首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Matrix attachment region binding proteins have been shown to play an important role in gene regulation by altering chromatin in a stage- and tissue-specific manner. Our previous studies report that SMAR1, a matrix-associated protein, regresses B16-F1-induced tumors in mice. Here we show SMAR1 targets the cyclin D1 promoter, a gene product whose dysregulation is attributed to breast malignancies. Our studies reveal that SMAR1 represses cyclin D1 gene expression, which can be reversed by small interfering RNA specific to SMAR1. We demonstrate that SMAR1 interacts with histone deacetylation complex 1, SIN3, and pocket retinoblastomas to form a multiprotein repressor complex. This interaction is mediated by the SMAR1(160-350) domain. Our data suggest SMAR1 recruits a repressor complex to the cyclin D1 promoter that results in deacetylation of chromatin at that locus, which spreads to a distance of at least the 5 kb studied upstream of the cyclin D1 promoter. Interestingly, we find that the high induction of cyclin D1 in breast cancer cell lines can be correlated to the decreased levels of SMAR1 in these lines. Our results establish the molecular mechanism exhibited by SMAR1 to regulate cyclin D1 by modification of chromatin.  相似文献   

5.
6.
7.
8.
Bhat KP  Pelloski CE  Zhang Y  Kim SH  deLaCruz C  Rehli M  Aldape KD 《FEBS letters》2008,582(21-22):3193-3200
Here we show that in contrast to other cancer types, tumor necrosis factor (TNF)-alpha suppresses YKL-40 expression in glioma cell lines in a nuclear factor kappaB (NF-kappaB) dependent manner. Even though TNF-alpha causes recruitment of p65 and p50 subunits of NF-kappaB to the YKL-40 promoter in all cell types, recruitment of histone deacetylases (HDAC)-1 and -2, and a consequent deacetylation of histone H3 at the YKL-40 promoter occurs only in glioma cells. Importantly, using chromatin immunoprecipitation assays in frozen glioblastoma multiforme tissues, we show that YKL-40 levels decrease consistent with HDAC1 recruitment despite high levels of nuclear p-p65. This study presents a paradigm for NF-kappaB regulation of one of its targets in a strict cell type specific manner.  相似文献   

9.
10.
11.
12.
The mechanistic basis for the tissue specific expression of cholesterol elimination pathways is poorly understood. To gain additional insight into this phenomenon we considered it of interest to investigate if epigenetic mechanisms are involved in the regulation of the brain-specific enzyme cholesterol 24-hydroxylase (CYP46A1), a key regulator of brain cholesterol elimination. We demonstrated a marked time-dependent derepression of the expression of CYP46A1, in response to treatment with the potent histone deacetylase (HDAC) inhibitor Trichostatin A. The pattern of expression of the genes in the genomic region surrounding CYP46A1 was found to be diametrically opposite in brain and liver. Intraperitoneal injection of HDAC inhibitors in mice led to a significant derepression of hepatic Cyp46a1 mRNA expression and tissue specific changes in Hmgcr and Cyp39a1 mRNA expression. These results are discussed in the context of the phenomenology of tissue specific cholesterol balance.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号