首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
2.
A gene (Bmn) with a major effect on -mannosidase activity in kidney and liver of the house mouse was revealed by assay with the synthetic substratep-nitrophenyl--d-mannoside. Activity is low in DBA/2J and CSB mice and high in C57BL/6J mice. By the use of the BXD series of recombinant inbred strains and by crosses between C57BL and CSB, it was possible to map the gene to the distal part of chromosome 3 by demonstration of linkage to a gene for cadmium resistance,cdm, as well as to theAdh-3 locus.This work was supported by Swedish Natural Science Research Council Project B-BU 2992-108.  相似文献   

3.
A disease of Angus cattle previously known as pseudolipidosis has been shown to be an inherited lysosomal storage disease, in which an oligosaccharide containing mannose and glucosamine is the storage substance. Diseased animals have a near-absolute deficiency of the lysosomal enzyme, alpha-mannosidase, whereas heterozygotes have a partial deficiency of this enzyme. The condition is analogous to the human disease known as mannosidosis.  相似文献   

4.
Summary The current approach to the chromosomal localization of genes coding for lysosomal enzymes has been the correlation of enzymatic and karyotypic analyses of human-rodent somatic cell hybrids. The feasibility of regional mapping depends on the availability of human cells with informative chromosomal rearrangements. In this communication we report the first localization of a gene coding for a lysosomal enzyme by in situ hybridization. The application of an acid -glucosidase cDNA probe to normal human chromosomes allowed direct regional mapping of the -glucosidase locus (GAA) to the region q23q25 of chromosome 17.  相似文献   

5.
Residual acidic α-mannosidase, varying in amount up to approx. 15% of normal values, can be measured in various organs of a calf with mannosidosis. The highest specific activity and relative proportion of residual activity were found in the liver. Chromatography on DEAE-cellulose showed that the residual activity was associated with two components, which were eluted at comparable positions with those found in normal tissues. The residual activity had a lower thermal stability and a higher Km value for a synthetic substrate than did the normal enzyme. No differences in molecular weight or electrophoretic mobility between normal acidic α-mannosidase and the residual activity were observed by gel filtration and electrophoresis on cellulose acetate respectively. The isoelectric focusing profiles for the α-mannosidase in the normal and pathological livers were very similar. It is suggested that a mutant enzyme, resulting from a mutation in a structural gene, accounts for the residual acidic α-mannosidase in mannosidosis. The mutant enzyme, which cross-reacts with antiserum raised against normal bovine acidic α-mannosidase, is present at a decreased concentration compared with the normal enzyme. There is a correlation between the concentrations of residual activity and cross-reacting material in mannosidosis. α-Mannosidase with a pH optimum of 5.75 and which is activated by Zn2+ was also detected in the liver of the calf with mannosidosis. However, it is probably not a product of the defective gene because addition of Zn2+ indicated that it was also present in normal tissues.  相似文献   

6.
An enzymatic reaction within a mesh-like structure constructed using hyaluronan was investigated in order to understand the influence of specific reaction environments in a living body on the reaction. This mesh-like structure, which mimicked extracellular matrix conditions, was found to accelerate glycohydrolysis by Jack bean α-mannosidase.  相似文献   

7.
8.
The expression of the mouse α-amylase gene in the methylotrophic yeast,P. pastoris was investigated. The mouse α-amylase gene was inserted into the multi-cloning site of a Pichia expression vector, pPIC9, yielding a new expression vector pME624. The plasmid pME624 was digested withSalI orBglII, and was introduced intoP. pastoris strain GS115 by the PEG1000 method. Fifty-three transformants were obtained by the transplacement of pME624 digested withSalI orBglII into theHIS 4 locus (38 of Mut+ clone) or into theAOX1 locus (45 of Muts clone). Southern blot was carried out in 11 transformants, which showed that the mouse α-amylase gene was integrated into thePichia chromosome. When the second screening was performed in shaker culture, transformant G2 showed the highest α-amylase activity, 290 units/ml after 3-day culture, among 53 transformants. When this expression level of the mouse α-amylase gene is compared with that in recombinantSaccharomyces cerevisiae harboring a plasmid encoding the same mouse α-amylase gene, the specific enzyme activity is eight fold higher than that of the recombinantS. cerevisiae.  相似文献   

9.
Although filamentous fungi are used extensively for protein expression, their use for the production of heterologous glycoproteins is constrained by the types of N-glycan structures produced by filamentous fungi as compared to those naturally found on the glycoproteins. Attempts are underway to engineer the N-glycan synthetic pathways in filamentous fungi in order to produce fungal expression strains which can produce heterologous glycoproteins carrying specific N-glycan structures. To fully realize this goal, a detailed understanding of the genetic components of this pathway in filamentous fungi is required. In this review, we discuss the characterization of the α-mannosidase gene family in filamentous fungi and its implications for the elucidation of the N-glycan synthetic pathway.  相似文献   

10.
11.
α-Amanitin acts in vitro and in vivo as a selective inhibitor of nucleoplasmic RNA polymerases. Treatment of mice with low doses of α-amanitin causes the following changes in the synthesis, maturation and nucleocytoplasmic transfer of liver RNA species. 1. The synthesis of the nuclear precursor of mRNA is strongly inhibited and all electrophoretic components are randomly affected. The labelling of cytoplasmic mRNA is blocked. These effects may be correlated with the rapid and lasting inhibition of nucleoplasmic RNA polymerase. 2. The synthesis and maturation of the nuclear precursor of rRNA is inhibited within 30min. (a) The initial effect is a strong (about 80%) inhibition of the early steps of 45S precursor rRNA maturation. (b) The synthesis of 45S precursor rRNA is also inhibited and the effect increases from about 30% at 30min to more than 70% at 150min. (c) The labelling of nuclear and cytoplasmic 28S and 18S rRNA is almost completely blocked. The labelling of nuclear 5S rRNA is inhibited by about 50%, but that of cytoplasmic 5S rRNA is blocked. (d) The action of α-amanitin on the synthesis of precursor rRNA cannot be correlated with the slight gradual decrease of nucleolar RNA polymerase activity (only 10–20% inhibition at 150min). (e) The inhibition of precursor rRNA maturation and synthesis precedes the ultrastructural lesions of the nucleolus detected by standard electron microscopy. 3. The synthesis of nuclear 4.6S precursor of tRNA is not affected by α-amanitin. However, the labelling of nuclear and cytoplasmic tRNA is decreased by about 50%, which indicates an inhibition of precursor tRNA maturation. The results of this study suggest that the synthesis and maturation of the precursor of rRNA and the maturation of the precursor of tRNA are under the control of nucleoplasmic gene products. The regulator molecules may be either RNA or proteins with exceedingly fast turnover.  相似文献   

12.
 Mycorrhizal and nonmycorrhizal roots of Allium schoenoprasum were tested for activities of α-mannosidase, β-glucosidase and arabinosidase. Mannosidase activity was higher by a factor of two in mycorrhizal than in nonmycorrhizal root extracts. The apparent molecular weight of the enzyme was 152 kDa and its KM was 1.25 mM in colonized roots and 1.85 mM in uncolonized roots. α-Mannosidase activity was further characterized by an acid pH optimum and Zn2+ dependency. No significant differences could be found between mycorrhizal and nonmycorrhizal roots for β-glucosidase and arabinosidase activities. Accepted: 28 August 1995  相似文献   

13.
Qu L  Ju JY  Chen SL  Shi Y  Xiang ZG  Zhou YQ  Tian Y  Liu Y  Zhu LP 《Cell research》2006,16(7):622-631
Protein N-glycosylation plays very important roles in immunity and α-mannosidase is one of the key enzymes in Nglycosylation. This paper reports that inhibition of α-mannosidase Man2c1 gene expression enhances adhesion of Jurkat T cells. In comparison to the controls with normal expression of the enzyme, Jurkat cells with the inhibition of Man2c1 gene expression (AS cell) formed larger aggregates in culture, indicating an enhancement of adhesion between the cells. mRNA differential display analysis discovered up-regulation of several adhesion molecule genes in the AS cell. Because of the pivotal role played by CD54-LFA-1 interaction in immune cell interaction, this study focused on the contribution of enhanced expression of CD54 and LFA-1 to the enhanced adhesion of AS Jurkat cells. These facts, including increased binding of AS cells to ICAM-1-Fc, Mg^2+ activation of the binding of AS cells to ICAM-1-Fc and enhanced aggregation of AS cells, together with the inhibiting effect of a blocking CD1 la mAb on the binding to ICAM-1-Fc and aggregation of the cells demonstrate an important contribution of enhanced CD54-LFA-1 interaction to increased adhesion between AS cells. The enhanced CD54-LFA-1 interaction also resulted in increased adhesion between AS Jurkat T cells and Raji B cells. In addition, AS cells showed cytoskeletal rearrangement. The data imply a biological significance of MAN2C1 in T-cell functioning.  相似文献   

14.
《Phytochemistry》1987,26(12):3201-3205
The enzyme,α-mannosidase and the lectin, concanavalin A, both of which interact with α-D-mannosides, are present in substantial amounts in the mature seeds of Canavalia ensiformis. The changes in the levels of these two proteins and their mRNA have been followed throughout seed development. Although both proteins start appearing in the seeds at day 24 after pod formation, there is a difference in the developmental patterns. While the increase in the activity of α-mannosidase is gradual and continues up until about day 44 followed by a slow phase till the desiccation stage, Con A after a lag phase which lasts to about day 30 shows a logarithmic increase up to about the 36th day followed by a plateau thereafter upto the desiccation stage. The highest amounts of functional mRNA for these two proteins are found at the early stages of seed development, well ahead of the period of highest protein deposition, thereby indicating that post-translational modifications of these proteins are slow and distinct from those of other legumes.  相似文献   

15.
The genetics of hemolymph alpha-mannosidase was investigated in the silkworm, Bombyx mori. By selecting individuals showing either high or low enzyme activities, homozygotes were separated, with activities varying about five-fold. No differences in the activities of beta-galactosidase and beta-N-acetylglucosaminidase were observed. Thus, it seems that high- and low-enzyme silkworms (High and Low Lines) share the same genetic background except for the gene concerning the activity of alpha-mannosidase. The synthesis of the enzyme is controlled by an autosomal allele. Furthermore, expression of the gene varies from tissue to tissue, and there is no correlation between enzyme activity and growth rate. The difference in activity between High and Low lines is due to the amount of active enzyme, not to an endogeneous activator or inhibitor. There was no isozymic difference in alpha-mannosidase.  相似文献   

16.
17.
The hepatic expression of the 2u gene family is controlled by a variety of hormones including steroids, growth hormone and insulin. The mechanisms by which these hormones affect -globulin expression are only partially understood. Recently we isolated and characterized clone RAP 01, an 2u-globulin gene expressed in the liver. In preliminary experiments we noted that partial hepatectomy, a procedure which results in a sharp rise in the level of the oncoproteins c-Fos and c-Jun, also causes a transient induction of the messenger RNA corresponding to clone RAP 01. Using the DNAseI footprinting technique we were able to show that this clone contains a TPA (phorbol 12-myristate 13-acetate)-responsive element (TRE) in its first intron. This element (denoted as element X) is identical to the consensus AP-1 binding site (TGACTCAG) and is protected by rat liver nuclear extracts as well as by purified c-Jun. Gel retardation experiments show that an oligonucleotide containing the TRE consensus sequence competes for binding of liver nuclear proteins to element X and that antibodies directed against the M2 peptide of the mouse Fos protein or the PEP-2 peptide of Jun prevent the formation of specific complexes with the same element. Moreover, element X functions as a TRE in transfected BWTG3 hepatoma cells treated with TPA. Co-transfection withfos andjun expression vectors mimics the effects of TPA suggesting that AP-1 is in fact the mediator of the observed response. It is concluded that the first intron of RAP 01 contains a functional Fos-Jun element.  相似文献   

18.
19.
-Mannosidase (EC 3.2.1.24) is a vacuolar enzyme which occurs abundantly in the cotyledons of the jack-bean (Canavalia ensiformis (L.) DC). The mature enzyme is a tetramer with two polypeptides each of relative molecular mass (Mr) 66000 and Mr 44000. The enzyme has an interesting molecular structure because in its native form, it does not bind to concanavalin A (ConA) in spite of the presence of a high-mannose glycan. -Mannosidase is synthesized in the developing cotyledons of jack-beans at the same time as the abundant proteins canavalin and ConA. The enzyme is synthesized as a precursor which has an Mr of 110000 and is associated with the endoplasmic reticulum (ER). Antibodies against the deglycosylated subunits cross-react with the Mr-110000 precursor. Processing of the precursor to the constituent polypeptides occurs posttranslationally, probably in the protein bodies. Immunocytochemical evidence shows that -mannosidase is present in the ER and the Golgi complex of developing cells, and accumulates in the protein bodies.Labeling with [3H]glucosamine shows that after processing only the Mr-66000 polypeptide has glucosamine-containing glycans. The synthesis of these glycans is inhibited by tunicamycin, indicating that they are asparagine-linked oligosaccharides. Analysis of the glycans shows that there is a large glycan that is retained by ConA and a small glycan that is not retained by ConA. The large glycan is only partially sensitive to -mannosidase because of the presence of a terminal glucose residue. Cross-reaction of the large subunit with an antiserum directed against small, complex glycans of plant glycoproteins indicates that this polypeptide probably has a xylose-containing glycan. Pulse-chase experiments carried out in the presence of tunicamycin show that the presence of glycans is not required for transport of -mannosidase out of the ER-Golgi system.Abbreviations ConA concanavalin A - ER endoplasmic reticulum - H L heavy, light subunit - IgG Immunoglobulin G - Mr relative molecular mass - SDS-PAGE sodium dodecylsulfate-polyacrylamide gel electrophoresis  相似文献   

20.

Background

Type 1 and type 2 diabetes are characterized by loss of β-cells; therefore, β-cell regeneration has become one of the primary approaches to diabetes therapy. Resveratrol, a naturally occurring polyphenolic compound, has been shown to improve glycaemic control in diabetic patients, but its action on pancreatic α-cells is not well understood.

Findings

Using mouse α-cells (αTC9), we showed that resveratrol induces expression of pancreatic β-cell genes such as Pdx1 and Ins2 in a SirT1-dependent manner. The mRNA and protein levels of insulin were further increased by histone deacetylase (HDAC) inhibition.

Conclusion

In summary, we provide new mechanistic insight into the anti-diabetic action of resveratrol through its ability to express β-cell genes in α-cells.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号