首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The pineal has been previously shown to be an important factor in the regulation of testicular function in photoperiodic mammals. The effects of lack or increase in pineal hormones on testicular hormonal receptors has, therefore, been examined. Pinealectomy decreased the concentration of testicular LH receptors in hamsters exposed to either a long or short photoperiod but had no effect on the concentration of testicular PRL receptors. In animals exposed to a short photoperiod, pinealectomy prevented testicular regression and the concomitant decreases in total LH and PRL receptor contents. Treatment for 12 weeks with either melatonin or 5-methoxytryptamine caused a decrease in testicular PRL receptor levels, whereas the only changes in LH receptor levels were due to melatonin-induced testicular regression. The present results indicate that some of the effects of pineal hormones on the testes are independent of the pineal-induced changes in testes mass and are the consequence of long-term action. Furthermore, testicular function appears to be affected by both the lack or the increase in pineal hormones.  相似文献   

2.
The effects of pinealectomy on pituitary and plasma gonadotropin levels and gonadal development in female goldfish exposed to various photoperiod-temperature regimes during different seasons were examined. Pinealectomy during autumn had no effect on either pituitary or plasma hormone levels or gonadal development. When goldfish are pinealectomized in spring and exposed to long photoperiod conditions, the ovaries regress and plasma gonadotropin levels are significantly depressed compared to sham operated animals. Sham operated goldfish exposed to short photoperiod conditions in spring had regressing ovaries whereas pinealectomized animals under this regime either spawned or had ovaries in the late vitellogenic phase. Plasma gonadotropin titres in the pinealectomized group were significantly lower than those of sham operated animals. The pineal can be either stimulatory or inhibitory to gonadal development depending on the photoperiod regime to which the animals are exposed. The pineal apparently influences gonadal activity by modulating gonadotropin secretion. A diurnal variation in plasma gonadotropin levels was also observed in both sham operated and pinealectomized goldfish exposed to a long photoperiod warm-temperature regime in spring.  相似文献   

3.
Pinealectomized female hamsters (Mesocricetus auratus) housed in a short-day photoperiod were ovariectomized and tested for hormone-induced sexual receptivity in order to investigate the role of the pineal gland in the control of behavioral sensitivity to exogenous ovarian steroid hormones (Experiment 1). Behavioral sensitivity to hormones was further investigated in females maintained in a long-day photoperiod and rendered acyclic by daily administration of exogenous melatonin (Experiment 2). Female aggressive behavior was also monitored in all tests. Pinealectomy did not affect the reduced behavioral sensitivity to exogenous estrogen (E) induced by short days. These animals were also partially refractory to the effects of E when combined with low doses of progesterone. In addition, although melatonin administration mimicked the effects of short days on estrous cyclicity, the expression of hormone-dependent behaviors in these animals resembled the pattern displayed by control animals kept in long days. Thus, these findings suggest that the pineal gland plays a negligible role in the photoperiodic modulation of hormone-dependent sociosexual behaviors in female hamsters.  相似文献   

4.
The Siberian hamster displays seasonal changes in pelage that are dependent upon fluctuations in circulating prolactin levels. Pinealectomy prevented the decrease in serum prolactin and molt to the winter pelage displayed by castrated males housed under a short-day photoperiod. A dopaminergic antagonist, pimozide, enhanced prolactin levels in both pinealectomized and sham-operated animals under both long and short photoperiods. In the short-day animals, this effect of pimozide was associated with a prevention of the development of winter pelage. These results indicate that seasonal prolactin levels and related pelage changes are dependent upon the integrity of the pineal gland. However, basal prolactin levels under different photoperiod conditions appear to be only partly regulated by the actions of the dopaminergic system.  相似文献   

5.
The pineal hormone melatonin influences circadian rhythms and also mediates reproductive responses to photoperiod. The authors tested whether pinealectomy influences circadian oscillators responsible for induction of nonresponsiveness to short day lengths by preventing normal short-day patterns of circadian entrainment. Adult male Siberian hamsters were pinealectomized or sham operated, maintained in either 18 h light per day (18L) or 15L for 10 weeks, and then tested for responsiveness to 10L. Because pinealectomized hamsters do not show gonadal regression in short day lengths, responsiveness was assessed by measuring phase angle of entrainment and the length of the nightly activity period following transfer to 10L. The incidence of nonresponsiveness was significantly higher in 18L hamsters than in 15L hamsters but was unaffected by pineal status. Fully 88% of 18L hamsters failed to entrain to 10L in the normal short-day manner; the duration of nightly activity remained compressed, and the phase angle of entrainment was large and negative relative to lights off. The 15L hamsters entrained normally to 10L. Exposure to constant light after 10L treatment was equally effective in inducing arrhythmicity in pinealectomized and intact hamsters. Changes in the period of morning and evening circadian oscillators subsequent to 18L treatment did not predict circadian responsiveness to short photoperiod. Long-day induction of photo-nonresponsiveness, which prevents winter responses to short day lengths, occurs independently of pineal melatonin feedback on the circadian system.  相似文献   

6.
Adult male Syrian hamsters either placed in a short photoperiod alone or kept in a long photoperiod and given daily afternoon injections of the pineal indole melatonin (25 micrograms) exhibited splenic hypertrophy and extramedullary hematopoiesis in addition to a marked regression in testicular weight. The testicular regression as well as the changes in spleen weight and histology could be prevented if the animals in short photoperiod were either pinealectomized or implanted subcutaneously with a pellet containing 1 mg melatonin. Female Syrian hamsters given afternoon injections of melatonin for 7 or 12 weeks had ovaries devoid of corpora lutea; additionally, these animals had reduced relative spleen weights compared to the control animals. In conclusion, it is apparent that spleen weight varies with the functional status of the gonads. Splenic hypertrophy accompanied by pineal-induced testicular regression in males may be related to splenic extramedullary hematopoiesis.  相似文献   

7.
Summary A recent study has shown that olfactory bulbectomy (BX) will prevent reproductive regression associated with short photoperiod in male golden hamsters. The results of experiments reported in this paper show that bulbectomized hamsters on long or short photoperiod still show a large nocturnal elevation in pineal melatonin production and that BX inhibits the reproductive regression induced by exogenous melatonin in pinealectomized hamsters. The data therefore indicate that BX does not inhibit short photoperiod induced testicular regression by altering melatonin secretion.  相似文献   

8.
Melatonin is produced and secreted by the pineal gland in a rhythmic manner; circulating levels are high at night and low in the day. Leptin is a hormone secreted by adipocytes as a product of the obese gene and plays an important role in regulating body energy homeostasis and reproductive function in rodents and humans. The present study was conducted to examine daily fluctuations in serum levels of melatonin and leptin in Syrian hamster. We measured serum leptin and melatonin levels by ELISA in (a) intact and pinealectomized (pinx) male hamsters kept under long daylight conditions [14 h of light (14L)]; (b) intact and pinx hamsters under short daylight (10L); and (c) intact hamsters in constant light (24L). Blood samples were obtained every 2 h throughout a 24-h period. Statistically significant circadian variations were found in both melatonin and leptin profiles. Their relationship was inverse, i.e. when melatonin was high in the serum, leptin was comparably low. These results suggest that there is a rhythm in leptin levels in the adult male Syrian hamster and this rhythm is pineal gland (melatonin) and/or photoperiod dependent.  相似文献   

9.
Seasonal changes in the length of the daily photoperiod induce significant changes in social behavior. Hamsters housed in winter-like short photoperiods (SP) can express significantly higher levels of aggression than hamsters housed in long photoperiods (LP) that mimic summer. The mechanisms responsible for increasing aggressiveness in SP-exposed female hamsters are not well understood but may involve seasonal changes in the endocrine system. In experiment 1, the effects of SP exposure on the circulating levels of three adrenal hormones were determined. Short photoperiod exposure was found to significantly depress the circulating levels of cortisol and the adrenal androgen dehydropiandrosterone (DHEA) but significantly increased the circulating levels of the sulfated form of DHEA, DHEAS. Experiment 2 examined the effects of gonadal hormones on several different measures of aggression including its intensity in females housed in both long and short photoperiod. Exposure to SP resulted in high levels of aggression regardless of the endocrine state of the animal or the measure used to quantify aggression. In contrast, administration of estradiol to hamsters housed in LP significantly reduced aggression. The data of the present study support the hypothesis that SP-housed females are more aggressive than LP-housed females because SP exposure renders females insensitive to the aggression-reducing effects of ovarian hormones.  相似文献   

10.
Since melatonin injections administered near the end of the daily photoperiod influence both gonadal and thyroid hormones in the female hamster, the present study was designed to compare the effects of melatonin and hypothyroidism on the reproductive system and to determine whether thyroid status influenced the action of melatonin on the regulation of the hormones of reproduction. The effects of daily melatonin injections were determined in control hamsters, in hamsters rendered hypothyroid with thiourea, and in hypothyroid hamsters receiving thyroxin (T4) hormone replacement. As previously reported, melatonin injections disrupted estrous cyclicity, disrupted the normal pattern of gonadotropin secretion, and resulted in atrophy of the uterus and vagina. These changes coincided with depressed serum and pituitary prolactin (PRL), and depressed levels of estradiol. The effects of melatonin on uterus, vagina, ovary, and on gonadotropin levels were not prevented by T4 replacement, with the exception of a melatonin-induced increase in serum follicle-stimulating hormone (FSH). This suggested that the cessation of estrous cyclicity was not primarily a result of thyroid deficiency. Hypothyroidism, however, like melatonin, resulted in a reduced number of developing and mature follicles and corpora lutea in the ovaries, and in reduced uterine weight. It also produced follicular atresia, reduced the circulating levels of estradiol, and resulted in reduced incidence of estrus smears. T4 replacement, for 2 weeks, prevented the decline in mature follicles and corpora lutea, reduced the extent of follicular atresia, increased circulating levels of estradiol, and increased uterine weight. PRL and luteinizing hormone (LH) data also provided evidence for antagonistic effects of melatonin and T4 in female hamsters. These data raise the question whether melatonin-induced changes in circulating levels of T4 play a role in the seasonal cycles of reproductive competence in the female hamster.  相似文献   

11.
In this study, the authors asked whether pinealectomy or temporary exposure to a stimulatory photoperiod affects the timing of spontaneous testicular recrudescence in adult Siberian hamsters chronically exposed to short days (9:15 light:dark). In Experiment 1, hamsters were pinealectomized after 6, 9, or 12 weeks in short days. Pinealectomy after 9 or 12 weeks did not affect the timing of spontaneous gonadal growth (27.7 +/- 1.9 and 25.4 +/- 1.3 weeks, respectively) compared to sham-operated controls (28.6 +/- 0.9 weeks). Enlarged testes occurred earlier in animals that were pinealectomized after 6 weeks in short days (21.8 +/- 2.1 weeks). In Experiment 2, adult hamsters were exposed to short days for 9 weeks, transferred to long days (16:8 light:dark) for 4 weeks, and then returned to short days for 23 additional weeks. Although long-day interruption caused gonadal growth in 15 out of 19 hamsters, the temporary long-day exposure did not affect the timing of spontaneous gonadal growth following return to short days (28.2 +/- 0.9 weeks) in 10 of the 15, relative to the timing observed in control hamsters continuously maintained in short days (28.2 +/- 1.1 weeks). Four out of 19 hamsters did not show gonadal growth following long-day exposure. Spontaneous gonadal growth in these hamsters (28.0 +/- 1.4 weeks) also occurred at the same time as controls. The remaining 5 hamsters exhibited enlarged testes following long-day exposure (12.0 +/- 0.0 weeks) but were refractory to the second short-day exposure. All hamsters exhibited entrainment of wheel-running activity following the change in photoperiod. A final group of 13 animals were pinealectomized before long-day transfer. They exhibited gonadal growth (at 17.2 +/- 0.8 weeks) but failed to regress a second time when returned to short days. The timing of gonadal growth in these animals was delayed relative to the sham-operated hamsters temporarily transferred to long days (Experiment 2) but accelerated relative to the hamsters pinealectomized at 9 weeks, which remained continuously in short days (Experiment 1). The results of both experiments suggest that a pineal-independent process mediates the timing of spontaneous gonadal growth in Siberian hamsters chronically exposed to a short-day photoperiod.  相似文献   

12.
Siberian hamsters (Phodopus sungorus) exhibit reproductive and immunological responses to photoperiod. Short (<10-h light/day) days induce gonadal atrophy, increase leukocyte concentrations, and attenuate thermoregulatory and behavioral responses to infection. Whereas hamster reproductive responses to photoperiod are dependent on pineal melatonin secretion, the role of the pineal in short-day induced changes in immune function is not fully understood. To examine this, adult hamsters were pinealectomized (PINx) or sham-PINx, and transferred to short days (9-h light/day; SD) or kept in their natal long-day (15-h light/day; LD) photoperiod. Intact and PINx hamsters housed in LD maintained large testes over the next 12 weeks; sham-PINx hamsters exhibited gonadal regression in SD, and PINx abolished this effect. Among pineal-intact hamsters, blood samples revealed increases in leukocyte, lymphocyte, CD62L+ lymphocyte, and T cell counts in SD relative to LD; PINx did not affect leukocyte numbers in LD hamsters, but abolished the SD increase in these measures. Hamsters were then treated with bacterial lipopolysaccharide (LPS), which induced thermoregulatory (fever), behavioral (anorexia, reductions in nest building), and somatic (weight loss) sickness responses in all groups. Among pineal-intact hamsters, febrile and behavioral responses to LPS were attenuated in SD relative to LD. PINx did not affect sickness responses to LPS in LD hamsters, but abolished the ameliorating effects of SD on behavioral responses to LPS. Surprisingly, PINx failed to abolish the effect of SD on fever. In common with the reproductive system, PINx induces the LD phenotype in most aspects of the immune system. The pineal gland is required for photoperiodic regulation of circulating leukocytes and neural-immune interactions that mediate select aspects of sickness behaviors.  相似文献   

13.
Summary In the Djungarian hamster seasonal acclimatization is primarily controlled by photoperiod, but exposure to low ambient temperature amplifies the intensity and duration of short day-induced winter adaptations. The aim of this study was to test, whether the pineal gland is involved in integrating both environmental cues. Exposure of hamsters to cold (0 °C) reduces the sensitivity of the pineal gland to light at night and prevents inactivation of N-acetyltransferase (NAT). The parallel time course of NAT activity and plasma norepinephrine content suggests that circulating catecholamines may stimulate melatonin synthesis under cold load.Abbreviations NAT N-acetyltransferase - NE norepinephrine - T a ambient temperature  相似文献   

14.
Weekly subcutaneous implants of melatonin in a beeswax pellet prevented the testicular regression which normally occurs in hamsters exposed to short photoperiod for 8 weeks. Normal (14L:10D) hamster testes were indistinguishable from the testes of melatonin-treated (1L:23D) hamsters. The exogenous melatonin had varied effects on the fine structure of the golden hamster pineal gland. Pinealocyte nuclear characteristics of melatonin-treated hamsters (smaller average diameter, less polymorphism, and more heterochromatin) as well as apparent reductions in the amounts of hypertrophic SER and lipid moieties seemed to indicate that melatonin caused inhibition of pineal gland activity, and in this respect counteracted the effects of short photoperiod. However, an apparent increase in the number of large mitochondria, membrane whorls and dense-cored secretory vesicles in pinealocytes of melatonin-treated hamsters suggests enhanced pineal gland activity.  相似文献   

15.
Horizontal and parasagittal knife cuts in the hypothalamus of female hamsters (Mesocricetus auratus) were employed to investigate the neural pathways that mediate gonadal responses to photoperiod. Bilateral horizontal knife cuts placed dorsal to the paraventricular nucleus (PVN) did not prevent short-day-induced acyclicity and uterine regression. On the other hand, regardless of photoperiod, animals with bilateral parasagittal knife cuts placed lateral to the PVN continued to exhibit regular 4-day estrous cycles and stimulated uteri. Thus, parasagittal cuts prevented the effects of short days on reproductive physiology. This finding suggests that the lateral efferent projections from the PVN represent an important component of the neural pathway mediating reproductive photoperiodism in female hamsters.  相似文献   

16.
Female Sprague-Dawley rats exposed to a short (6L:18D) photoperiod from 21 days of age were mated when they reached 55 days of age. On Day 2 of gestation animals were pinealectomized or sham-operated. On Day 5 after birth male pups of the two groups of dams were either pinealectomized or sham-operated. They were killed at 42 and 49 days of age. In offspring born to sham-operated dams and in those born to pinealectomized mothers, neonatal pineal ablation resulted in increased testicular testosterone and androstenedione content. In sham-operated and neonatally pinealectomized rats removal of the maternal pineal gland induced a decrease in testicular testosterone and androstenedione content. In contrast, after maternal pinealectomy there was a decrease in plasma testosterone and dihydrotestosterone values and testicular dihydrotestosterone content in sham-operated rats but not in those neonatally pinealectomized. We conclude that (1) the pineal glands of the mother and offspring are required to maintain normal testicular testosterone and androstenedione content in the rat, and (2) the pineal of the offspring influences the inhibitory effects of maternal pinealectomy on testicular dihydrotestosterone content and on plasma testosterone and dihydrotestosterone concentration in the offspring.  相似文献   

17.
Daily rhythms of pineal and serum melatonin content were characterized for adult female Turkish hamsters (Mesocricetus brandti) exposed to long days (16L:8D, 22 degrees C) or after transfer to short days (10L:14D, 22 degrees C). The nocturnal peak of pineal melatonin content was found to be approximately 3 b greater in duration on short than on long days. Changes in levels of serum melatonin closely paralleled those of pineal melatonin. Thus, an effect of photoperiod on synthesis and secretion of pineal melatonin was demonstrated. In a separate experiment, female hamsters were induced to hibernate by exposure to a short-day, cold environment (10L:14D, 6 degrees C). During the 4 to 5-mo hibernation season, Turkish hamsters are known to display 4 to 8-day hours of torpor (body temperature = 7-9 degrees C) alternating with 1 to 3-day intervals of euthermia (body temperature = 35-37 degrees C). Little evidence of nocturnal synthesis or secretion of pineal melatonin was detected in females sampled during torpor. However, animals sampled during the first day after arousal from a torpor bout displayed melatonin rhythms no different in phase or amplitude from those seen in females held at 22 degrees C. Thus, despite the absence of pineal melatonin output during torpor, the pineal gland of hibernating Turkish hamsters produces an appropriately phased, rhythmic melatonin signal during intervals of euthermia.  相似文献   

18.
Adult female specimens of Liza ramada were pinealectomized and sham-pinealectomized, and the development of their ovaries was followed over a period of 14 weeks and compared with those of untreated controls. Pinealectomized specimens exposed to long photoperiod (16L/8D) for 14 weeks, showed undeveloped ovaries, with a maximum oocyte diameter of less than 100 μm, and a gonadosomatic index of 0·6 similar to that of sham-pinealectomized and control specimens. In pinealectomized females exposed to short photoperiod (8L/16D) for 6 weeks, the mean diameter of oocytes was 270 μm v . 155 μm in control and sham-pinealectomized specimens. After 9 weeks, the oocytes in pinealectomized specimens reached 430 μm as against 265 μm in the controls. Within 14 weeks of pinealectomy, mean oocyte diameter was 480 um while it was 400 μm in controls and sham-pinealectomized specimens. It is tentatively concluded that the pineal complex has an inhibitory effect on ovarian function in Liza ramada exposed to short photoperiod.  相似文献   

19.
The pineal controls the reproductive response of ewes to both stimulatory (short) and inhibitory (long) day lengths. Melatonin, a pineal hormone whose nocturnal secretion is entrained by photoperiod, mediates the effect of stimulatory photoperiod. We now report that melatonin also mediates the effect of inhibitory day length, monitored as response to estradiol negative feedback on luteinizing hormone (LH) secretion. Ovariectomized, estradiol-implanted ewes were pinealectomized and intravenously infused with melatonin to restore the nightly melatonin rise. Following transfer from short to long days, and a concurrent switch from short- to long-day melatonin patterns, LH dropped precipitously in pinealectomized ewes, matching the photoinhibitory response of pineal intact controls. LH dropped similarly in pinealectomized ewes when long-day melatonin was infused under short days. Pinealectomized ewes transferred from long to short days displayed a marked LH rise, provided melatonin was also switched to the short-day pattern. LH remained suppressed if long-day melatonin was infused following transfer to short days. These data indicate the nighttime melatonin rise mediates reproductive responses to inhibitory, as well as stimulatory photoperiods; they further suggest the duration of this rise controls suppression of LH under long days. Rather than being strictly pro- or antigonadal, the pineal participates in measuring day length.  相似文献   

20.
Female Sprague-Dawley rats, exposed to a long (18L:6D) or a short (6L:18D) photoperiod from 21 days of age, were mated when they reached 55 days of age. On Day 2 of gestation, dams were pinealectomized or sham-operated. Pre- and postnatal photoperiods were identical, and offspring were killed at 15 days of age. Maternal pinealectomy had no effect when rats were kept on 18L:6D. Rats born to sham-operated mothers and kept on 6L:18D had higher testicular testosterone and androstenedione content than offspring raised on the long photoperiod. This stimulatory effect of the short photoperiod was blocked by maternal pinealectomy and was not dependent on the offspring's own pineal since it was observed in both sham-operated and neonatally (on Day 5 after birth) pinealectomized rats. When sham-operated mothers housed on 18L:6D were treated daily during pregnancy and lactation by s.c. melatonin injection, there was an increase in the testicular testosterone content of offspring. It was concluded that when rats are maintained on a 6L:18D cycle the maternal pineal gland enhances the testicular testosterone and androstenedione content in 15-day-old offspring. This effect is probably mediated by maternally derived melatonin. At 15 days of age, the pineal of the offspring had no influence on testicular function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号