首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Here we present a highly sensitive and simple high-performance liquid chromatography (HPLC) method that enables specific quantification of glucuronokinase activity in partially purified extracts from pollen of Lilium longiflorum without radioactive labeled substrates. This assay uses a recombinant UDP-sugar pyrophosphorylase with broad substrate specificity from Pisum sativum (PsUSP) or Arabidopsis thaliana (AtUSP) as a coupling enzyme. Glucuronokinase was partially purified on a DEAE-sepharose column. Kinase activity was measured by a nonradioactive coupled enzyme assay in which glucuronic acid-1-phosphate, produced in this reaction, is used by UDP-sugar pyrophosphorylase and further converted to UDP-glucuronic acid. This UDP-sugar, as well as different by-products, is detected by HPLC with either a strong anion exchange column or a reversed phase C18 column at a wavelength of 260 nm. This assay is adaptive to different kinases and sugars because of the broad substrate specificity of USP. The HPLC method is highly sensitive and allows measurement of kinase activity in the range of pmol min-1. Furthermore, it can be used for determination of pure kinases as well as crude or partially purified enzyme solutions without any interfering background from ATPases or NADH oxidizing enzymes, known to cause trouble in different photometric assays.  相似文献   

2.
Phosphorus is an essential component of macromolecules, like DNA, and central metabolic intermediates, such as sugar phosphates, and bacteria possess enzymes and control mechanisms that provide an optimal supply of phosphorus from the environment. UDP-sugar hydrolases and 5′ nucleotidases may play roles in signal transduction, as they do in mammals, in nucleotide salvage, as demonstrated for UshA of Escherichia coli, or in phosphorus metabolism. The Corynebacterium glutamicum gene ushA was found to encode a secreted enzyme which is active as a 5′ nucleotidase and a UDP-sugar hydrolase. This enzyme was synthesized and secreted into the medium when C. glutamicum was starved for inorganic phosphate. UshA was required for growth of C. glutamicum on AMP and UDP-glucose as sole sources of phosphorus. Thus, in contrast to UshA from E. coli, C. glutamicum UshA is an important component of the phosphate starvation response of this species and is necessary to access nucleotides and related compounds as sources of phosphorus.  相似文献   

3.
An enzyme which will deacylate sulphoquinovosyl diacylglycerol (SQDG) has been partially purified from the leaves of runner bean (Phaseolus multiflorus). No monoacyl intermediate was observed and the acyl hydrolase was more active towards unsaturated molecular species of SQDG than towards saturated species. The major peak of activity of SQDG acyl hydrolase, separated on both DEAE-cellulose and Sephadex columns, also contained galactolipid acyl hydrolase activity. The distribution of these activities together with substrate competition and inhibitor experiments indicated that at least part of the SQDG acyl hydrolase activity was due to an enzyme that also hydrolysed galactolipids.  相似文献   

4.
Two lipolytic enzymes have been separated and partially purified from potato tubers. One enzyme of higher isoelectric value, possessed acyl hydrolase activity toward a number of p-nitrophenyl fatty acyl derivatives, the relative activity depending on the fatty acyl chain length. There was also some activity towards phosphatidyl choline. The other enzyme possessed phospholipase and galactolipase activity, but showed a low acyl hydrolase activity towards p-nitrophenyl fatty acyl derivatives. When applied to plant tissues, the enzyme with the greater acyl hydrolase activity caused rapid ion efflux from discs of potato tuber and beetroot, foflowed by reabsorption of ions by the tissues. The purified phospholipase did not produce this effect but induced acid phosphatase leakage from lysosome-enriched fractions of potato sprout tissue. No maceration of tissue or protoplast disruption was observed when either of the two enzymes were incubated with a variety of plant preparations.  相似文献   

5.
Nucleoside 5′-diphosphate-X hydrolases are interesting enzymes to study due to their varied activities and structure-function relationships and the roles they play in the disposal, assimilation, and modulation of the effects of their substrates. Few of these enzymes with a preference for CDP-alcohols are known. In Yersinia intermedia suspensions prepared from cultures on Columbia agar with 5% sheep blood, we found a CDP-alcohol hydrolase liberated to Triton X-100-containing medium. Growth at 25°C was deemed optimum in terms of the enzyme-activity yield. The purified enzyme also displayed 5′-nucleotidase, UDP-sugar hydrolase, and dinucleoside-polyphosphate hydrolase activities. It was identified as the protein product (UshAYi) of the Y. intermedia ushA gene (ushAYi) by its peptide mass fingerprint and by PCR cloning and expression to yield active enzyme. All those activities, except CDP-alcohol hydrolase, have been shown to be the properties of UshA of Escherichia coli (UshAEc). Therefore, UshAEc was expressed from an appropriate plasmid and tested for CDP-alcohol hydrolase activity. UshAEc and UshAYi behaved similarly. Besides being the first study of a UshA enzyme in the genus Yersinia, this work adds CDP-alcohol hydrolase to the spectrum of UshA activities and offers a novel perspective on these proteins, which are viewed here for the first time as highly efficient enzymes with kcat/Km ratios near the theoretical maximum level of catalytic activities. The results are discussed in the light of the known structures of UshAEc conformers and the respective homology models constructed for UshAYi, and also in relation to possible biological functions. Interestingly, every Yersinia species with a sequenced genome contains an intact ushA gene, except Y. pestis, which in all its sequenced biovars contains a ushA gene inactivated by frameshift mutations.  相似文献   

6.
Dihydrodipicolinic acid reductase, an enzyme which catalyzes the pyridine nucleotide-linked reduction of dihydrodipicolinic acid to tetrahydrodipicolinic acid in the biosynthetic pathway leading to l-lysine, has been partially purified from maize (Zea mays cv Pioneer 3145) kernels. The crude maize extract and the partially purified enzyme were assayed for dihydrodipicolinic acid reductase by their ability to restore the capability of crude extracts of a mutant Escherichia coli (CGSC 4549; defective in dihydrodipicolinic acid reductase) to synthesize diaminopimelic acid from aspartic acid and pyruvic acid.  相似文献   

7.
A highly enantioselective cis-epoxysuccinic acid hydrolase from Nocardia tartaricans was purified to electrophoretic homogeneity. The enzyme was purified 184-fold with a yield of 18.8 %. The purified cis-epoxysuccinic acid hydrolase had a monomeric molecular weight of 28 kDa, and its optimum conditions were 37 °C and pH 7–9. With sodium cis-epoxysuccinate as the substrate, Michaelis–Menten enzyme kinetics analysis gave a Km value of 35.71 mM and a Vmax of 2.65 mM min?1. The enzyme was activated by Ni2+ and Al3+, while strongly inhibited by Fe3+, Fe2+, Cu2+, and Ag+. The cis-epoxysuccinic acid hydrolase gene was cloned, and its open reading frame sequence predicted a protein composed of 253 amino acids. A pET11a expression plasmid carrying the gene under the control of the T7 promoter was introduced into Escherichia coli, and the cis-epoxysuccinic acid hydrolase gene was successfully expressed in the recombinant strains.  相似文献   

8.
Thiaminephosphate pyrophosphorylase (EC 2.5.1.3) in Escherichia coli has been purified 175-fold by conventional methods of enzyme purification. General properties of the partially purified enzyme were similar to those of the yeast enzyme except for a small molecular weight of 17,000. The E. coli enzyme was inhibited by a variety of high-energy phosphate compounds. Acetyl phosphate was the most potent inhibitor and resulted in 50% inhibition at 0.5 mm concentration. ATP and acetyl phosphate were both uncompetitive inhibitors with respect to both substrates. Low-energy phosphate compounds and pyridine nucleotides were not able to inhibit the activity. These results, together with the other results obtained, indicate that these high-energy phosphate compounds did not inhibit the enzyme activity after conversion to a common compound. The physiological significance of this type of inhibition was discussed from the point of cellular energy charge.  相似文献   

9.
10.
The development of recombinant DNA has made it feasible to produce a wide range of valuable protein products in the bacterium Escherichia coli. Extraction of intracellular protein from E. coli is traditionally achieved by mechanical, chemical or enzymatic disruption technology. In this study, thermolysis, which differs from the traditional ones, is presented for disruption of E. coli cells to release recombinant thermostable enzyme. Heat treatment of E. coli at 80 °C is highly effective to destroy the integrity of the bacterial cell wall and release the recombinant thermostable enzyme. At the same time of disruption, the recombinant thermostable enzyme was partially purified. Moreover, thermolysis was carried out in fermentation broth in situ, which may make it a more applicable approach for industrial-scale processes.  相似文献   

11.
The pyrrolopyrimidine nucleosides, toyocamycin, sangivamycin, and tubercidin are isolated from the culture filtrates of 14 species of the Streptomyces. Although earlier experiments showed that the biosynthesis of the pyrrolopyrimidine nucleosides require GTP as the common precursor, there was no experimental evidence to demonstrate the interconversion of these naturally occurring nucleoside analogs. The data presented here describe two types of experiments to prove that toyocamycin is the precursor for sangivamycin. First, in vivo experiments show that radioactive toyocamycin is converted to sangivamycin. Second, the enzyme, toyocamycin nitrile hydrolase, that catalyzes the conversion of toyocamycin to sangivamycin has been isolated and partially purified from the soluble fraction of S. rimosus. The nitrile hydrolase is not present in cell-free extracts of the Streptomyces that synthesize tubercidin or toyocamycin. Activity can be assayed by measuring the formation of radioactive sangivamycin from toyocamycin. The enzyme has been purified 24-fold with an over-all yield of 5%. The pH optimum is 6.5 and the Km is 0.5 mm. Most nitriles tested are competitive inhibitors but they are not substrates. The activity of the hydrolase is limited to the conversion of the nitrile group to the carboxamide group. Hydrolase activity is observed in cell-frre estracts of S. rimosus before toyocamycin production begins. The in vivo and in vitro studies demonstrate that toyocamycin is not a precursor for tubercidin. The experimental evidence strongly suggests that there must be a branch point in the biosynthesis of the pyrrolopyrimidine nucleoside antibiotics.  相似文献   

12.
Rhodococcus sp. strain Oct1 utilizing ω-octalactam as a sole source of carbon and nitrogen was isolated from soil. ω-Octalactam hydrolyzing enzyme was purified to homogeneity. The purified enzyme has a molecular weight of approximately 48,100 by SDS polyacrylamide gel electrophoresis and 99,100 by gel filtration, indicating that the enzyme consists of 2 subunits. The purified enzyme catalyzed the hydrolysis of ω-octalactam to form 8-aminooctanoic acid at a rate of 3.95 U/mg. The purified enzyme also acted on ω-heptalactam, ω-laurolactam, nitroacetoanilide substitutions, and various aliphatic amides. The most suitable substrate was o-nitroacetanilide for the enzyme (11.6 U/mg). The enzyme belongs to aryl acylamidase. The gene for the enzyme was cloned and the deduced amino acid sequence showed similarity to ω-laurolactam hydrolase from Rhodococcus sp. U224 (51%) and putative aryl acylamidase from Nocardia farcinica IFM 10152 (98%), and N-terminal amino acid sequence (28 residues) of aryl acylamidase from Nocardia globerula IFO 13510 (92%). Aryl acylamidases and 6-aminohexanoate-cyclic-dimer hydrolases are in the same phylogenic lineage. These enzymes were mostly active toward non-natural amides. From phylogenic analysis, these enzymes were classified into amidase signature family. The enzyme was produced in a soluble form as a fusion protein (extension of 13 amino acids at C-terminal) in Escherichia coli.  相似文献   

13.
Previous kinetic characterization of Escherichia coli fructose 1,6-bisphosphatase (FBPase) was performed on enzyme with an estimated purity of only 50%. Contradictory kinetic properties of the partially purified E. coli FBPase have been reported in regard to AMP cooperativity and inactivation by fructose-2,6-bisphosphate. In this investigation, a new purification for E. coli FBPase has been devised yielding enzyme with purity levels as high as 98%. This highly purified E. coli FBPase was characterized and the data compared to that for the pig kidney enzyme. Also, a homology model was created based upon the known three-dimensional structure of the pig kidney enzyme. The kcat of the E. coli FBPase was 14.6 s−1 as compared to 21 s−1 for the pig kidney enzyme, while the Km of the E. coli enzyme was approximately 10-fold higher than that of the pig kidney enzyme. The concentration of Mg2+ required to bring E. coli FBPase to half maximal activity was estimated to be 0.62 mM Mg2+, which is twice that required for the pig kidney enzyme. Unlike the pig kidney enzyme, the Mg2+ activation of the E. coli FBPase is not cooperative. AMP inhibition of mammalian FBPases is cooperative with a Hill coefficient of 2; however, the E. coli FBPase displays no cooperativity. Although cooperativity is not observed, the E. coli and pig kidney enzymes show similar AMP affinity. The quaternary structure of the E. coli enzyme is tetrameric, although higher molecular mass aggregates were also observed. The homology model of the E. coli enzyme indicated slight variations in the ligand-binding pockets compared to the pig kidney enzyme. The homology model of the E. coli enzyme also identified significant changes in the interfaces between the subunits, indicating possible changes in the path of communication of the allosteric signal.  相似文献   

14.
An enzyme displaying peroxidase activity has been extracted and purified 27-fold from the green alga Enteromorpha linza. The partially purified pre  相似文献   

15.
An exo-β-glucan hydrolase, present in the digestive juice of the snail, Helix pomatia, has been purified to homogeneity by chromatography on Bio-Gel P-60, Sephadex G-200, DEAE-cellulose, and DEAE-Sephadex. The enzyme degrades β-(1 → 3)-linked oligosaccharides and polysaccharides, rapidly and to completion, or near completion, yielding glucose as the major product of enzyme action. Mixed linkage (1→3; 1→4)-β-glucans are also extensively degraded and β-(1→6)- and β-(1→4)-linked glucose polymers are slowly degraded by the enzyme. This enzyme differs from other exo-β-glucanases, reported previously, in the broadness of its substrate specificity. The Km values for action on laminarin and lichenin are respectively 1.22 and 2.22 mg/ml; the maximum velocity of action on laminarin is approximately twice that on lichenin. The enzyme has a molecular weight of 82,000 as determined by polyacrylamide gel electrophoresis. Maximum activity is exhibited at pH 4.3 and at temperatures of 50–55 °C.  相似文献   

16.
An Escherichia coli B mutant, CL1136 accumulates glycogen at 3.4 to 4 times the rate observed for the parent E. coli B strain. The glycogen accumulated in the mutant is similar to the glycogen isolated from the parent strain with respect to α- and β-amylolysis, chain length determination and I2-complex absorption spectra. The CL1136 mutant contains normal glycogen synthase and branching enzyme activity but has an ADPglucose pyrophosphorylase with altered kinetic and allosteric properties. The mutant enzyme has been partially purified and in contrast to the present strain enzyme studied previously, is highly active in the absence of the allosteric activator. The response of the CL1136 enzyme to energy charge has been determined and this enzyme shows appreciable activity at low energy charge values where the E. coli B enzyme is inactive. The response to energy charge for the CL1136 and E. coli B enzymes are correlated with the rates of glycogen accumulation observed in the microorganisms. The regulation of glycogen synthesis in E. coli is to a great extent at the level of ADPglucose pyrophosphorylase; varying concentrations of fructose-P2 and energy charge determine the rate of ADPglucose and glycogen synthesis. Both the allosteric regulation of ADPglucose pyrophosphorylase as well as the genetic regulations of the synthesis of glycogen biosynthetic enzymes (glycogen synthase and ADPglucose pyrophosphorylase) are involved in the regulation of glycogen accumulation in E. coli B.  相似文献   

17.
A novel glycoside hydrolase from the hyperthermophilic archaeonMethanococcus jannaschii has been cloned intoEscherichia coli. Extremely thermoactive and thermostable amylolytic activity was confirmed in partially purified enzyme solution. This enzyme exhibited a temperature optimum of 100 °C and a pH optimum pH 5.0–8.0. Hydrolysis of large 1,6-α- and 1,4-α-linked polysaccharides yielded glucose polymers of 1–7 units. Incubation with amylose displayed the highest activity. The catalyst was activated and stabilized by Ca2+ and exhibited extreme thermostability at 100 °C with a half-life of 78 h.  相似文献   

18.
We have cloned a DNA fragment containing the gene for a cell wall hydrolase from Bacillus licheniformis FD0120 into Escherichia coli. Sequencing of the fragment showed the presence of an open reading frame (ORF; designated as cwlL), which is different from the B. licheniformis cell wall hydrolase gene cwlM, and encodes a polypeptide of 360 amino acids with a molecular mass of 38 994. The enzyme purified from the E. coli clone is an N-acetylmuramoyl-l-alanine amidase, which has a Mr value of 41 kDa as determined by SDS-polyacrylamide gel electrophoresis, and is able to digest B. licheniformis, B. subtilis and Micrococcus luteus cell walls. The nucleotide and deduced amino acid sequences of cwlL are very similar to those of ORF3 in the putative operon xpaL1-xpaL2-ORF3 in B. licheniformis MC14. Moreover, the amino acid sequence homology of CwlL with the B. subtilis amidase CwlA indicates two evolutionarily distinguishable regions in CwlL. The sequence homology of CwlL with other cell wall hydrolases and the regulation of cwlL are discussed.  相似文献   

19.
An enzyme capable of liberating functional tRNALys from Escherichia coli diacetyl-lysyl-tRNALys was purified from the archae Sulfolobus solfataricus. Contrasting with the specificity of peptidyl- tRNA hydrolase (PTH) from E.coli, the S.solfataricus enzyme readily accepts E.coli formyl-methionyl-tRNAfMet as a substrate. N-terminal sequencing of this enzyme identifies a gene that has homologs in the whole archaeal kingdom. Involvement of this gene (SS00175) in the recycling of peptidyl-tRNA is supported by its capacity to complement an E.coli strain lacking PTH activity. The archaeal gene, the product of which appears markedly different from bacterial PTHs, also has homologs in all the available eukaryal genomes. Since most of the eukaryotes already display a bacterial-like PTH gene, this observation suggests the occurrence in many eukaryotes of two distinct PTH activities, either of a bacterial or of an archaeal type. Indeed, the bacterial- and archaeal-like genes encoding the two full-length PTHs of Saccharomyces cerevisiae, YHR189w and YBL057c, respectively, can each rescue the growth of an E.coli strain lacking endogeneous PTH. In vitro assays confirm that the two enzymes ensure the recycling of tRNALys from diacetyl-lysyl-tRNALys. Finally, the growth of yeast cells in which either YHR189w or YBL057c has been disrupted was compared under various culture conditions. Evidence is presented that YHR189w, the gene encoding a bacterial-like PTH, should be involved in mitochondrial function.  相似文献   

20.
Dihydroxyacetone-phosphate:acyl coenzyme A acyltransferase (EC 2.3.1.42) was solubilized and partially purified from guinea pig liver crude peroxisomal fraction. The peroxisomal membrane was isolated after osmotic shock treatment and the bound dihydroxyacetone-phosphate acyltransferase was solubilized by treatment with a mixture of KCl-sodium cholate. The solubilized enzyme was partially purified by ammonium sulfate fractionation followed by Sepharose 6B gel filtration. The enzyme was purified 1200-fold relative to the guinea pig liver homogenate and 80- to 100-fold from the crude peroxisomal fraction, with an overall yield of 25–30% from peroxisomes. The partially purified enzyme was stimulated two- to fourfold by Asolectin (a soybean phospholipid preparation), and also by individual classes of phospholipid such as phosphatidylcholine and phosphatidylglycerol. The kinetic properties of the enzyme showed that in the absence of Asolectin there was a discontinuity in the reciprocal plot indicating two different apparent Km values (0.1 and 0.5 mm) for dihydroxyacetone phosphate. The Vmax was 333 nmol/min/mg protein. In the presence of Asolectin the reciprocal plot was linear, with a Km = 0.1 mm and no change in Vmax. The enzyme catalyzed both an exchange of acyl groups between dihydroxyacetone phosphate and palmitoyl dihydroxyacetone phosphate in the presence of CoA and the formation of palmitoyl [3H]coenzyme A from palmitoyl dihydroxyacetone phosphate and [3H]coenzyme A, indicating that the reaction is reversible. The partially purified enzyme preparation had negligible glycerol-3-phosphate acyltransferase (EC 2.3.1.15) activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号