首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Hypoxia inducible factor 1 (HIF-1) senses and coordinates cellular responses towards hypoxia. HIF-1 activity is primarily determined by stability regulation of its alpha subunit that is degraded by the 26S proteasome under normoxia due to hydroxylation by prolyl hydroxylases (PHDs) but is stabilized under hypoxia. Besides hypoxia, nitric oxide (NO) stabilizes HIF-1alpha and promotes hypoxia-responsive target gene expression under normoxia. However, in hypoxia, NO attenuates HIF-1alpha stabilization and gene activation. It was our intention to explain the contrasting behavior of NO under hypoxia. We used the iron chelator desferrioxamine (DFX) or hypoxia to accumulate HIF-1alpha in HEK293 cells. Once the protein accumulated, we supplied NO donors and followed HIF-1alpha disappearance. NO-evoked HIF-1alpha destabilization was reversed by proteasomal inhibition or by blocking PHD activity. By using the von Hippel Lindau (pVHL)-HIF-1alpha capture assay, we went on to demonstrate binding of pVHL to HIF-1alpha under DFX/NO but not DFX alone. Showing increased intracellular free iron under conditions of hypoxia/NO compared to hypoxia alone, we assume that increased free iron contributes to regain PHD activity. Variables that allow efficient PHD activation such as oxygen availability, iron content, or cofactor accessibility at that end allow NO to modulate HIF-1alpha accumulation.  相似文献   

4.
Hypoxia restricts cell proliferation and cell cycle progression at the G1/S interface but at least a subpopulation of carcinoma cells can escape the restriction. In carcinoma hypoxia may in fact select for cells with enhanced hypoxic survival and increased aggressiveness. The cellular oxygen sensors HIF proline hydroxylases (PHDs) adapt the cellular functions to lowered environmental oxygen tension. PHD3 isoform has shown the strongest hypoxic upregulation among the family members. We detected a strong PHD3 mRNA expression in tumors of head and neck squamous cell carcinoma (HNSCC). The PHD3 expression associated with expression of hypoxic marker gene. Using siRNA in cell lines derived from HNSCC we show that specific inhibition of PHD3 expression in carcinoma cells caused reduced cell survival in hypoxia. The loss of PHD3, but not that of PHD2, led to marked cell number reduction. Although caspase-3 was activated at early hypoxia no induction of apoptosis was detected. However, hypoxic PHD3 inhibition caused a block in cell cycle progression. Cell population in G1 phase was increased and the population in S phase reduced demonstrating a block in G1 to S transition under PHD3 inhibition. In line with this, the level of hyperphosphorylated retinoblastoma protein Rb was reduced by PHD3 knock-down in hypoxia. PHD3 loss led to increase in cyclin-dependent kinase inhibitor p27 expression but not that of p21 or p16. The data demonstrated that increased PHD3 expression under hypoxia enhances cell cycle progression and survival of carcinoma cells.  相似文献   

5.
Bone is a dynamic environment where cells sense and adapt to changes in nutrient and oxygen availability. Conditions associated with hypoxia in bone are also associated with bone loss. In vitro hypoxia (2% oxygen) alters gene expression in osteoblasts and osteocytes and induces cellular changes including the upregulation of hypoxia inducible factor (HIF) levels. Our studies show that osteoblasts respond to hypoxia (2% oxygen) by enhancing expression of genes associated with adipocyte/lipogenesis phenotype (C/EBPbeta, PPARgamma2, and aP2) and by suppressing expression of genes associated with osteoblast differentiation (alkaline phosphatase, AP). Hypoxia increased HIF protein levels, hypoxic response element (HRE) binding, and HRE-reporter activity. We also demonstrate that prolyl-hydroxylases 2 and 3 (PHD2, PHD3), one of the major factors coordinating HIF degradation under normoxic but not hypoxic conditions, are induced in osteoblasts under hypoxic conditions. To further determine the contribution of PHDs and upregulated HIF activity in modulating osteoblast phenotype, we treated osteoblasts with a PHD inhibitor, dimethyloxaloylglycine (DMOG), and maintained cells under normoxic conditions. Similar to hypoxic conditions, HRE reporter activity was increased and adipogenic gene expression was increased while osteoblastic genes were suppressed. Taken together, our findings indicate a role for PHDs and HIFs in the regulation of osteoblast phenotype.  相似文献   

6.
Pulmonary vascular endothelial injury resulting from lipopolysaccharide (LPS) and oxygen toxicity contributes to vascular simplification seen in the lungs of premature infants with bronchopulmonary dysplasia. Whether the severity of endotoxin-induced endothelial injury is modulated by ambient oxygen tension (hypoxic intrauterine environment vs. hyperoxic postnatal environment) remains unknown. We posited that ovine fetal pulmonary artery endothelial cells (FPAEC) will be more resistant to LPS toxicity under hypoxic conditions (20–25 Torr) mimicking the fetal milieu. LPS (10 μg/ml) inhibited FPAEC proliferation and induced apoptosis under normoxic conditions (21% O2) in vitro. LPS-induced FPAEC apoptosis was attenuated in hypoxia (5% O2) and exacerbated by hyperoxia (55% O2). LPS increased intracellular superoxide formation, as measured by 2-hydroxyethidium (2-HE) formation, in FPAEC in normoxia and hypoxia. 2-HE formation in LPS-treated FPAEC increased in parallel with the severity of LPS-induced apoptosis in FPAEC, increasing from hypoxia to normoxia to hyperoxia. Differences in LPS-induced apoptosis between hypoxia and normoxia were abolished when LPS-treated FPAEC incubated in hypoxia were pretreated with menadione to increase superoxide production. Apocynin decreased 2-HE formation, and attenuated LPS-induced FPAEC apoptosis under normoxic conditions. We conclude that ambient oxygen concentration modulates the severity of LPS-mediated injury in FPAEC by regulating superoxide levels produced in response to LPS.  相似文献   

7.
To elucidate radiobiological effects of hypoxia on X-ray-induced apoptosis, MOLT-4 cells were treated under four set of conditions: (1) both X irradiation and incubation under normoxia, (2) X irradiation under hypoxia and subsequent incubation under normoxia, (3) X irradiation under normoxia and subsequent incubation under hypoxia, and (4) both X irradiation and incubation under hypoxia, and the induction of apoptosis was examined by fluorescence microscopy. About 28–33% apoptosis was observed in cells treated under conditions 1 and 2, but this value was significantly reduced to around 18–20% in cells treated under conditions 3 and 4, suggesting that post-irradiation hypoxic incubation rather than hypoxic irradiation mainly caused the reduction of apoptosis. The activation and expression of apoptosis signal-related molecules SAPK/JNK, Fas and caspase-3 were also suppressed by hypoxic incubation. Effects of hypoxic incubation were canceled when cells were treated under conditions 3 and 4 with an oxygen-mimicking hypoxic cell radiosensitizer, whereas the addition of N-acetyl-L-cysteine again reduced the induction of apoptosis. From these results it was concluded that hypoxia reduced the induction of apoptosis by changing the intracellular redox state, followed by the regulation of apoptotic signals in X-irradiated MOLT-4 cells.  相似文献   

8.
Periostin (POSTN) is an extracellular matrix protein expressed predominantly in periodontal ligament (PDL) cells. The aim of this study was to investigate the effects of POSTN on human PDL cell apoptosis under hypoxic conditions. The percentage of apoptotic PDL cells under hypoxia was increased significantly when the endogenous POSTN gene was silenced using siRNA, but decreased when cells were treated with recombinant human POSTN (rhPOSTN), or when mouse Postn was overexpressed in vitro. Silencing POSTN during hypoxia decreased the expression of HIF prolyl-hydroxylase 2 (PHD2), but increased HIF-1α protein level. Conversely, treating hypoxic cells with rhPOSTN or overexpressing Postn increased PHD2 expression but decreased HIF-1α levels. The addition of rhPOSTN in the absence of a TGF-β receptor inhibitor (SB525334) significantly decreased hypoxia-induced apoptosis, while the effects of rhPOSTN were abolished when cells were co-treated with SB525334. Consistent with this, the phosphorylation of SMAD2 was increased in hypoxic PDL cells by the knockdown of POSTN, but decreased by treatment with rhPOSTN. Under normoxia, the PHD2 expression, HIF-1α level, and apoptosis were unaffected by POSTN siRNA, rhPOSTN, or Postn overexpression. These findings suggest that, under hypoxic conditions, POSTN regulates PHD2 expression and HIF-1α levels by modulating TGF-β1 signaling, leading to decreased apoptosis.  相似文献   

9.
10.
11.
The prolyl hydroxylase domain (PHD) enzymes regulate the stability of the hypoxia-inducible factor (HIF) in response to oxygen availability. During oxygen limitation, the inhibition of PHD permits the stabilization of HIF, allowing the cellular adaptation to hypoxia. This adaptation is especially important for solid tumors, which are often exposed to a hypoxic environment. However, and despite their original role as the oxygen sensors of the cell, PHD are currently known to display HIF-independent and hydroxylase-independent functions in the control of different cellular pathways, including mTOR pathway, NF-kB pathway, apoptosis and cellular metabolism. In this review, we summarize the recent advances in the regulation and functions of PHD in cancer signaling and cell metabolism.  相似文献   

12.
Hypoxia promotes luteal cell death in bovine corpus luteum   总被引:1,自引:0,他引:1  
Low oxygen caused by a decreasing blood supply is known to induce various responses of cells, including apoptosis. The present study was conducted to examine whether low-oxygen conditions (hypoxia) induce luteal cell apoptosis in cattle. Bovine midluteal cells incubated under hypoxia (3% O(2)) showed significantly more cell death than did those incubated under normoxia (20% O(2)) at 24 and 48 h of culture, and had significantly lower progesterone (P4) levels starting at 8 h. Characteristic features of apoptosis, such as shrunken nuclei and DNA fragmentation, were observed in cells cultured under hypoxia for 48 h. Hypoxia increased the mRNA expressions of BNIP3 and caspase 3 at 24 and 48 h of culture. Hypoxia had no significant effect on the expressions of BCL2 and BAX mRNA. Hypoxia also increased BNIP3 protein, and activated caspase-3. Treatment of P4 attenuated cell death, caspase-3 mRNA expression, and caspase-3 activity under hypoxia. Overall results of the present study indicate that hypoxia induces luteal cell apoptosis by enhancing the expression of proapoptotic protein, BNIP3, and by activating caspase-3, and that the induction of apoptosis by hypoxia is partially caused by a decrease in P4 production. Because hypoxia suppresses P4 synthesis in bovine luteal cells, we suggest that oxygen deficiency caused by a decreasing blood supply in bovine corpus luteum is one of the major factors contributing to both functional and structural luteolysis.  相似文献   

13.
14.
15.
In solid tumors the hypoxic environment can promote tumor progression and resistance to therapy. Recently, acetylsalicylic acid a major component of analgesic drugs and its metabolite salicylic acid (SA) have been shown to reduce the risk of colon cancer, but the mechanisms of action remain still unclear. Here we elucidate the effects of physiologically relevant concentrations of SA on colon carcinoma cells (CaCo-2) grown under normoxic and hypoxic conditions. Western blotting, caspase-3/7 apoptosis assays, MTS cell-proliferation assays, LDH cytotoxicity assays and hydrogen peroxide measurements were performed to investigate the effects of 1 and 10μM SA on CaCo-2 cells grown under normoxic conditions and cells exposed to hypoxia. Under normoxic conditions, SA did not influence cell proliferation or LDH release of CaCo-2 cells. However, caspase-3/7 activity was significantly increased. Under hypoxia, cell proliferation was reduced and LDH release and caspase-3/7 activities were increased. None of these parameters was altered by the addition of SA under hypoxic conditions. Hypoxia increased hydrogen peroxide concentrations 300-fold and SA significantly augmented the release of hydrogen peroxide under normoxic, but not under hypoxic conditions. Phosphorylation of the pro-survival kinases akt and erk1/2 was not changed by SA under hypoxic conditions, whereas under normoxia SA reduced phosphorylation of erk1/2 after 2 hours. We conclude that in colon carcinoma cells effects of SA on apoptosis and cellular signaling are dependent on the availability of oxygen.  相似文献   

16.
Many of the cancer cells produce energy with accelerated glycolysis and perform lactic acid production even under normoxic conditions called the “Warburg effect”. Metabolism can directly or indirectly regulate the apoptotic mechanism so that cancer cells take advantage of reprogrammed metabolism to avoid apoptosis. The aim of this study is to examine the mechanism of apoptosis by incubating human lung carcinoma cells (A549) under different metabolic conditions in hypoxia or normoxia environments. A549 cells were incubated in the normoxic or hypoxic condition that contained 5 mM glucose (Glc 5), 25 mM glucose (Glc 25), or 10 mM galactose (OXPHOS/aglycemic), and the mechanism of apoptosis was investigated. In the hypoxia condition, the rate of early apoptosis in aglycemic OXPHOS cells was increased (15.5% ±7.1). In addition, the activity of caspase-3 (6.1% ± 0.9), caspase-9 (30.4% ± 0.9), and cytochrome c expression level increased; however, the mitochondrial membrane potential (51.9% ± 0.4) was found to be decreased. Changing the amount of oxygen in glycolytic cells had no effect on apoptosis. However, it has been determined that apoptosis is stimulated under hypoxia conditions in aglycemic cells in which galactose is used instead of glucose. Considering that the majority of cancer cells are hypoxic, these data are important in determining targets in therapeutic intervention.  相似文献   

17.
Leflunomide (LFN) is a well-known immunomodulatory and anti-inflammatory prodrug of teriflunomide (TFN). Due to pyrimidine synthesis inhibition TFN also exhibits potent anticancer effect. Because, there is the strict coupling between the pyrimidine synthesis and the mitochondrial respiratory chain, the oxygen level could modify the cytostatic TNF effect.The aim of the study was to evaluate the cytostatic effect of pharmacologically achievable teriflunomide (TFN) concentrations at physiological oxygen levels, i.e. 1% hypoxia and 10% tissue normoxia compared to 21%oxygen level occurred in routine cell culture environment.The TFN effect was evaluated using TB, MTT and FITC Annexin tests for human primary (SW480) and metastatic (SW620) colon cancer cell lines at various oxygen levels.We demonstrated significant differences between proliferation, survival and apoptosis at 1, 10 and 21% oxygen in primary and metastatic colon cancer cell lines (SW480, SW620) under TFN treatment. The cytostatic TFN effect was more pronounced at hypoxia compared to tissue and atmospheric normoxia in both cancer cell lines, however metastatic cells were more resistant to antiproliferative and proapoptotic TFN action. The early apoptosis was predominant in physiological oxygen tension while in atmospheric normoxia the late apoptosis was induced.Our findings showed that anticancer TFN effect is more strong in physiological oxygen compared to atmospheric normoxia. It suggests that results obtained from in vitro studies could be underestimated. Thus, it gives assumption for future comprehensive studies at real oxygen environment involving TNF use in combination with other antitumor agents affecting oxygen-dependent pyrimidine synthesis.  相似文献   

18.
19.
N-myc downstream-regulated gene 1 (NDRG1) is induced by cellular stress such as hypoxia and DNA damage, and in humans, germ line mutations cause Charcot-Marie-Tooth disease. However, the cellular roles of NDRG1 are not fully understood. Previously, NDRG1 was shown to mediate doxorubicin resistance under hypoxia, suggesting a role for NDRG1 in cell survival under these conditions. We found decreased apoptosis in doxorubicin-treated cells expressing NDRG1 shRNAs under normoxia, demonstrating a requirement for NDRG1 in apoptosis in breast epithelial cells under normal oxygen pressure. Also, different cellular stress regimens, such as hypoxia and doxorubicin treatment, induced NDRG1 through different stress signalling pathways. We further compared expression profiles in human breast epithelial cells ectopically over-expressing NDRG1 with cells expressing NDRG1 shRNAs in order to identify biological pathways where NDRG1 is involved. The results suggest that NDRG1 may have roles connected to vesicle transport.  相似文献   

20.
The effect of intrauterine growth retardation (IUGR) on striatal energy metabolites and amino acid concentrations was studied in the fetuses of eight nulliparous rat dams after uterine artery ligation on day 18 of gestation. On day 22 (term = 23), four dams were subjected to normoxia and four to hypoxia (10% oxygen) for 58 min, while monitoring hemodynamics and blood gases. After decapitation of the dam, fetuses were delivered by sectio and decapitated. The measured parameters in the dams were stable under normoxia but exhibited decreased oxygen availability under hypoxia. Striatal energy balance was preserved in IUGRs, both under maternal normoxic and hypoxic conditions, compared to appropriately grown (AGA) littermates. Under maternal normoxia, the striatal concentration of aspartate was reduced (P < 0.01) in IUGRs and the level of alanine was increased (P < 0.01) as compared to AGAs. Under hypoxia, the level of GABA was higher in IUGRs (P < 0.01). Lactate was increased in all fetuses under hypoxia. It is concluded that striatal energy metabolism is preserved in IUGR rat fetuses in late gestation under both maternal normoxia and hypoxia. Amino acid metabolism, however, is disturbed and depends on the degree of growth retardation and on the severity of perinatal stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号