well with that predicted from the nucleotide sequence, using serine as the amino-terminal residue. These data suggest that the parathion hydrolase protein is processed at its amino terminus in Flavobacterium sp. Construction in Escherichia coli of a lacZ-opd gene fusion in which the first 33 amino-terminal residues of opd were replaced by the first 5 residues of lacZ resulted in the production of an active hydrolase identical in molecular mass to the hydrolase isolated from Flavobacterium sp. E. coli cells containing the lacZ-opd fusion showed higher levels of hydrolase activity than did cells containing the parent plasmid.  相似文献   

13.
DNA fragments of Bacillus subtilis were inserted into a plasmid vector that can multiply in Escherichia coli cells, and foreign genes were expressed under the control of the lac promoter. By selecting hybrid plasmids that confer an increased resistance to alkylating agents on E. coli ada- mutant cells, the B. subtilis gene dat, which encodes O6-methylguanine-DNA methyltransferase, was cloned. The Dat protein, with a molecular weight of about 20,000, could transfer the methyl group from methylated DNA to its own protein molecule. Based on the nucleotide sequence of the gene, it was deduced that the protein comprises 165 amino acids and that the molecular weight is 18,779. The presumptive amino acid sequence of Dat protein is homologous to the sequences of the E. coli Ogt protein and the C-terminal half of the Ada protein, both of which carry O6-methylguanine-DNA methyltransferase activity. The pentaamino acid sequence Pro-Cys-His-Arg-Val, the cysteine residue of which is the methyl acceptor site in Ada protein, was conserved in the 3 methyltransferase proteins. The structural similarity of these methyltransferases suggests possible evolution from a single ancestral gene.  相似文献   

14.
The poly(ADPribose) polymerase-like thermozyme from the hyperthermophilic archaeon S. solfataricus was found to bind DNA with high affinity and non-specifically. Binding was independent of base composition and length of the nucleic acid, and the protein showed a slight preference for the circular structure. By using pCMV-Neo-Bam plasmid as experimental model, the behaviour of the thermozyme upon binding with either circular or linear plasmid was analyzed. pCMV-Neo-Bam has a single HindIII site that allows to obtain the linear structure after digestion with the restriction enzyme. Intrinsic tryptophan-dependent fluorescence of poly(ADPribose) polymerase-like thermozyme noticeably changed upon addition of either circular or linear plasmid, showing the same binding affinity (K=2 x 10(9) M-1). However, experiments of protection against temperature and DNase I gave evidence that the thermozyme formed more stable complexes with the circular structure than with the linear pCMV-Neo-Bam. Increasing temperature at various DNA/protein ratios had a double effect to reduce the amount of circular DNA undergoing denaturation and to split the melting point towards higher temperatures. Nil or irrelevant effect was observed with the linear form. Similarly, DNase acted preferentially on the linear plasmid/protein complexes, producing an extensive digestion even at high protein/DNA ratios, whereas the circular plasmid was protected by the thermozyme in a dose-dependent manner. The complexes formed by archaeal poly(ADPribose) polymerase (PARPss) with the circular plasmid were visualized by bandshift experiments both with ethidium bromide staining and by labelling the circular plasmid with 32P. The stability of complexes was tested as a function of enzyme concentration and in the presence of a cold competitor and of 0.1% SDS. From the performed experiments, a number of 3-10 base pairs bound per molecule of enzyme was calculated, indicating a high frequency of binding. The presence of circular DNA was also able to increase by 80% the poly(ADPribose)polymerase-like activity, as compared to 25% activation induced by the linear pCMV-Neo-Bam.  相似文献   

15.
K Doi  A Doi 《Journal of bacteriology》1986,168(3):1272-1276
When inserted in the correct orientation at the BamHI site of plasmid YRp7, an 8.6-kilobase BamHI fragment of Arthrobacter sp. strain YCWD3 DNA gave Escherichia coli HB101 cells harboring the recombinant plasmid pBX20 the ability to lyse bakers' yeast cell walls or bakers' yeast glucan in agar medium. An extract of the transformed E. coli cells contained an endo-beta-(1----3)-glucanase with the same activity pattern as that of glucanase I produced by Arthrobacter sp. strain YCWD3. Although part of the glucanase activity was contributed by apparently defective molecules, two protein species were found which had high lytic activity on yeast cell walls and adsorbed to microcrystalline cellulose, and both had a single constituent polypeptide with a molecular weight of about 55,000, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In these properties the protein species were indistinguishable from those glucanase I protein species of Arthrobacter sp. strain YCWD3 which we believe are nearly the intact molecule. We conclude that the cloned fragment of Arthrobacter sp. strain YCWD3 DNA contains the structural gene for glucanase I. A recombinant plasmid obtained by subcloning a PstI fragment of pBX20 into pBR322 caused the transformed E. coli cells to produce apparently defective glucanase molecules only. This observation serves as additional supporting evidence for our conclusion.  相似文献   

16.
Genomic libraries from Streptococcus mutans OMZ175 were constructed in bacteriophage vectors. DNA fragments 1 to 2 kilobases in length were cloned in expression vector lambda gt11. S. mutans DNA fragments 15 to 20 kilobases in length were inserted in the BamHI site of phage EMBL3. Rabbit antiserum raised against an S. mutans saliva-interacting protein with a molecular weight of 74,000, designated 74K SR, was used to screen the lambda gt11 library. A recombinant phage carrying an S. mutans DNA sequence of 1.45 kilobases, lambda SmAD2, was detected and isolated. This fragment, named SmAD2, was used to construct the recombinant expression plasmid pSAD2-4 which encoded for the expression of a 60,000-molecular-weight protein controlled by the beta-galactosidase promoter from plasmid pUC8. The SmAD2 fragment and polyclonal anti-74K SR antibodies were used to screen the EMBL3 library. A total coincidence between the screening with antibodies and the DNA probe was observed, and two phages, lambda SmAD9 and lambda SmAD10, were isolated. They contained a common S. mutans DNA sequence of about 11.8 kilobases and coded for a protein with a molecular weight of about 195,000, which comigrated with a protein of an S. mutans cell wall extract. The expressed protein was purified, and a very strong relationship with the S. mutans 74K SR protein was found by competitive enzyme-linked immunosorbent assay. Thus, cloning of the 74K SR gene allowed us to demonstrate that the saliva receptor appears to be a part of an S. mutans precursor molecule with a molecular mass of 195,000 daltons.  相似文献   

17.
Chromosomal mutants were isolated in which, for several small plasmids, there was an increased amount of either covalently closed circular plasmid DNA or total plasmid DNA or both. The mutations were mapped to recD, which has been shown to affect exonuclease V activity and a variety of plasmid maintenance and replication functions. Our results suggest that rolling-circle plasmid replication can occur in recD mutants and that site-specific recombination can resolve the resulting linear multimers into covalently closed circular plasmid forms.  相似文献   

18.
19.
In Escherichia coli cells, there is a protein that specifically binds to DNA replication terminus (ter) sites on the host and plasmid genome and then blocks progress of the DNA replication fork. We reported that extract of the cells carrying the plasmid with the tau gene, which was identified to be an essential gene for the termination reaction at the ter site, contained about an 8-fold increase in ter-binding activity of the plasmid-free cells. With improvement of the promoter region of the tau gene on the plasmid by site-directed mutagenesis, the host cells produced the ter-binding protein (Ter protein) over 2,000-fold. Using these over-producing cells as the enzyme source, the Ter protein was purified to apparent homogeneity. Molecular mass 36,000, amino-terminal amino acid sequence (45 residues) and composition of the protein were in good agreement with those deduced from DNA sequence of the tau gene. Footprinting using the purified Ter protein revealed a specific binding to the ter sequences.  相似文献   

20.
We have isolated five specialized transducing lambda bacteriophages (lambda dpyrE spoT) carrying the pyrE and spoT genes of Escherichia coli. A fragment from one of these phages was used as the source of DNA to clone the spoT and pyrE genes on a multicopy plasmid, pBR322. Insertions and deletions in this plasmid were obtained. These plasmids were used to transform a minicell-producing strain, and the gene products synthesized were determined. Our experiments demonstrate that the spoT and pyrE genes are separated by about 4 magadaltons and suggest that the spoT gene product is a protein whose molecular weight is 80,000. The strain in which the spoT+ allele is carried on a plasmid produced nine times more spoT gene activity than a normal spoT+ strain when assayed in crude extracts. This strain was used to prepare partially purified gene product, guanosine 5'-diphosphate, 3'-diphosphate pyrophosphatase. The enzyme has the following characteristics. (i) It hydrolyzes pyrophosphate from the 5'-pyrophosphate of guanosine 5'-diphosphate, 3'-diphosphate, yielding GDP and pyrophosphate. (ii) Its activity is strongly stimulated by Mn2+ and slightly stimulated by salt. (iii) Its activity is inhibited by uncharged tRNA. There are also two additional activities in the cell extract which degrade guanosine in 5'-diphosphate, 3'-diphosphate in vitro but which are not specified by the spoT gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号