首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In contrast to the situation in mammals and birds, neurons in the central nervous system (CNS) of fish—such as the retinal ganglion cells—are capable of regenerating their axons and restoring vision. Special properties of the glial cells and the neurons of the fish visual pathway appear to contribute to the success of axonal regeneration. The fish oligodendrocytes lack the axon growth inhibiting molecules that interfere with axonal extension in mammals. Instead, fish optic nerve oligodendrocytes support—at least in vitro—axonal elongation of fish as well as that of rat retinal axons. Moreover, the fish retinal ganglion cells re-express upon injury a set of growth associated cell surface molecules and equip the regenerating axons throughout their path and up into their target, the tectum opticum with these molecules. This may indicate that the injured fish ganglion cells reactivate the cellular machinery necessary for axonal regrowth and pathfinding. Furthermore, the target itself provides positional marker molecules even in adult fish. These marker molecules are required to guide the regenerating axons back to their retinotopic home territory within the tectum. © 1992 John Wiley & Sons, Inc.  相似文献   

2.
Anamniote animals, such as fish and amphibians, are able to regenerate damaged CNS nerves following injury, but regeneration in the mammalian CNS tracts, such as the optic nerve, does not occur. However, severed adult mammalian retinal axons can regenerate into peripheral nerve segments grafted into the brain and this finding has emphasized the importance of the environment in explaining regenerative failure in the adult mammalian CNS. Following lesions, regenerating axons encounter the glial cells, oligodendrocytes and astro-cytes, and their derivatives, respectively myelin and the astrocytic scar. Experiments to investigate the influence of these components on axon growth in culture have revealed cell-surface and extracellular matrix molecules that inhibit axon extension and growth cone motility. Structural and functional characterization of these ligands and their receptors is underway, and may solve the interesting neurobiological conundrum posed by the failure of mammalian CNS regeneration. Simultaneously, this might allow new possibilities for treatment of the severe clinical disabilities resulting from injury to the brain and spinal cord.  相似文献   

3.
4.
Tuszynski MH  Steward O 《Neuron》2012,74(5):777-791
Progress in the field of axonal regeneration research has been like the process of axonal growth itself: there is steady progress toward reaching the target, but there are episodes of mistargeting, misguidance along false routes, and connections that must later be withdrawn. This primer will address issues in the study of axonal growth after central nervous system injury in an attempt to provide guidance toward the goal of progress in the field. We address definitions of axonal growth, sprouting and regeneration after injury, and the research tools to assess growth.  相似文献   

5.
New roles for old proteins in adult CNS axonal regeneration   总被引:4,自引:0,他引:4  
The past year has yielded many insights and a few surprises in the field of axonal regeneration. The identification of oligodendrocyte-myelin glycoprotein as an inhibitor of axonal growth, and the discovery that the three major myelin-associated inhibitors of CNS regeneration share the same functional receptor, has launched a new wave of studies that aim to identify the signaling components of these inhibitory pathways. These findings also offer new avenues of research directed toward blocking possible therapeutic targets that inhibit regeneration and toward encouraging axonal regeneration in the CNS after injury.  相似文献   

6.
In higher vertebrates, the central nervous system (CNS) is unable to regenerate after injury, at least partially because of growth-inhibiting factors. Invertebrates lack many of these negative regulators, allowing us to study the positive factors in isolation. One possible molecular player in neuronal regeneration is the nitric oxide (NO)-cyclic guanosine-monophosphate (cGMP) transduction pathway which is known to regulate axonal growth and neural migration. Here, we present an experimental model in which we study the effect of NO on CNS regeneration in flat-fillet locust embryo preparations in culture after crushing the connectives between abdominal ganglia. Using whole-mount immunofluorescence, we examine the morphology of identified serotonergic neurons, which send a total of four axons through these connectives. After injury, these axons grow out again and reach the neighboring ganglion within 4 days in culture. We quantify the number of regenerating axons within this period and test the effect of drugs that interfere with NO action. Application of exogenous NO or cGMP promotes axonal regeneration, whereas scavenging NO or inhibition of soluble guanylyl cyclase delays regeneration, an effect that can be rescued by application of external cGMP. NO-induced cGMP immunostaining confirms the serotonergic neurons as direct targets for NO. Putative sources of NO are resolved using the NADPH-diaphorase technique. We conclude that NO/cGMP promotes outgrowth of regenerating axons in an insect embryo, and that such embryo-culture systems are useful tools for studying CNS regeneration.  相似文献   

7.
The Rho/ROCK/LIMK pathway is central for the mediation of repulsive environmental signals in the central nervous system. Several studies using pharmacological Rho-associated protein kinase (ROCK) inhibitors have shown positive effects on neurite regeneration and suggest additional pro-survival effects in neurons. However, as none of these drugs is completely target specific, it remains unclear how these effects are mediated and whether ROCK is really the most relevant target of the pathway. To answer these questions, we generated adeno-associated viral vectors to specifically downregulate ROCK2 and LIM domain kinase (LIMK)-1 in rat retinal ganglion cells (RGCs) in vitro and in vivo. We show here that specific knockdown of ROCK2 and LIMK1 equally enhanced neurite outgrowth of RGCs on inhibitory substrates and both induced substantial neuronal regeneration over distances of more than 5 mm after rat optic nerve crush (ONC) in vivo. However, only knockdown of ROCK2 but not LIMK1 increased survival of RGCs after optic nerve axotomy. Moreover, knockdown of ROCK2 attenuated axonal degeneration of the proximal axon after ONC assessed by in vivo live imaging. Mechanistically, we demonstrate here that knockdown of ROCK2 resulted in decreased intraneuronal activity of calpain and caspase 3, whereas levels of pAkt and collapsin response mediator protein 2 and autophagic flux were increased. Taken together, our data characterize ROCK2 as a specific therapeutic target in neurodegenerative diseases and demonstrate new downstream effects of ROCK2 including axonal degeneration, apoptosis and autophagy.  相似文献   

8.
Regeneration of injured adult CNS axons is inhibited by formation of a glial scar. Immature astrocytes are able to support robust neurite outgrowth and reduce scarring, therefore, we tested whether these cells would have this effect if transplanted into brain injuries. Utilizing an in vitro spot gradient model that recreates the strongly inhibitory proteoglycan environment of the glial scar we found that, alone, immature, but not mature, astrocytes had a limited ability to form bridges across the most inhibitory outer rim. In turn, the astrocyte bridges could promote adult sensory axon re‐growth across the gradient. The use of selective enzyme inhibitors revealed that MMP‐2 enables immature astrocytes to cross the proteoglycan rim. The bridge‐building process and axon regeneration across the immature glial bridges were greatly enhanced by chondroitinase ABC pretreatment of the spots. We used microlesions in the cingulum of the adult rat brains to test the ability of matrix modification and immature astrocytes to form a bridge for axon regeneration in vivo. Injured axons were visualized via p75 immunolabeling and the extent to which these axons regenerated was quantified. Immature astrocytes coinjected with chondroitinase ABC‐induced axonal regeneration beyond the distal edge of the lesion. However, when used alone, neither treatment was capable of promoting axonal regeneration. Our findings indicate that when faced with a minimal lesion, neurons of the basal forebrain can regenerate in the presence of a proper bridge across the lesion and when levels of chondroitin sulfate proteoglycans (CSPGs) in the glial scar are reduced. © 2010 Wiley Periodicals, Inc.Develop Neurobiol 70: 826–841, 2010  相似文献   

9.
Olfactory ensheathing cells (OECs) are the main glial cell type that populates mammalian olfactory nerves. These cells have a great capacity to promote the regeneration of axons when transplanted into the injured adult mammalian CNS. However, little is still known about the molecular mechanisms they employ in mediating such a task. Brain-derived neurotrophic factor (BDNF) was identified as a candidate molecule in a genomic study that compared three functionally different OEC populations: Early passage OECs (OEC Ep), Late passage OECs (OEC Lp) and the OEC cell line TEG3 [Pastrana, E., Moreno-Flores, M.T., Gurzov, E.N., Avila, J., Wandosell, F., Diaz-Nido, J., 2006. Genes associated with adult axon regeneration promoted by olfactory ensheathing cells: a new role for matrix metalloproteinase 2. J. Neurosci. 26, 5347-5359]. We have here set out to determine the role played by BDNF in the stimulation of axon outgrowth by OECs. We compared the extracellular BDNF levels in the three OEC populations and show that it is produced in significant amounts by the OECs that can stimulate axon regeneration in adult retinal neurons (OEC Ep and TEG3) but it is absent from the extracellular medium of OEC Lp cells which lack this capacity. Blocking BDNF signalling impaired axonal regeneration of adult retinal neurons co-cultured with TEG3 cells and adding BDNF increased the proportion of adult neurons that regenerate their axons on OEC Lp monolayers. Combining BDNF with other extracellular proteins such as Matrix Metalloproteinase 2 (MMP2) further augmented this effect. This study shows that BDNF production by OECs plays a direct role in the promotion of axon regeneration of adult CNS neurons.  相似文献   

10.
Investigation of axonal biology in the central nervous system (CNS) is hindered by a lack of an appropriate in vitro method to probe axons independently from cell bodies. Here we describe a microfluidic culture platform that polarizes the growth of CNS axons into a fluidically isolated environment without the use of targeting neurotrophins. In addition to its compatibility with live cell imaging, the platform can be used to (i) isolate CNS axons without somata or dendrites, facilitating biochemical analyses of pure axonal fractions and (ii) localize physical and chemical treatments to axons or somata. We report the first evidence that presynaptic (Syp) but not postsynaptic (Camk2a) mRNA is localized to developing rat cortical and hippocampal axons. The platform also serves as a straightforward, reproducible method to model CNS axonal injury and regeneration. The results presented here demonstrate several experimental paradigms using the microfluidic platform, which can greatly facilitate future studies in axonal biology.  相似文献   

11.
12.
K Hatta 《Neuron》1992,9(4):629-642
To determine the role of the floor plate (FP) in CNS development, I have used labeling techniques, including immunolabeling, to analyze cyclops mutant embryos, which lack the FP. Except for the anterior brain, the mutant phenotype is almost exclusively confined to the vicinity of the ventral CNS midline. In the midbrain, the number of ventral neurons is reduced and cell patterning is disturbed. In contrast, the neuronal arrangement in the spinal cord is almost normal, including in particular both primary and secondary motoneurons. Longitudinal axonal bundles are disorganized in both the brain and spinal cord. Laser ablating the FP in wild-type embryos locally phenocopies cyclops axonal disturbances, and transplanting wild-type FP precursor cells into mutants locally rescues the disturbances. These results demonstrate a significant role for the FP in pathfinding and fasciculation by axons in situ, especially during their longitudinal courses.  相似文献   

13.
This report describes the fast transport of [3H]-leucine-labeled proteins in regenerating rat sciatic motor nerves. A normal rate of fast transport (383 +/- 33 mm/day) was present in the regenerating sprouts, as well as in the central stumps. The rapidly transported proteins passed the level of axotomy without impediment, and accumulated in the endings of the regenerating sprouts, as shown by electron microscope autoradiography. In addition, transported proteins accumulated in terminal neuromas. The relative amount of protein-incorporated radioactivity in the crest of transport in the regenerating nerves was increased compared to control nerves. These results are interpreted to suggest that the mechanism of fast transport is the same in regenerating nerves was increased compared to control nerves. These results are interpreted to suggest that the mechanism of fast transport is the same in regenerating sprouts as in normal axons; during regeneration fast transport appears to add newly synthesized materials to the growing tip.  相似文献   

14.
15.
Mechanical forces are an important contributor to cell fate specification and cell migration during embryonic development in animals. Similarities between embryogenesis and regeneration, particularly with regards to pattern formation and large-scale tissue movements, suggest similarly important roles for physical forces during regeneration. While the influence of the mechanical environment on stem cell differentiation in vitro is being actively exploited in the fields of tissue engineering and regenerative medicine, comparatively little is known about the role of stresses and strains acting during animal regeneration. In this review, we summarize published work on the role of physical principles and mechanical forces in animal regeneration. Novel experimental techniques aimed at addressing the role of mechanics in embryogenesis have greatly enhanced our understanding at scales from the subcellular to the macroscopic – we believe the time is ripe for the field of regeneration to similarly leverage the tools of the mechanobiological research community.  相似文献   

16.
The limited regenerative capacity of several organs, such as central nervous system(CNS), heart and limb in mammals makes related major diseases quite difficult to recover. Therefore, dissection of the cellular and molecular mechanisms underlying organ regeneration is of great scientific and clinical interests. Tremendous progression has already been made after extensive investigations using several model organisms for decades. Unfortunately, distance to the final achievement of the goal still remains. Recently, zebrafish became a popular model organism for the deep understanding of regeneration based on its powerful regenerative capacity, in particular the organs that are limitedly regenerated in mammals. Additionally, zebrafish are endowed with other advantages good for the study of organ regeneration. This review summarizes the recent progress in the study of zebrafish organ regeneration, in particular regeneration of fin, heart, CNS, and liver as the representatives. We also discuss reasons of the reduced regenerative capacity in higher vertebrate, the roles of inflammation during regeneration, and the difference between organogenesis and regeneration.  相似文献   

17.
Acrylamide is a neurotoxin known to impair regeneration of axons following nerve crush and to produce structurally abnormal regenerating sprouts. To investigate the mechanism of these abnormalities, protein synthesis and fast axonal transport were studied in acrylamide-intoxicated and control rats 2 weeks after sciatic nerve crush. Using an in vitro preparation of sciatic nerve-dorsal root ganglion, there was no difference in ganglion 3H-leucine incorporation between the two groups. In these preparations of sensory axons, as well as in motor axons studied in vivo, a smaller proportion of rapidly transported radioactivity was carried beyond the crush in the acrylamide-regenerating nerves compared to the control-regenerating nerves. Correlative ultrastructural studies demonstrated that this difference reflected the impaired outgrowth of the acrylamide-regenerating nerves, rather than an abnormality in fast transport. The acrylamide-treated sprouts often developed swellings filled with whorls of neurofilaments; in addition, many sprouts ended in massively enlarged growth cones containing membranous organelles. EM autoradiography showed labeled, rapidly transported organelles accumulated in the neurofilamentous whorls, and therefore suggested that these organelles might be “trapped” or impeded in passage through these regions. However, there was no evidence that the growth cones received insufficient amounts of transported protein; in fact, the distended endings were densely labeled and apparently “ballooned” by transported organelles. These results suggest that acrylamide intoxication does not impair regeneration by diminishing the delivery of rapidly transported materials to the growing tip. Rather, the marked distention of the growth cones is interpreted as the morphological consequence of continued delivery of rapidly transported organelles into sprouts unable to utilize them in outgrowth.  相似文献   

18.
19.
As neurons grow to their targets their processes elongate, branch and form specialized endings into which are inserted appropriate ion channels. Our aim has been to analyse the role of the extracellular matrix molecules laminin and tenascin in inducing growth and in determining the form and physiological properties of growing neurites. A preparation in which development and regeneration can be followed at the cellular and molecular level in the animal and in tissue culture is the central nervous system (CNS) of the leech. In leech extracellular matrix (ECM) both laminin and tenascin are present; the molecules are structurally similar but not identical to their vertebrate counterparts. Tenascin extracted from leech ECM shows a typical hexabrachial structure whereas laminin shows a typical cruciform structure in rotary shadowed preparations. Leech laminin purified by means of a monoclonal antibody is a molecule of about 1000 kDa, with a polypeptide composition of 340, 200, 180 and 160 kDa. Substrates that contain tenascin or laminin produce rapid and reliable outgrowth of neurites by identified cells. A remarkable finding is that the outgrowth pattern produced by an individual neuron depends in part on its identity, in part on the substrate upon which it is placed. For example, a Retzius cell grows in a quite different configuration and far more rapidly on laminin substrate than does another type of neuron containing the same transmitter (serotonin); and the pattern of outgrowth of the Retzius cell is different on laminin and on the plant lectin Con A (concanavalin A). Thus Con A induces the growth of processes that are shorter, thicker, more curved and contain fewer calcium channels than those grown on laminin. To determine whether laminin can also influence neurite outgrowth in the animal, immunocytological techniques have been used to follow its distribution in the extracellular matrix of normal, developing and regenerating leech CNS. In adult leeches neuronal processes in the CNS are not in contact with laminin which is confined to the surrounding extracellular matrix. In embryos however, laminin staining appears between ganglionic primordia along the pathways that neurons will follow. Similarly, after injury to the adult CNS, laminin accumulates at the very sites at which sprouting and regeneration begin. How the laminin becomes redistributed to appear in the region of injury has not yet been established. Together these findings suggest a key role for laminin and for other extracellular matrix molecules.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Neurons in the mammalian central nervous system (CNS) have a poor capacity for regenerating their axons after injury. In contrast, neurons in the CNS of lower vertebrates and in the peripheral nervous system (PNS) of mammals are endowed with a high posttraumatic capacity to regenerate. The differences in regenerative capacity have been attributed to the different compositions of the respective cellular environments and to different responses to injury the nonneuronal cells display, which range from supportive and permissive to nonsupportive and hostile for regeneration. The same cell type may support or inhibit regeneration, depending on its state of maturity or differentiation. Astrocytes and oligodendrocytes are examples of cells in which such a dichotomy is manifested. In developing and in spontaneously regenerating nerves, these cells support (astrocytes) and permit (oligodendrocytes) growth. However, in nonregenerating adult mammalian nerves, astrocytes form the nonsupportive scar tissue; and the mature oligodendrocytes inhibit axonal growth. Maturation of these cells may be regulated differently during development than after injury. Among the putative regulators are factors derived from astrocytes, resident microglia; or cytokines produced by macrophages. During development, regulation leads to a temporal separation between axonal growth and maturation of the cellular environment, which might not occur spontaneously after injury in a nonregenerating CNS without intervention at the appropriate time. Data suggest that temporal intervention aimed at the glial cells might enhance the poor regenerative capacity of the mammalian CNS. Possible regulation of the nonneuronal cell response to injury via involvement of protooncogenes is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号