首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyanobacteria are important primary producers, and many are able to fix atmospheric nitrogen playing a key role in the marine environment. However, not much is known about the diversity of cyanobacteria in Portuguese marine waters. This paper describes the diversity of 60 strains isolated from benthic habitats in 9 sites (intertidal zones) on the Portuguese South and West coasts. The strains were characterized by a morphological study (light and electron microscopy) and by a molecular characterization (partial 16S rRNA, nifH, nifK, mcyA, mcyE/ndaF, sxtI genes). The morphological analyses revealed 35 morphotypes (15 genera and 16 species) belonging to 4 cyanobacterial Orders/Subsections. The dominant groups among the isolates were the Oscillatoriales. There is a broad congruence between morphological and molecular assignments. The 16S rRNA gene sequences of 9 strains have less than 97% similarity compared to the sequences in the databases, revealing novel cyanobacterial diversity. Phylogenetic analysis, based on partial 16S rRNA gene sequences showed at least 12 clusters. One-third of the isolates are potential N(2)-fixers, as they exhibit heterocysts or the presence of nif genes was demonstrated by PCR. Additionally, no conventional freshwater toxins genes were detected by PCR screening.  相似文献   

2.
3.
目的分析长江河口捕获的8种野生鱼类的肠道菌群多样性的差异并观察这种差异与食性的联系。方法采用PCR-DGGE(denaturing gradient gel electrophoresis)技术,DGGE图谱用PCA(principal component analy-sis)方法进行分析。结果建立了长江口8种鱼野生条件下肠道菌群的DGGE指纹图谱,观察到它们在野生条件下的肠道菌群的差异。其中,营底栖生活的舌鰕虎鱼的肠道菌群和其他7种野生鱼有着明显的差异,其他7种鱼的肠道菌群多样性的差异与它们的食性差异相关。结论PCR-DGGE技术是一种能够快速有效地分析研究鱼类肠道菌群结构的技术。8种野生鱼的肠道菌群的结构有明显的差别,并且食性差异大的鱼类之间肠道菌群差异也  相似文献   

4.
Rice variety is one of the key factors regulating methane (CH4) production and emission from the paddy fields. However, the relationships between rice varieties and populations of microorganisms involved in CH4 dynamics are poorly understood. Here we investigated CH4 dynamics and the composition and abundance of CH4‐producing archaea and CH4‐oxidizing bacteria in a Chinese rice field soil planted with three types of rice. Hybrid rice produced 50–60% more of shoot biomass than Indica and Japonica cultivars. However, the emission rate of CH4 was similar to Japonica and lower than Indica. Furthermore, the dissolved CH4 concentration in the rhizosphere of hybrid rice was markedly lower than Indica and Japonica cultivars. The rhizosphere soil of hybrid rice showed a similar CH4 production potential but a higher CH4 oxidation potential compared with the conventional varieties. Terminal restriction fragment length polymorphism analysis of the archaeal 16S rRNA genes showed that the hydrogenotrophic methanogens dominated in the rhizosphere whereas acetoclastic methanogens mainly inhabited the bulk soil. The abundance of total archaea as determined by quantitative (real‐time) PCR increased in the later stage of rice growth. However, rice variety did not significantly influence the structure and abundance of methanogenic archaea. The analysis of pmoA gene fragments (encoding the α‐subunit of particulate methane monooxygenase) revealed that rice variety also did not influence the structure of methanotrophic proteobacteria, though variable effects of soil layer and sampling time were observed. However, the total copy number of pmoA genes in the rhizosphere of hybrid rice was approximately one order of magnitude greater than the two conventional cultivars. The results suggest that hybrid rice stimulates the growth of methanotrophs in the rice rhizosphere, and hence enhances CH4 oxidation which attenuates CH4 emissions from the paddy soil. Hybrid rice is becoming more and more popular in Asian countries. The present study demonstrated that planting of hybrid rice will not enhance CH4 emissions albeit a higher grain production than the conventional varieties.  相似文献   

5.
A denaturing gradient gel electrophoresis (DGGE) method for analyzing 16S rDNA of methanogenic archaeal community in paddy field soil is presented. Five specific primers for 16S rDNA of methanogenic archaea, which were modified from the primers for archaea, were first evaluated by polymerase chain reaction and DGGE using genomic DNAs of 13 pure culture strains of methanogenic archaea. The DGGE analysis was possible with two primer pairs (0348aF-GC and 0691R; 0357F-GC and 0691R) of the five pairs tested although 16S rDNA of some non-methanogenic archaea was amplified with 0348aF-GC and 0691R. These two primer pairs were further evaluated for use in analysis of methanogenic archaeal community in Japanese paddy field soil. Good separation and quality of patterns were obtained in DGGE analysis with both primer pairs. A total of 41 DNA fragments were excised from the DGGE gels and their sequences were determined. All fragments belonged to methanogenic archaea. These results indicate that the procedure of DGGE analysis with the primer pair 0357F-GC and 0691R is suitable for investigating methanogenic archaeal community in paddy field soil.  相似文献   

6.
7.
Benthic nitrogen fixation has been estimated to contribute 15 Tg N year(-1) to the marine nitrogen budget. With benthic marine nitrogen fixation being largely overlooked in more recent surveys, a refocus on benthic diazotrophy was considered important. Variations in nitrogenase activity (acetylene reduction-gas chromatography) in a tropical lagoon in the western Indian Ocean (Zanzibar, Tanzania) were monitored over a 3-year period (2003-2005) and related to cyanobacterial and diazotrophic microbial diversity using a polyphasic approach. Different nitrogenase activity patterns were discerned, with the predominant pattern being high daytime activities combined with low nighttime activities. Analyses of the morphological and 16S rRNA gene diversity among cyanobacteria revealed filamentous nonheterocystous (Oscillatoriales) and unicellular (Chroococcales) representatives to be predominant. Analyses of the nifH gene diversity showed that the major phylotypes belonged to noncyanobacterial prokaryotes. However, as shown by cyanobacterial selective nifH-denaturing gradient gel electrophoresis analysis, cyanobacterial nifH gene sequences were present at all sites. Several nifH and 16S rRNA gene phylotypes were related to uncultured cyanobacteria or bacteria of geographically distant habitats, stressing the widespread occurrence of still poorly characterized microorganisms in tropical benthic marine communities.  相似文献   

8.
Accumulation of Cr(VI) in rice seeds cultivated in Cr-contaminated soil of the Sundarbans (India) is an environmental problem. Cr(VI) concentration in this soil was 6.2 ± 0.3 mg/kg, whereas total chromium was 32.04 ± 1.60 mg/kg. A Cr(VI)-removing bacterium isolated from Cr-contaminated paddy field soil of Sundarbans was identified as Staphylococcus sciuri. Enrichment culture of S. sciuri was applied to pot cultivation of rice in Cr-contaminated soil. After 8 weeks, 71 ± 3% Cr(VI) (final concentration 2.15 ± 0.01 mg/kg) and 65 ± 2% total Cr removal (end concentration 11.3 ± 0.5 mg/kg) were attained in bacterium-treated soils. Growth parameters indicated healthy development of plants cultivated in bacterium-treated soils that was not observed in control plants. Total Cr removal attained in rice seeds of plants cultivated in bacterium-treated soils compared with control rice seeds was 78 ± 4%. Total Cr concentration in test seeds was 0.72 ± 0.05 mg/kg (World Health Organization [WHO] permissible limit: 1.30 mg/kg), whereas the same in control seeds was 3.27 ± 0.16 mg/kg. Cr(VI) reduction achieved in rice seeds cultivated in bacterium-treated soil compared with control rice seeds was 95 ± 5%. Cr(VI) concentration in rice seeds cultivated in treated soil was 0.050 ± 0.003 mg/kg, whereas the same in untreated control was 0.93 ± 0.05 mg/kg. Successful paddy field soil bioremediation by any Staphylococcus species was demonstrated for the first time.  相似文献   

9.
Colonial and filamentous cyanobacteria frequently have bacteria associated with their extracellular mucus zone or more tightly attached to their cells surface. The toxin-producing cyanobacterium Nodularia spumigena is an important component of the Baltic Sea plankton community, and its filaments are likely to provide a microenvironment suitable for the development of a particular bacteria flora. In the present work, 13 bacterial strains associated with filaments of N. spumigena from the Baltic Sea were isolated and identified by sequencing the 16S rRNA gene. Different bacterial lineages were found associated with the cyanobacterial filaments, including the alpha, beta, and gamma subdivisions of the class Proteobacter and the division Firmicutes (Gram-positive bacteria). Several 16S rRNA gene sequences were not closely related to previously reported sequences of cultured bacteria from the Baltic Sea or to any other reported sequence. Conversely, sequences related to the gamma Proteobacter genus Shewanella, a group previously described in the Baltic Sea, were found among the isolates. The bacterial isolates were grown and added to cultures of exponentially growing N. spumigena. Five isolates, related to the alpha and gamma Proteobacter and Firmicutes, affected negatively the cyanobacterial growth, leading to a lower biomass yield up to 38% relative to controls with no bacteria addition. Five gamma Proteobacter-related strains had no effect on the cyanobacterial growth, while three strains related to Shewanella baltica had a positive effect. Although none of the bacterial isolates showed strong algicidal effect, the observed stimulatory and retarding effects on N. spumigena growth under culture conditions denotes the importance of the associated bacterial community for the dynamics of these cyanobacterial populations in nature. Moreover, several new taxa recovered in this study probably belong to species not yet described.  相似文献   

10.
福建冷浸田土壤质量评价因子的最小数据集   总被引:8,自引:0,他引:8  
江南山区中低产冷浸田分布广泛,其改良利用对促进粮食增产意义重大.本研究通过比较福建省17对典型冷浸田与同一微地貌单元内非冷浸田表层土壤的41项物理、化学与生物指标,系统分析了冷浸田与非冷浸田之间各指标差异及其产生的原因,并利用主成分分析等方法构建冷浸田土壤质量评价因子最小数据集.结果表明:与非冷浸田相比,冷浸田土壤总有机质高31.7%,表征活性有机质的微生物生物量C降低37.8%;Fe2+高177.0%,速效磷、钾分别降低52.3%和22.8%;过氧化氢酶和转化酶分别高58.3%和22.1%,磷酸酶、硝酸还原酶分别降低47.8%和66.6%,微生物区系数量降低29.8%~46.0%;物理性砂粒含量高8.0%,浸水容重降低25.8%.冷浸田与非冷浸田之间表土有28项属性指标呈现显著差异.用因子分析方法从28项有显著差异的指标中归纳出累计贡献率达78.5%并能分别反映土壤生化、活性有机N、还原性障碍、物理与化学养分特征的5个主成分,结合相关分析模型和专家经验法建立了包括C/N、细菌、微生物生物量N、还原性物质总量、物理性砂粒、全磷6项因子的冷浸田土壤质量评价因子最小数据集.  相似文献   

11.
12.
1. We assessed the role of cyanobacterial–bacterial consortia (Gloeotrichia echinulata phycospheres) for net changes in inorganic carbon, primary production (PP) and secondary production in Lake Erken (Sweden). 2. At the time of sampling, large colonies of G. echinulata formed a massive bloom with abundances ranging from 102 colonies L?1 in the pelagic zone to 5000 colonies L?1 in shallow bays. These colonies and their surrounding phycospheres contributed between 17 and 92% of total PP, and phycosphere‐associated bacteria contributed between 8.5 and 82% of total bacterial secondary production. PP followed a diurnal cycle, whereas bacterial production showed no such pattern. Over a 24 h period, carbon dioxide measurements showed that the phycospheres were net autotrophic in the top layer of the water column, whereas they were net heterotrophic below 2 m depth. 3. Sequencing and phylogenetic analysis of 16S rRNA genes of attached bacteria revealed a diverse bacterial community that included populations affiliated with Proteobacteria, Bacteriodetes, Acidobacteria, Fusobacteria, Firmicutes, Verrucomicrobia, and other Cyanobacteria. 4. Compared with their planktonic counterparts, bacteria associated with cyanobacterial phycospheres had lower affinity for arginine, used as a model compound to assess uptake of organic compounds. 5. Extrapolation of our data to the water column of lake Erken suggests that microorganisms that were not associated with cyanobacteria dominated CO2 production at the ecosystem scale during our experiments, as CO2 fixation balanced CO2 production in the cyanobacterial phycospheres.  相似文献   

13.
To examine the relationship between plant species composition and microbial community diversity and structure, we carried out a molecular analysis of microbial community structure and diversity in two field experiments. In the first experiment, we examined bacterial community structure in bulk and rhizosphere soils in fields exposed to different plant diversity treatments, via a 16S rRNA gene clone library approach. Clear differences were observed between bacterial communities of the bulk soil and the rhizosphere, with the latter containing lower bacterial diversity. The second experiment focused on the influence of 12 different native grassland plant species on bacterial community size and structure in the rhizosphere, as well as the structure of Acidobacteria and Verrucomicrobia community structures. In general, bacterial and phylum-specific quantitative PCR and PCR-denaturing gradient gel electrophoresis revealed only weak influences of plant species on rhizosphere communities. Thus, although plants did exert an influence on microbial species composition and diversity, these interactions were not specific and selective enough to lead to major impacts of vegetation composition and plant species on below-ground microbial communities.  相似文献   

14.
Bacteria account for a major proportion of Earth’s biological diversity. They play essential roles in quite diverse environments and there has been an increasing interest in bacterial biodiversity. Research using novel and efficient tools to identify and characterize bacterial communities has been the key for elucidating biological activities with potential for industrial application. The current approach used for defining bacterial species is based on phenotypic and genomic properties. Traditional and novel DNA-based molecular methods are improving our knowledge of bacterial diversity in nature. Advances in molecular biology have been important for studies of diversity, considerably improving our knowledge of morphological, physiological, and ecological features of bacterial taxa. DNA–DNA hybridization, which has been used for many years, is still considered the golden standard for bacteria species identification. PCR-based methods investigating 16S rRNA gene sequences, and other approaches, such as the metagenome, have been used to study the physiology and diversity of bacteria and to identify novel genes with potential pharmaceutical and other biotechnological applications. We examined the advantages and limitations of molecular methods currently used to analyze bacterial diversity; these are mainly based on the 16S rRNA gene. These methods have allowed us to examine microorganisms that cannot be cultivated by routine methods and have also been useful for phylogenetic studies. We also considered the importance of improvements in microbe culture techniques and how we can combine different methods to allow a more appropriate assessment of bacterial diversity and to determine their real potential for industrial applications.  相似文献   

15.
Microbial communities within subsurface uranium (U) deposits were explored to understand the nature of community composition and their potential role in biogeochemical cycle and bioremediation. Geochemical analysis revealed that the U ores were mainly hosted on metamorphosed chlorite-biotite schists, containing varied organic carbon and elevated level of several heavy metals (U, Cu, Cr, Zn, etc.). Microbial diversity as explored by 16S rRNA gene clone library and DGGE analyses revealed predominance of Proteobacteria, Acidobacteria, Bacteroidetes along with Firmicutes and candidate division OP9 within the domain Bacteria and Euryarchaeota within the domain Archaea. Among the physiochemical parameters, level of organic carbon showed considerable impact on influencing community diversity and composition. Samples from Jaduguda with high organic carbon showed abundance of bacteria known for metabolizing different carbon compounds and affiliated to unclassified uncultured members of Chitnophagaceae (Bacteroidetes), Gp4 of Acidobacteria and unclassified β-Proteobacteria and halophilic, nitrate-reducing γ-Proteobacteria. A relatively diverse assemblage of species capable of autotrophic/heterotrophic N2 fixation, CH4 utilization, H2(0)/Fe(II)/Mn(II)/S(0) oxidation, NO3/Fe(III) reduction, U and other metal precipitation/mineralization and affiliated to families Rhizobiaceae, Bradyrhizobiaceae, Caulobacteraceae, Comamonadaceae and genera Acinetobacter, Marinobacter and Alcanivorax constituted the Bagjata samples. Distribution and interrelations among abundance of various bacterial groups detected in other U mines/radioactive waste sites were compared with our data. Overall, the study reported distinct compositions of indigenous microbial communities among the samples from two mines and provided a better insight in geomicrobiology of U deposits.  相似文献   

16.
The existence of anaerobic ammonia-oxidizing (anammox) bacteria was postulated in the late 1970s. Approximately 20 years later, these lithotrophic members of the nitrogen cycle were identified as deep-branching members of the planctomycetes. Recently, full-scale implementation of biological deammonification was successfully achieved in the DEMON reactor at the wastewater treatment plant in Strass, Austria. The sludge of this reactor contains red granules and brownish flocs that can be physically separated. The two fractions yielded different banding patterns in denaturing gradient gel electrophoresis of PCR products obtained with primer sets targeting the 16S rRNA genes of planctomycetes. Comparative analysis of partial sequences of almost full-length 16S rRNA gene clones obtained from the granules and flocs confirms the differences in the community composition of the two fractions. The sequences retrieved from the red granules were 93% similar to those of Candidatus Brocadia anammoxidans, a bacterium known to catalyze the anaerobic ammonia oxidation.  相似文献   

17.
Acid mine drainage (AMD) lake of Xiang Mountain in Anhui Province, China, was characterized by acidic waters (pH around 2.8) containing high concentrations of soluble metals and sulfate. To investigate the function and dynamics of this extreme ecosystem, four water samples were collected from the lake in the fall of 2010. The acidophilic community structure was analyzed by molecular approaches, and bacterial and archaeal clone libraries of 16S rRNA genes were constructed. In contrast to dominance of chemolithotrophic acidophiles in typical AMD environments, autotrophic iron/sulfur-oxidizing bacteria were detected in only one sample with low abundance. Unexpectedly, the Cyanobacteria group was the predominant in all four samples (54.9%?77%). Chemoheterotrophs Acidiphilium and Acidisphaera were also abundant. These two heterotrophic groups contain bacteriochlorophyll that can perform photosynthesis, an advantage to grow and survive in such oligotrophic acidic environments. Only two clone sequences related to Legionella (2.8% of the total clones) were recovered from one sample in sharp contrast to its higher abundance (12.7%) in the summer of 2009. All archaeal sequences were affiliated to the phylum Crenarchaeota. The results of statistical analysis suggested that the water chemistry of the AMD lake controlled microbial composition of the AMD ecosystem.  相似文献   

18.
The diazotrophic communities in a rice paddy field were characterized by a molecular polyphasic approach including DNA/RNA-DGGE fingerprinting, real time RT-PCR analysis of nifH gene and the measurement of nitrogen fixation activities. The investigation was performed on a diurnal cycle and comparisons were made between bulk and rhizosphere / root soil as well as between fertilized / unfertilized soils. Real time RT-PCR showed no significant difference in the total quantity of nifH expression under the conditions investigated. The functional diversity and dynamics of the nifH gene expressing diazotroph community investigated using RT-PCR-DGGE revealed high diurnal variations, as well as variation between different soil types. Most of the sequence types recovered from the DGGE gels and clone libraries clustered within nifH Cluster I and III (65 different nifH sequences in total). Sequence types most similar to Azoarcus spp., Metylococcus spp., Rhizobium spp., Methylocystis spp., Desulfovibrio spp., Geobacter spp., Chlorobium spp., were abundant and indicate that these species may be responsible for the observed diurnal variation in the diazotrophic community structure in these rice field samples. Previously described diazotrophic cyanobacterial genera in rice fields, such as Nostoc and Cyanothece, were present in the samples but not detectable in RT-PCR assays.  相似文献   

19.
竹简为我国古代早期文字记录的一种重要载体。湖南长沙竹简博物馆珍藏了一大批走马楼出土的三国时期东吴竹简,具有极为重要的史料价值。以吴简为材料,从竹简中分离微生物,获得10株细菌纯培养,并对这些分离菌株进行多相分类学鉴定。根据其培养特征、生理生化特性、细胞脂肪酸组份的测定以及部份菌株16S rRNA基因序列分析,将10个菌株划归为4个属。这些菌株可作为进一步探讨竹制品文物的微生物腐蚀提供有价值的材料。  相似文献   

20.
In this study we have designed degenerate primers after comparative analysis of nifD gene sequences from public databases, and developed a PCR protocol for the amplification of nifD sequences from cyanobacteria. The primers were tested on a variety of nitrogenase-containing and nitrogenase-lacking bacteria. By using this protocol, we amplified nifD sequences from DNA that was isolated from three phototrophic microbial communities. Denaturing gradient gel electrophoresis (DGGE) and clone library analysis of the nifD amplicons showed the presence of distinct groups of diazotrophic cyanobacteria in each of the investigated microbial communities. Phylogenetic trees constructed from the sequences of nifD gene fragments are congruent with those based on ribosomal RNA gene sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号