首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipids play an important part as risk or protective factors for Alzheimer's disease. This review summarizes the current findings in which lipids influence Alzheimer's disease and introduces the molecular mechanism how these lipids are linked to amyloid production. Besides the pathological impact of amyloid in Alzheimer's disease, amyloid has a physiological function in regulating lipid homeostasis in return. The understanding of the resulting regulatory cycles between amyloid precursor protein processing and lipids provides a platform for the development of new causal therapeutic approaches for Alzheimer's disease.  相似文献   

2.
Alzheimer's disease is a devastating degenerative disorder of the brain for which there is no cure or effective treatment. Although the etiology of Alzheimer's disease is not fully understood, recent research suggests that deposition of cerebral amyloid plaques is central to the disease process. Therefore, an attractive therapeutic strategy for Alzheimer's disease is to prevent, reduce or reverse amyloid deposition in the brain. Several small chemical compounds, synthetic peptides and natural proteins have been described that inhibit amyloid formation or amyloid neurotoxicity in vitro. The effect of these and other compounds now needs to be tested in vivo and the ability of amyloid inhibitors to halt the progression of Alzheimer's disease in humans needs to be evaluated.  相似文献   

3.
4.
Alzheimer's disease is a progressive neurodegenerative disorder that affects a significant percentage of elderly individuals. Degenerative nerve cells express atypical proteins, and amyloid is deposited. The hallmark event of Alzheimer's disease is the deposition of amyloid as insoluble fibrous masses in extracellular neuritic plaques and around the walls of cerebral blood vessels. This review will focus on the advances on the knowledge of Alzheimer's amyloid, because it is becoming increasingly clear that the deposition of amyloid on neuritic plaques in the brain represents the earliest and most characteristic pathological feature of Alzheimer's disease. The main component of amyloid is a 4.2-4.5 KDa hydrophobic peptide, named amyloid beta-peptide, that is codified in chromosome 21 as part of a much larger precursor protein. The study of the mechanism by which the amyloid beta-peptide arises from the amyloid precursor protein is very important in order to understand the biological basis of amyloid deposition and its role in Alzheimer's disease.  相似文献   

5.
Complement proteins of the classical pathway can be immunohistochemically identified in cerebral amyloid plaques in Alzheimer's disease. Microglial cells in and around amyloid plaques express class II major histocompatibility (MHC) antigens and complement receptors CR3 and CR4. Negative immunostaining for immunoglobulins and for T-cell subsets in the brain parenchyma demonstrates a lack of evidence for the involvement of specific immune responses (such as an immune complex-mediated complement activation or a cell-mediated immune response) in cerebral amyloid deposits in Alzheimer's disease. Cerebral amyloid plaques in scrapie-affected mice (slow-virus induced encephalopathy) do not contain complement factors C1q and C3c and are not clustered with microglial cells expressing MHC class II molecules or complement receptor CR3. The data presented suggest the induction of a reactive inflammatory process by beta/A4 amyloid in the human brain, but not by scrapie-induced PrP amyloid in mice. Our findings do not support the hypothesis that the immune system is involved in the generation of amyloid plaques in Alzheimer's disease.  相似文献   

6.
Lipids play an important role as risk or protective factors in Alzheimer's disease, which is characterized by amyloid plaques composed of aggregated amyloid-beta. Plasmalogens are major brain lipids and controversially discussed to be altered in Alzheimer's disease (AD) and whether changes in plasmalogens are cause or consequence of AD pathology. Here, we reveal a new physiological function of the amyloid precursor protein (APP) in plasmalogen metabolism. The APP intracellular domain was found in vivo and in vitro to increase the expression of the alkyl-dihydroxyacetonephosphate-synthase (AGPS), a rate limiting enzyme in plasmalogen synthesis. Alterations in APP dependent changes of AGPS expression result in reduced protein and plasmalogen levels. Under the pathological situation of AD, increased amyloid-beta level lead to increased reactive oxidative species production, reduced AGPS protein and plasmalogen level. Accordingly, phosphatidylethanol plasmalogen was decreased in the frontal cortex of AD compared to age matched controls. Our findings elucidate that plasmalogens are decreased as a consequence of AD and regulated by APP processing under physiological conditions.  相似文献   

7.
Amyloid beta peptide (Abeta) has a key role in the pathological process of Alzheimer's disease (AD), but the physiological function of Abeta and of the amyloid precursor protein (APP) is unknown. Recently, it was shown that APP processing is sensitive to cholesterol and other lipids. Hydroxymethylglutaryl-CoA reductase (HMGR) and sphingomyelinases (SMases) are the main enzymes that regulate cholesterol biosynthesis and sphingomyelin (SM) levels, respectively. We show that control of cholesterol and SM metabolism involves APP processing. Abeta42 directly activates neutral SMase and downregulates SM levels, whereas Abeta40 reduces cholesterol de novo synthesis by inhibition of HMGR activity. This process strictly depends on gamma-secretase activity. In line with altered Abeta40/42 generation, pathological presenilin mutations result in increased cholesterol and decreased SM levels. Our results demonstrate a biological function for APP processing and also a functional basis for the link that has been observed between lipids and Alzheimer's disease (AD).  相似文献   

8.
Alzheimer's disease is a dementing disorder affecting increasingly large numbers of individuals in the aging population. The characteristic neuropathologic changes of Alzheimer's disease are the deposition of extracellular is the major constituent of senile plaques. In addition to the A4 peptide, senile plaques contain a variety of molecular species, including proteoglycans and inflammatory components. The presence of proteoglycans in the amyloid deposits of Alzheimer's disease and of systemic amyloidoses suggests that these molecules play an active role in the pathogenesis of amyloidosis. However, the molecular mechanisms that lead to the codeposition of amyloid peptide with proteoglycans is still unknown. Recent evidence suggests that the metabolism of proteoglycans is altered in Alzheimer's disease patients. The acute-phase response observed in the brain of patients affected by Alzheimer's disease may be responsible for this effect. In this article, we discuss the role of proteoglycans in Alzheimer's disease, and the possible interactions between factors involved in brain inflammatory mechanisms and proteoglycans in the pathogenesis of Alzheimer's disease  相似文献   

9.
The cerebral deposition of Abeta-peptide as amyloid fibrils and plaques represents a hallmark characteristic of Alzheimer's disease (AD). AD plaques are defined by their green birefringence after Congo red staining, their spherulite-like superstructure and their association with specific secondary components. Here we show that primary human macrophages promote the formation of amyloid plaques that correspond in all aforementioned characteristics to typical amyloid plaques from diseased tissues: they consist of aggregated Abeta-peptide, they reveal the typical 'Maltese cross" structure and they are associated with the secondary components glycosaminoglycanes, apolipoprotein E (apoE) and the raft lipids cholesterol and sphingomyelin. Plaque formation can be impaired in this cell system by addition of small molecules, such as Congo red, melantonine and lovastatin, suggesting potential applications for the study of cellular amyloid formation and for the identification or validation of drug candidates.  相似文献   

10.
M Goedert 《The EMBO journal》1987,6(12):3627-3632
Clones for the amyloid beta protein precursor gene were isolated from a cDNA library prepared from the frontal cortex of a patient who had died with a histologically confirmed diagnosis of Alzheimer's disease; they were used to investigate the tissue and cellular distribution of amyloid beta protein precursor mRNA in brain tissues from control patients and from Alzheimer's disease patients. Amyloid beta protein precursor mRNA was expressed in similar amounts in all control human brain regions examined, but a reduction of the mRNA level was observed in the frontal cortex from patients with Alzheimer's disease. By in situ hybridization amyloid beta protein precursor mRNA was present in granule and pyramidal cell bodies in the hippocampal formation and in pyramidal cell bodies in the cerebral cortex. No specific labelling of glial cells or endothelial cells was found. The same qualitative distribution was observed in tissues from control patients and from patients with Alzheimer's disease. Senile plaque amyloid thus probably derives from neurones. The tissue distribution of amyloid beta protein precursor mRNA and its cellular localization demonstrate that its expression is not confined to the brain regions and cells that exhibit the selective neuronal death characteristic of Alzheimer's disease.  相似文献   

11.
Alzheimer's disease, the major dementing disorder of the elderly that affects over 4 million Americans, is related to amyloid beta-peptide, the principal component of senile plaques in Alzheimer's disease brain. Oxidative stress, manifested by protein oxidation and lipid peroxidation, among other alterations, is a characteristic of Alzheimer's disease brain. Our laboratory united these two observations in a model to account for neurodegeneration in Alzheimer's disease brain, the amyloid beta-peptide-associated oxidative stress model for neurotoxicity in Alzheimer's disease. Under this model, the aggregated peptide, perhaps in concert with bound redox metal ions, initiates free radical processes resulting in protein oxidation, lipid peroxidation, reactive oxygen species formation, cellular dysfunction leading to calcium ion accumulation, and subsequent neuronal death. Free radical antioxidants abrogate these findings. This review outlines the substantial evidence from multiidisciplinary approaches for amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity and protection against these oxidative processes and cell death by free radical scavengers. In addition, we review the strong evidence supporting the notion that the single methionine residue of amyloid beta-peptide is vital to the oxidative stress and neurotoxicological properties of this peptide. Further, we discuss studies that support the hypothesis that aggregated soluble amyloid beta-peptide and not fibrils per se are necessary for oxidative stress and neurotoxicity associated with amyloid beta-peptide.  相似文献   

12.
The cardinal lesions of Alzheimer's disease are neurofibrillary tangles, senile neuritic plaques, and vascular amyloid, the latter generally involving cortical arteries and small arterioles. All three lesions are composed of amyloid-like, beta-pleated sheet fibrils. Recently, a 4,200-dalton peptide has been isolated from extraparenchymal meningeal vessels, neuritic plaques, and neurofibrillary tangles. The assumption of N-terminal homogeneity in vascular amyloid has been used as an argument for a neuronal (versus blood) origin of the peptide. However, intracortical microvessels from Alzheimer's disease have not been previously isolated. The present studies describe the isolation of a microvessel fraction from Alzheimer's disease and control fresh autopsy human brain. Alzheimer's disease isolated brain microvessels that were extensively laden with amyloid and control microvessels were solubilized in 90% formic acid and analyzed by urea sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The arteriole fraction from the Alzheimer's subject with extensive amyloid angiopathy contained a unique 4,200-dalton peptide, whereas the arterioles or capillaries isolated from two controls and two Alzheimer's disease subjects without angiopathy did not. This peptide was purified by HPLC and amino acid composition analysis showed the peptide is nearly identical to the 4,200-dalton peptide recently isolated from neuritic plaques or from neurofibrillary tangles. Sequence analysis revealed N-terminal heterogeneity. The N-terminal sequence was: Asp-Ala-Glu-Phe-Arg-His-Asp-Ser-Gly-Tyr, which is identical to the N-terminal sequence of the 4,200-dalton peptide isolated previously from extraparenchymal meningeal vessels and neuritic plaques.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Numerous reports have documented the beneficial effects of dietary docosahexaenoic acid (DHA) on beta-amyloid production and Alzheimer's disease (AD). However, none of these studies have examined and compared DHA, in combination with other dietary nutrients, for its effects on plaque pathogenesis. Potential interactions of DHA with other dietary nutrients and fatty acids are conventionally ignored. Here we investigated DHA with two dietary regimes; peptamen (pep+DHA) and low fat diet (low fat+DHA). Peptamen base liquid diet is a standard sole-source nutrition for patients with gastrointestinal dysfunction. Here we demonstrate that a robust AD transgenic mouse model shows an increased tendency to produce beta-amyloid peptides and amyloid plaques when fed a pep+DHA diet. The increase in beta-amyloid peptides was due to an elevated trend in the levels of beta-secretase amyloid precursor protein (APP) cleaving enzyme (BACE), the proteolytic C-terminal fragment beta of APP and reduced levels of insulin degrading enzyme that endoproteolyse beta-amyloid. On the contrary, TgCRND8 mice on low fat+DHA diet (based on an approximately 18% reduction of fat intake) ameliorate the production of abeta peptides and consequently amyloid plaques. Our work not only demonstrates that DHA when taken with peptamen may have a tendency to confer a detrimental affect on the amyloid plaque build up but also reinforces the importance of studying composite lipids or nutrients rather than single lipids or nutrients for their effects on pathways important to plaque development.  相似文献   

14.
Alzheimer's disease (AD) is characterized by the cerebral deposition of fibrillar aggregates of the amyloid A4 protein. Complementary DNA's coding for the precursor of the amyloid A4 protein have been described. In order to identify the structure of the precursor gene relevant clones from several human genomic libraries were isolated. Sequence analysis of the various clones revealed 16 exons to encode the 695 residue precursor protein (PreA4(695] of Alzheimer's disease amyloid A4 protein. The DNA sequence coding for the amyloid A4 protein is interrupted by an intron. This finding supports the idea that amyloid A4 protein arises by incomplete proteolysis of a larger precursor, and not by aberrant splicing.  相似文献   

15.
Alzheimer's disease, the major dementing disorder of the elderly that affects over 4 million Americans, is related to amyloid β-peptide, the principal component of senile plaques in Alzheimer's disease brain. Oxidative stress, manifested by protein oxidation and lipid peroxidation, among other alterations, is a characteristic of Alzheimer's disease brain. Our laboratory united these two observations in a model to account for neurodegeneration in Alzheimer's disease brain, the amyloid β-peptide-associated oxidative stress model for neurotoxicity in Alzheimer's disease. Under this model, the aggregated peptide, perhaps in concert with bound redox metal ions, initiates free radical processes resulting in protein oxidation, lipid peroxidation, reactive oxygen species formation, cellular dysfunction leading to calcium ion accumulation, and subsequent neuronal death. Free radical antioxidants abrogate these findings. This review outlines the substantial evidence from multiidisciplinary approaches for amyloid β-peptide-associated free radical oxidative stress and neurotoxicity and protection against these oxidative processes and cell death by free radical scavengers. In addition, we review the strong evidence supporting the notion that the single methionine residue of amyloid β-peptide is vital to the oxidative stress and neurotoxicological properties of this peptide. Further, we discuss studies that support the hypothesis that aggregated soluble amyloid β-peptide and not fibrils per se are necessary for oxidative stress and neurotoxicity associated with amyloid β-peptide.  相似文献   

16.
Although soluble oligomeric and protofibrillar assemblies of Abeta-amyloid peptide cause synaptotoxicity and potentially contribute to Alzheimer's disease (AD), the role of mature Abeta-fibrils in the amyloid plaques remains controversial. A widely held view in the field suggests that the fibrillization reaction proceeds 'forward' in a near-irreversible manner from the monomeric Abeta peptide through toxic protofibrillar intermediates, which subsequently mature into biologically inert amyloid fibrils that are found in plaques. Here, we show that natural lipids destabilize and rapidly resolubilize mature Abeta amyloid fibers. Interestingly, the equilibrium is not reversed toward monomeric Abeta but rather toward soluble amyloid protofibrils. We characterized these 'backward' Abeta protofibrils generated from mature Abeta fibers and compared them with previously identified 'forward' Abeta protofibrils obtained from the aggregation of fresh Abeta monomers. We find that backward protofibrils are biochemically and biophysically very similar to forward protofibrils: they consist of a wide range of molecular masses, are toxic to primary neurons and cause memory impairment and tau phosphorylation in mouse. In addition, they diffuse rapidly through the brain into areas relevant to AD. Our findings imply that amyloid plaques are potentially major sources of soluble toxic Abeta-aggregates that could readily be activated by exposure to biological lipids.  相似文献   

17.
The protein component of Alzheimer's disease amyloid [neurofibrillary tangles (NFT), amyloid plaque core and congophilic angiopathy] is an aggregated polypeptide with a subunit mass of 4 kd (the A4 monomer). Based on the degree of N-terminal heterogeneity, the amyloid is first deposited in the neuron, and later in the extracellular space. Using antisera raised against synthetic peptides, we show that the N terminus of A4 (residues 1-11) contains an epitope for neurofibrillary tangles, and the inner region of the molecule (residues 11-23) contains an epitope for plaque cores and vascular amyloid. The non-protein component of the amyloid (aluminum silicate) may form the basis for the deposition or amplification (possible self-replication) of the aggregated amyloid protein. The amyloid of Alzheimer's disease is similar in subunit size, composition but not sequence to the scrapie-associated fibril and its constituent polypeptides. The sequence and composition of NFT are not homologous to those of any of the known components of normal neurofilaments.  相似文献   

18.
Neuritic plaque core amyloid protein in Alzheimer's disease brain tissue was investigated for the extent of amino acid racemization. Long-lived human proteins exhibit racemization of certain amino acids over the course of a human lifetime. Purified core amyloid was found to contain relatively large proportions of D-aspartate and D-serine, suggesting that neuritic plaque amyloid is derived from a long-lived precursor protein. Alternatively, racemization of protein amino acids may be abnormally accelerated in Alzheimer's disease.  相似文献   

19.
Microglial activation is a key feature in Alzheimer's disease and is considered to contribute to progressive neuronal injury by release of neurotoxic products. The innate immune receptor Toll-like-receptor 4 (TLR4), localized on the surface of microglia, is a first-line host defense receptor against invading microorganisms. Here, we show that a spontaneous loss-of-function mutation in the Tlr4 gene strongly inhibits microglial and monocytic activation by aggregated Alzheimer amyloid peptide resulting in a significantly lower release of the inflammatory products IL-6, TNFalpha and nitric oxide. Treatment of primary murine neuronal cells with supernatant of amyloid peptide-stimulated microglia demonstrates that Tlr4 contributes to amyloid peptide-induced microglial neurotoxicity. In addition, stimulation experiments in transfected HEK293 cells allowed to define a tri-molecular receptor complex consisting of TLR4, MD-2 and CD14 necessary for full cellular activation by aggregated amyloid peptide. A clinical relevance of these findings is supported by a marked upregulation of Tlr4 mRNA in APP transgenic mice and by an increased expression of TLR4 in Alzheimer's disease brain tissue associated with amyloid plaque deposition. Together, these observations provide the first evidence for a role of the key innate immune receptor, TLR4, in neuroinflammation in Alzheimer's disease.  相似文献   

20.
The precise pathological events that cause cognitive deficits in Alzheimer's disease remain to be determined. The most widely held view is that accumulation of amyloid beta peptide initiates the disease process; however, with more than eighteen amyloid-based therapeutic candidates currently in clinical trials, the targeting of amyloid alone may not be sufficient to improve functional deficits over the course of the disease. Alternative targets, such as the tau protein and apolipoprotein E, have thus been increasingly investigated, and in the future, therapeutic strategies will likely address events that are upstream of a more broadly construed pathological cascade that includes but is not limited to the generation and accumulation of amyloid beta. Consideration of such events provides the basis for an "indirect amyloid hypothesis," for which data are beginning to emerge. Although it is clinically defined by simple post-mortem criteria, Alzheimer's disease likely has a complex etiology, and effective treatments for this disease will become ever more urgent as the world's population ages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号