首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Although widely studied in mammals, little information about fish peroxisome proliferator activated receptors (PPARs) is yet available. As a baseline for future studies, the three PPAR isotypes were identified in brown trout (Salmo trutta f. fario) and their organ distribution pattern was established. The cDNA fragments encoding PPARs alpha, beta and gamma were amplified by PCR, and the deduced sequences of the correspondent peptides were compared with other species sequences. Both the 183 amino acid sequence from PPARalpha and the 103 amino acid sequence from PPARbeta shared high levels of homology with the correspondent peptides of other fishes and terrestrial vertebrates, whereas PPARgamma 108 amino acid sequence showed much less similarity with non-fish PPARgamma. According to both semi-quantitative RT-PCR and real-time RT-PCR, PPARalpha mRNA predominates in white muscle, heart and liver and PPARbeta is more expressed in testis, heart, liver, white muscle and trunk kidney. PPARgamma was only detected in trunk kidney and liver by real-time RT-PCR and also in spleen by semi-quantitative RT-PCR. PPARbeta seems to be the most strongly expressed isotype, whereas PPARgamma shows a much weaker global expression.  相似文献   

4.
5.
Peroxisomes increase in size and number in responsive animals ranging from mammals to marine mussels and fish species when treated with certain compounds named peroxisome proliferators. This phenomenon, known as peroxisome proliferation, is mediated by nuclear receptors termed peroxisome proliferator-activated receptors (PPARs). Three PPAR subtypes have been described (alpha, beta, and gamma) and in mammals PPARalpha is mainly expressed in tissues that catabolize fatty acids, PPARbeta is ubiquitously distributed, and PPARgamma is mainly expressed in the adipose tissue and immune system. The aim of this study was to analyze the tissue distribution of different PPAR subtypes in zebrafish Danio rerio using commercially available antibodies against PPARalpha, PPARbeta, and PPARgamma. In western blots, specific bands were detected at about 58 kDa for PPARalpha and PPARbeta. For PPARgamma the band was detected at 56 kDa. Similar results were obtained in mouse liver homogenates used as positive control, indicating the specificity of the antibodies. Immunohistochemistry was performed in paraformaldehyde-fixed tissue using either microwave or microwave plus trypsin pretreatment for antigen retrieval. In zebrafish, PPARalpha was expressed mainly in liver parenchymal cells, proximal tubules of kidney, enterocytes, and pancreas. PPARbeta showed a widespread distribution and was expressed in the liver, proximal and distal tubules and glomeruli of the kidney, pancreas, enterocytes and smooth muscle of the intestine, skin epithelium, lymphocytes, and male and female gonads. PPARgamma expression was weak in pancreatic cells, intestine, and gonads for both pretreatments. Most of the signal detected was cytoplasmic; only in the cases of PPARalpha and PPARbeta was some nuclear labeling detected in the liver. In mouse tissues, the distribution of PPAR subtypes was similar to that described previously for rats. Our results demonstrate that all three distinct PPAR subtypes are present in zebrafish. The tissue and cellular distribution of PPAR subtypes in zebrafish resembled partly that described before in mammals. Further studies are needed to decipher the functions of PPAR subtypes in zebrafish and other aquatic organisms and particularly their role in regulation of metabolic responses to xenobiotic exposure.  相似文献   

6.
To investigate the role of peroxisome proliferator-activated receptors (PPARs) alpha and beta in the differentiation of colon cancer cells, we differentiated HT-29 cells using sodium butyrate (NaB) and culturing post-confluence and assessed differentiation using the marker intestinal alkaline phosphatase. While PPARalpha levels only changed with culturing post confluence, PPARbeta levels increased independent of the method of differentiation. To explore further the differences induced by NaB, we assessed changes in both PPAR isoforms in MCF-7 breast cancer cells cultured in the presence of NaB over 48h. Again a very different expression pattern was observed with PPARalpha increasing after 4h and remaining elevated, while PPARbeta increased transiently. Our studies suggest that the expression of PPARs is dependent upon both the method of differentiation and on time. Moreover, these studies show that changes in PPARalpha levels are not required for the differentiation of colon cancer cell lines, whereas changes in PPARbeta are more closely associated with differentiation.  相似文献   

7.
Kato K  Oka Y  Park MK 《Zoological science》2008,25(5):492-502
Despite the physiological and evolutionary significance of lipid metabolism in amniotes, the molecular mechanisms involved have been unclear in reptiles. To elucidate this, we investigated peroxisome proliferators-activated receptors (PPARs) in the leopard gecko (Eublepharis macularius). PPARs belong to a nuclear hormone-receptor family mainly involved in lipid metabolism. Although PPARs have been widely studied in mammals, little information about them is yet available from reptiles. We identified in the leopard gecko partial cDNA sequences of PPARalpha and beta, and full sequences of two isoforms of PPARgamma. This is the first report of reptilian PPARgamma mRNA isoforms. We also evaluated the organ distribution of expression of these genes by using RT-PCR and competitive PCR. The expression level of PPARalpha mRNA was highest in the large intestine, and moderate in the liver and kidney. The expression level of PPARbeta mRNA was highest in the kidney and large intestine, and moderate in the liver. Similarly to the expression of human PPARgamma isoforms, PPARgammaa was expressed ubiquitously, whereas the expression of PPARgammab was restricted. The highest levels of their expression, however, were observed in the large intestine, rather than in the adipose tissue as in mammals. Taken together, these results showed that the profile of PPARbeta mRNA expression in the leopard gecko is similar to that in mammals, and that those of PPAR alpha and gamma are species specific. This may reflect adaptation to annual changes in lipid storage due to seasonal food availability.  相似文献   

8.
The role of PPARs in the regulation of human adipose tissue secretome has received little attention despite its potential importance in the therapeutic actions of PPAR agonists. Here, we have investigated the effect of selective PPARgamma, PPARalpha, and PPARbeta/delta agonists on the production of adipokines by human subcutaneous adipose tissue. Antibody arrays were used to measure secreted factors in media from cultured adipose tissue explants. Sixteen proteins were produced in significant amounts. Activation of PPARs regulated the production of five proteins. Treatments with the three PPAR agonists decreased the secretion of leptin and interleukin-6. PPARalpha and beta/delta agonists markedly enhanced hepatocyte growth factor secretion whereas PPARbeta/delta down-regulated angiogenin and up-regulated TIMP-1 release. Hepatocyte growth factor, interleukin-6, and TIMP-1 are chiefly expressed in cells from the stromal vascular fraction whereas angiogenin is expressed in both adipocytes and cells from the stromal vascular fraction. Our data show that PPAR agonists modulate secretion of bioactive molecules from the different cell types composing human adipose tissue.  相似文献   

9.
10.
PPARs are nuclear hormone receptors. PPAR subtypes (alpha, gamma, delta, the latter a xPPARbeta homologue) were initially investigated in skin because of their known role in regulating lipid metabolism. Studies adding specific PPAR ligand activators to cultured skin or skin cells are compatible with the concepts that PPARalpha activation mediates early lipogenic steps common to the function of both skin epidermal cells (keratinocytes) and sebaceous cells (sebocytes), PPARgamma activation plays a unique role in stimulating sebocyte lipogenesis, and PPARdelta activation may contribute to lipid biosynthesis in both sebocytes and keratinocytes under certain circumstances. Epidermal keratinocytes appear to express small amounts of PPARalpha and PPARdelta mRNA and a trace of PPARgamma mRNA which is up-regulated with differentiation. Sebocytes express all subtypes; PPARgamma gene expression excedes that in epidermis. The emerging data on PPAR protein expression suggests that epidermis normally expresses predominantly PPARalpha, while sebocytes express more PPARgamma than PPARalpha. These expression patterns may change during hyperplasia, differentiation and inflammation. Gene disruption studies in mice are compatible with a contribution of PPARalpha to skin barrier function, suggest that PPARgamma is necessary for sebocyte differentiation, and indicate that PPARdelta can ameliorate inflammatory responses in skin. PPARs appear to play a role in keratinocyte synthesis of the lipids that they export to the intercellular space to form the skin permeability barrier. They also appear to be important for sebocyte formation of the intracellular fused lipid droplets that constitute the holocrine secretion of the sebaceous gland. In addition, they may play roles in keratinocyte growth and differentiation and the inhibition of skin inflammation by diverse mechanisms not necessarily related to fat metabolism.  相似文献   

11.
We examined the expression of peroxisome proliferator-activated receptors (PPARs) and the role of PPARs in cytokine production in mouse bone marrow-derived mast cells (mBMMCs). mBMMCs expressed PPARbeta strongly and gamma slightly, but not alpha. Activation of mBMMCs with antigen or calcium ionophore resulted in the increased expression of PPARgamma mRNA specifically. 15-Deoxy-Delta(12, 14)-prostaglandin J(2) (15d-PGJ(2)) and troglitazone, all PPARgamma ligands, attenuated the antigen-induced cytokine production by mBMMCs. Carbaprostacyclin, a PPARbeta ligand, also inhibited cytokine production, whereas PPARalpha ligands did not. These results suggest that PPARbeta and gamma might be included in the negative regulation of mast cell activation.  相似文献   

12.
13.
14.
15.
16.
Peroxisome proliferator-activated receptors (PPARs) play very important roles in various biological phenomena such as regulation of lipid metabolism, homeostasis, cell differentiation and proliferation, in a variety of organs and tissues. However, their functions in the development of the digestive organs have not been studied yet, although it has been supposed that they are involved in the tumor development and regression of digestive organs. To provide fundamental data to analyze functions of PPARs in the developing digestive organs in the chicken embryos, we performed thorough analysis of expression of PPARalpha, beta (delta) and gamma in the esophagus, proventriculus (glandular stomach), gizzard (muscular stomach), small and large intestines from early developmental stages to post hatch stages. The results showed that each PPAR is expressed in spatio-temporally regulated manner. In general, PPARbeta is widely expressed among digestive organs whereas PPARalpha and gamma showed restricted expression. In the intestine, all PPARs are expressed after hatch, indicating that they play important roles in the physiology of the adult intestine.  相似文献   

17.
The high-affinity IgE receptor Fc epsilon RI is expressed on the cell surface of mast cells and basophils, and plays a central role in IgE-mediated inflammatory reactions. Recently, peroxisome proliferator-activated receptors (PPARs) have been implicated in the anti-inflammatory response. To investigate a possible role for PPAR in human basophils, the effect of PPAR ligands on Fc epsilon RI expression in human basophilic KU812 cells was studied. The PPARalpha ligand, leukotriene B(4), did not affect the cell surface expression of Fc epsilon RI. However, prostaglandin (PG) A(1) and 15-deoxy-Delta(12,14) PGJ(2) (15d-PGJ(2)), which are PPARbeta and gamma ligands, respectively, were both able to decrease Fc epsilon RI expression. Treatment with PGA(1) or 15d-PGJ(2) separately also reduced histamine release from KU812 cells in response to cross-linkage of Fc epsilon RI. In addition, RT-PCR analysis showed that KU812 cells expressed the mRNA for PPARalpha, beta, and gamma, indicating that PPARbeta or gamma may negatively regulate the cell activation via Fc epsilon RI. Cells treated with 15d-PGJ(2) expressed lower levels of Fc epsilon RI alpha and gamma mRNA, and PGA(1) treatment decreased the level of Fc epsilon RI gamma mRNA. These results suggest that the suppression of Fc epsilon RI expression by PPARs may be due to the down-regulation of Fc epsilon RI alpha or gamma mRNA.  相似文献   

18.
19.
The identification of small molecule ligands for the peroxisome proliferator-activated receptors (PPARs) has been instrumental in elucidating their biological roles. In particular, agonists have been the focus of much of the research in the field with relatively few antagonists being described and all of those being selective for PPARalpha or PPARgamma. The comparison of these agonist and antagonist ligands in cellular and animal systems has often led to surprising results and new insights into the biology of the PPARs. The PPARbeta/delta receptor is emerging as an important regulator of energy metabolism, inflammation, and cell growth and differentiation; however, only agonist ligands have been described for this receptor thus far. Here we describe the first report of a PPARbeta/delta small molecule antagonist ligand. This antagonist ligand will be a useful tool for elucidating the biological roles of PPARbeta/delta.  相似文献   

20.
Peroxisome proliferator-activated receptors (PPARs) are a subgroup of the superfamily of nuclear receptors, with three distinct main types: alpha, beta and gamma (subdivided into gamma(1) and gamma(2)). Recently, the presence of PPARgamma has been reported in human islets. Whether other PPAR types can be found in human islets, how islet PPARgamma mRNA expression is regulated by the metabolic milieu, their role in insulin secretion, and the effects of a PPARgamma agonist are not known. In this study, human pancreatic islets were prepared by collagenase digestion and density gradient purification from nonobese adult donors. The presence of PPAR mRNAs was assessed by RT-PCR, and the effect was evaluated of exposure for up to 24 h to either 22.2 mmol/l glucose and/or 0.25, 0.5, or 1.0 mmol/l long-chain fatty acid mixture (oleate to palmitate, 2:1). PPARbeta and, to a greater extent, total PPARgamma and PPARgamma(2) mRNAs were expressed in human islets, whereas PPARalpha mRNA was not detected. Compared with human adipose tissue, PPARgamma mRNA was expressed at lower levels in the islets, and PPARbeta at similar levels. The expression of PPARgamma(2) mRNA was not affected by exposure to 22.2 mmol/l glucose, whereas it decreased markedly and time-dependently after exposure to progressively higher free fatty acids (FFA). This latter effect was not affected by the concomitant presence of high glucose. Exposure to FFA caused inhibition of insulin mRNA expression, glucose-stimulated insulin release, and reduction of islet insulin content. The PPARgamma agonists rosiglitazone and 15-deoxy-Delta-(12,14)prostaglandin J(2) prevented the cytostatic effect of FFA as well as the FFA-induced changes of PPAR and insulin mRNA expression. In conclusion, this study shows that PPARgamma mRNA is expressed in human pancreatic islets, with predominance of PPARgamma(2); exposure to FFA downregulates PPARgamma(2) and insulin mRNA expression and inhibits glucose-stimulated insulin secretion; exposure to PPARgamma agonists can prevent these effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号