首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
SRC-related tyrosine kinases are suggested to play a role in the increase of sperm protein phosphotyrosine content that occurs during capacitation. In our laboratory, we previously demonstrated that the SRC-related tyrosine kinase YES1 (also known as c-YES) is present in human spermatozoa. However, since it is negatively regulated by Ca(2+), whose intracellular concentration increases during capacitation, another kinase would most likely be involved in the capacitation-related increase in sperm protein tyrosine phosphorylation. The present study represents the first direct assessment of SRC tyrosine kinase activity in ejaculated mammalian sperm. By immunohistochemistry on human testis sections, it is clearly shown that SRC is expressed during spermatogenesis, mainly in round and elongating spermatids. Using an indirect immunofluorescence approach, SRC is detected in the acrosomal region of the head and in the sperm flagellum of ejaculated sperm. This tyrosine kinase is associated with the plasma membrane and with cytoskeletal elements, as suggested by its partial solubility in nonionic detergents. Despite its partial solubility, SRC kinase activity was assayed after immunoprecipitation using acid-denatured enolase as a substrate. It is clearly demonstrated that SRC activity is inhibited by SU6656 and PP1, selective SRC family tyrosine kinase inhibitors, and activated in a Ca(2+)-dependent manner. Furthermore, it is shown that SRC is activated in a cAMP/PRKA-dependent manner; SRC coimmunoprecipitates with the catalytic subunit of the cAMP-dependent protein kinase (PRKAC) and is phosphorylated by this latter kinase, resulting in an increase in enolase phosphorylation. All these results support the involvement of the tyrosine kinase SRC in the increase in sperm protein phosphotyrosine content observed during capacitation.  相似文献   

2.
In mammals, acquisition of fertilization competence of spermatozoa is dependent on the phenomenon of sperm capacitation. One of the critical molecular events of sperm capacitation is protein tyrosine phosphorylation. In a previous study, we demonstrated that a specific epidermal growth factor receptor (EGFR)‐tyrosine kinase inhibitor, tyrphostin‐A47, inhibited hamster sperm capacitation, accompanied by a reduced sperm protein tyrosine phosphorylation. Interestingly, a high percentage of tyrphostin‐A47‐treated spermatozoa exhibited circular motility, which was associated with a distinct hypo‐tyrosine phosphorylation of flagellar proteins, predominantly of Mr 45,000–60,000. In this study, we provide evidence on the localization of capacitation‐associated tyrosine‐phosphorylated proteins to the nonmembranous, structural components of the sperm flagellum. Consistent with this, we show their ultrastructural localization in the outer dense fiber, axoneme, and fibrous sheath of spermatozoa. Among hypo‐tyrosine phosphorylated major proteins of tyrphostin‐A47‐treated spermatozoa, we identified the 45 kDa protein as outer dense fiber protein‐2 and the 51 kDa protein as tektin‐2, components of the sperm outer dense fiber and axoneme, respectively. This study shows functional association of hypo‐tyrosine‐phosphorylation status of outer dense fiber protein‐2 and tektin‐2 with impaired flagellar bending of spermatozoa, following inhibition of EGFR‐tyrosine kinase, thereby showing the critical importance of flagellar protein tyrosine phosphorylation during capacitation and hyperactivation of hamster spermatozoa. Mol. Reprod. Dev. 77: 182–193, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

3.
Regulation of protein tyrosine phosphorylation is required for sperm capacitation and oocyte fertilization. The objective of the present work was to study the role of the calcium‐sensing receptor (CaSR) on protein tyrosine phosphorylation in boar spermatozoa under capacitating conditions. To do this, boar spermatozoa were incubated in Tyrode's complete medium for 4 hr and the specific inhibitor of the CaSR, NPS2143, was used. Also, to study the possible mechanism(s) by which this receptor exerts its function, spermatozoa were incubated in the presence of specific inhibitors of the 3‐phosphoinositide dependent protein kinase 1 (PDK1) and protein kinase A (PKA). Treatment with NPS2143, GSK2334470, an inhibitor of PDK1 and H‐89, an inhibitor of PKA separately induced an increase in tyrosine phosphorylation of 18 and 32 kDa proteins, a decrease in the serine/threonine phosphorylation of the PKA substrates together with a drop in sperm motility and viability. The present work proposes a new signalling pathway of the CaSR, mediated by PDK1 and PKA in boar spermatozoa under capacitating conditions. Our results show that the inhibition of the CaSR induces the inhibition of PDK1 that blocks PKA activity resulting in a rise in tyrosine phosphorylation of p18 and p32 proteins. This novel signalling pathway has not been described before and could be crucial to understand boar sperm capacitation within the female reproductive tract.  相似文献   

4.
Capacitation is an essential process by which spermatozoa acquire fertilizing ability. Reactive oxygen species (ROS), protein kinase A (PKA), protein kinase C (PKC), protein tyrosine kinases (PTKs), and the extracellular signal-regulated protein kinase (ERK or mitogen-activated protein kinase [MAPK]) pathway regulate sperm capacitation. Our aim was to evaluate the phosphorylation of MEK (MAPK kinase or MAP2K) or MEK-like proteins in human sperm capacitation and its modulation by ROS and kinases. Immunoblotting using an anti-phospho-MEK antibody indicated that the phosphorylation of three protein bands (55, 94, and 115 kDa) increased in spermatozoa treated with fetal cord serum ultrafiltrate (FCSu), BSA, or isobutylmethylxanthine plus dibutyryl cAMP as capacitating agents. These phospho-MEK-like proteins are localized along the sperm flagellum. The MEK-inhibitors PD98059 and U126 prevented this phosphorylation, suggesting that these proteins are MEK-like proteins. The ROS scavengers prevented, and the addition of H(2)O(2) or spermine-NONOate (nitric oxide donor) triggered, the increase of phospho-MEK-like proteins. The capacitation-related increases in phospho-MEK-like proteins induced by FCSu, H(2)O(2), and spermine-NONOate were similarly modulated by PKA, PKC, and PTK, suggesting ROS as mediators in this phenomenon. These results indicate that phospho-MEK-like proteins are modulated by ROS and kinases and probably represent an intermediary step between the early events and the late tyrosine phosphorylation associated with capacitation.  相似文献   

5.
Liu SL  Ni B  Wang XW  Huo WQ  Zhang J  Tian ZQ  Huang ZM  Tian Y  Tang J  Zheng YH  Jin FS  Li YF 《BMB reports》2011,44(8):541-546
It is generally accepted that spermatozoa capacitation is associated with protein kinase A-mediated tyrosine phosphorylation. In our previous study, we identified the fibrous sheath CABYR binding protein (FSCB), which was phosphorylated by PKA. However, the phosphorylation status of FSCB protein during spermatozoa capacitation should be further investigated. To this aim, in this study, we found that phosphorylation of this 270-kDa protein occurred as early as 1 min after mouse spermatozoa capacitation, which increased over time and remained stable after 60 min. Immunoprecipitation assays demonstrated that the tyrosine and Ser/Thr phosphorylation of FSCB occurred during spermatozoa capacitation. The extent of phosphorylation and was closely associated with the PKA activity and spermatozoa motility characteristics. FSCB phosphorylation could be induced by PKA agonist DB-cAMP, but was blocked by PKA antagonist H-89.Therefore, FSCB contributes to spermatozoa capacitation in a tyrosine-phosphorylated format, which may help in further elucidating the molecular mechanism of spermatozoa capacitation.  相似文献   

6.
Mammalian sperm must undergo a process known as capacitation before fertilization can take place. A key intracellular event that occurs during capacitation is protein tyrosine phosphorylation. The objective of this study was to investigate and visualize protein tyrosine phosphorylation patterns in human sperm during capacitation and interaction with the zona pellucida. The presence of specific patterns was also assessed in relation to the fertilizing capacity of the spermatozoa after in vitro fertilization. Protein tyrosine phosphorylation was investigated by immunofluorescence. Phosphorylation increased significantly with capacitation and was localized mainly to the principal piece of human sperm. Following binding to the zona pellucida, the percentage of sperm with phosphotyrosine residues localized to both the neck and the principal piece was significantly higher in bound sperm than in capacitated sperm in suspension. When the percentage of principal piece-positive sperm present after capacitation was <7%, fertilization rates after in vitro fertilization were reduced. Different compartments of human spermatozoa undergo a specific sequence of phosphorylation during both capacitation and upon binding to the zona pellucida. Tyrosine phosphorylation in the principal and neck piece may be considered a prerequisite for fertilization in humans.  相似文献   

7.
In the present study, the effect of two particular reactive oxygen species (ROS), superoxide anion (O(2)(-)) and hydrogen peroxide (H(2)O(2)) on buffalo (Bubalus bubalis) sperm capacitation and associated protein tyrosine phosphorylation was studied. Ejaculated buffalo spermatozoa were suspended in sp-TALP medium at 50 x 10(6)/mL and incubated at 38.5 degrees C for 6h with or without heparin (10(g/mL; a positive control), or xanthine (X; 0.5mM)-xanthine oxidase (XO; 0.05 U/mL)-catalase (C; 2100 U/mL) system that generates O(2)(-) or NADPH (5mM) that stimulates the endogenous O(2)(-) production or H(2)O(2) (50 microM). The specific effect of O(2)(-), H(2)O(2) and NADPH on buffalo sperm capacitation and protein tyrosine phosphorylation was assessed by the addition of superoxide dismutase (SOD), catalase and diphenylene iodonium (DPI), respectively, to the incubation medium. Each of X+XO+C system, NADPH and H(2)O(2) induced a significantly higher percentage (P<0.05) of capacitation in buffalo spermatozoa compared to control. However, DPI inhibited this NADPH-induced capacitation and protein tyrosine phosphorylation and suggested for existence of an oxidase in buffalo spermatozoa. Using immunoblotting technique, at least seven tyrosine-phosphorylated proteins (20, 32, 38, 45, 49, 78 and 95 kDa) were detected in capacitated buffalo spermatozoa. Out of these, the tyrosine phosphorylation of p95 was induced extensively by both O(2)(-) as well as exogenous source of H(2)O(2) and using specific activators and inhibitors of signaling pathways, it was found this induction was regulated through a cAMP-dependent PKA pathway. Further, immunofluorescent localization study revealed that these ROS-induced tyrosine-phosphorylated proteins are mostly distributed in the midpiece and principal piece regions of the flagellum of capacitated spermatozoa and suggested for increased molecular activity in flagellum during capacitation. Thus, the study revealed that both O(2)(-) and H(2)O(2) promote capacitation and associated protein tyrosine phosphorylation in buffalo spermatozoa and unlike human and bovine, a different subset of sperm proteins were tyrosine-phosphorylated during heparin- and ROS-induced capacitation and regulation of these ROS-induced processes were mediated through a cAMP/PKA signaling pathway.  相似文献   

8.
Despite considerable advances in our understanding of the molecular mechanisms regulating eutherian sperm function, there is a paucity of such knowledge for the Metatheria. In eutherian spermatozoa, the attainment of functional competence is associated with a redox-regulated, cAMP-mediated tyrosine phosphorylation cascade, activated during capacitation. In this report we investigate whether tammar wallaby (Macropus eugenii) spermatozoa possess a similar signal transduction pathway. Western blot analysis of phosphotyrosine expression in caudal and ejaculated populations of tammar spermatozoa revealed that elevation of intracellular cAMP levels, but not exposure to oxidants or NADPH, induced a dramatic increase in the overall level of tyrosine phosphorylation. Washed, ejaculated spermatozoa exhibited more pronounced increases in tyrosine phosphorylation than unwashed sperm populations. Localisation of tyrosine phosphorylation by immunocytochemistry showed that phosphotyrosine residues were principally located along the tammar sperm flagellum, and occasionally at a small region of the sperm head, adjacent to the acrosome. Associated with the tyrosine phosphorylation of tammar spermatozoa, was a change in sperm head conformation to a T-shaped orientation, further implying the importance of these pathways to normal tammar sperm function. Redox activity, as detected by lucigenin-dependent chemiluminescence, was stimulated by NADPH in caudal sperm preparations but not ejaculated spermatozoa. However, neither sperm population responded to treatment with NADPH with changes in intracellular cAMP or tyrosine phosphorylation. In conclusion, tammar spermatozoa possess the same cAMP-mediated, tyrosine phosphorylation-dependent signal transduction cascade that has been associated with capacitation in eutherian spermatozoa. However in Metatherian spermatozoa we could find no evidence that this pathway was redox regulated.  相似文献   

9.
获能期间精子蛋白的酪氨酸磷酸化   总被引:2,自引:0,他引:2  
周思畅  倪崖  石其贤 《生命科学》2006,18(3):285-289
哺乳动物精了获能是精子与卵子成功受精的前提。蛋白酪氨酸磷酸化对精子获能十分重要。精了获能期蛋白酪氨酸磷酸化程度增高与sAC/cAMP/PKA途径、受体酪氨酸激酶途径和非受体蛋白酪氨酸激酶途径调节有关。获能过程中酪氨酸磷酸化蛋白分布于精子细胞的不同区域,蛋白的酪氨酸磷酸化与精子功能密切相关。  相似文献   

10.
Kinases, phosphatases and proteases during sperm capacitation   总被引:1,自引:0,他引:1  
Fertilization is the process by which male and female haploid gametes (sperm and egg) unite to produce a genetically distinct individual. In mammals, fertilization involves a number of sequential steps, including sperm migration through the female genital tract, sperm penetration through the cumulus mass, sperm adhesion and binding to the zona pellucida, acrosome exocytosis, sperm penetration through the zona and fusion of the sperm and egg plasma membranes. However, freshly ejaculated sperm are not capable of fertilizing an oocyte. They must first undergo a series of biochemical and physiological changes, collectively known as capacitation, before acquiring fertilizing capabilities. Several molecules are required for successful capacitation and in vitro fertilization; these include bicarbonate, serum albumin (normally bovine serum albumin, BSA) and Ca(2+). Bicarbonate activates the sperm protein soluble adenylyl cyclase (SACY), which results in increased levels of cAMP and cAMP-dependent protein kinase (PKA) activation. The response to bicarbonate is fast and cAMP levels increase within 60?s followed by an increase in PKA activity. Several studies with an anti-phospho-PKA substrate antibody have demonstrated a rapid increase in protein phosphorylation in human, mouse and boar sperm. The target proteins of PKA are not known and the precise role of BSA during capacitation is unclear. Most of the studies provide support for the idea that BSA acts by removing cholesterol from the sperm. The loss of cholesterol has been suggested to affect the bilayer of the sperm plasma membrane making it more fusogenic. The relationship between cholesterol loss and the activation of the cAMP/PKA pathway is also unclear. During early stages of capacitation, Ca(2+) might be involved in the stimulation of SACY, although definitive proof is lacking. Protein tyrosine phosphorylation is another landmark of capacitation but occurs during the late stages of capacitation on a different time-scale from cAMP/PKA activation. Additionally, the tyrosine kinases present in sperm are not well characterized. Although protein phosphorylation depends upon the balanced action of protein kinases and protein phosphatase, we have even less information regarding the role of protein phosphatases during sperm capacitation. Over the last few years, several reports have pointed out that the ubiquitin-proteasome system might play a role during sperm capacitation, acrosome reaction and/or sperm-egg fusion. In the present review, we summarize the information regarding the role of protein kinases, phosphatases and the proteasome during sperm capacitation. Where appropriate, we give examples of the way that these molecules interact and regulate each other's activities.  相似文献   

11.
Capacitation of spermatozoa, a complex process occurring after sperm ejaculation, is required to produce fertilization of the oocyte in vivo and in vitro. Although this process results from a poorly understood series of morphological and molecular events, protein tyrosine phosphorylation has been associated with sperm capacitation in several mammalian species, but it still remains to be demonstrated in ram spermatozoa. Studies of capacitation in ram spermatozoa are of great interest, since several reports have suggested that the reduced fertility of cryopreserved spermatozoa is due to their premature capacitation. In this work, we report for the first time, to our knowledge, that tyrosine phosphorylation of ram sperm membrane proteins is related to the capacitation state of these cells. Capacitation induced tyrosine phosphorylation of some plasma membrane proteins of ram spermatozoa freed from seminal plasma by a dextran/swim-up procedure. It has also been proved that cold-shock induces protein tyrosine phosphorylation as well as a decrease in plasma membrane integrity. Addition of seminal plasma proteins prior to cold-shock not only improved sperm survival but also promoted a decrease in protein tyrosine phosphorylation.  相似文献   

12.
Recent studies from within our laboratory have demonstrated a causal relationship between capacitation‐associated surface phosphotyrosine expression and the ability of mouse spermatozoa to recognize the oocyte and engage in sperm–zona pellucida interaction. In the studies described herein we have sought to investigate the signaling pathways that underpin the tyrosine phosphorylation of sperm surface protein targets and validate the physiological significance of these pathways in relation to sperm–zona pellucida adhesion. Through selective pharmacological inhibition we have demonstrated that surface phosphotyrosine expression is unlikely to be mediated by the canonical cAMP‐dependent protein kinase A (PKA) signaling cascade that has been most widely studied in relation to sperm capacitation. Rather, it appears to be primarily driven by the extracellular signal‐regulated kinase (ERK) module of the mitogen‐activated protein kinase (MAPK) pathway. Consistent with this notion, the main components of the ERK module (RAS, RAF1, MEK, and ERK1/2) were localized to the periacrosomal region of the head of mature mouse spermatozoa and their phosphorylation status within this region of the cell was positively modulated by capacitation. Furthermore, inhibition of several elements of this pathway suppressed sperm surface phosphotyrosine expression and induced a concomitant reduction sperm–zona pellucida interaction. Collectively, these data highlight a previously unappreciated role of the ERK module in the modification of the sperm surface during capacitation to render these cells functionally competent to engage in the process of fertilization. J. Cell. Physiol. 224:71–83, 2010 © 2010 Wiley‐Liss, Inc.  相似文献   

13.
Arginine vasopressin (VP) is neurohypophysial hormone has been implicated in stimulating contractile activity of the male reproductive tract in the testis. Higher levels of VP decrease sperm count and motility. However, very little is known about the involvement of VP in controlling mammalian reproductive process. The goal of this study was to confirm that effect of VP receptor (AVPR2) on sperm function in capacitation condition. Deamino [Cys 1, D-ArgS] vasopressin (dDAVP), an AVPR2 agonist that operates only on AVPR2, was used. Also, Mouse spermatozoa were incubated with various concentrations of dDAVP (10−11–10−5 M) and sperm motility, capacitation status, Protein Kinase A activity (PKA), tyrosine phosphorylation, fertilization, and embryo development were assessed using computer-assisted sperm analysis, Combined Hoechst 33258/chlortetracycline fluorescence, Western blotting, and in vitro fertilization, respectively. AVPR2 was placed on the acrosome region and mid-piece in cauda epididymal spermatozoa, but the caput epididymal spermatozoa was mid-piece only. The high dDAVP treatment (10−8 and 10−5 M) significantly decreased sperm motility, intracellular pH and PKA substrates (approximately 55 and 22 kDa) and increased Ca2+ concentration. The highest concentration treatment significantly decreased PKA substrate (approximately 23 kDa) and tyrosine phosphorylation (approximately 30 kDa). VP detrimentally affected capacitation, acrosome reaction, and embryo development. Treatment with the lowest concentration (10−11 M) was not significantly different. Our data have shown that VP stimulates ion transport across sperm membrane through interactions with AVPR2. VP has a detrimental effect in sperm function, fertilization, and embryonic development, suggesting its critical role in the acquisition of fertilizing ability of mouse spermatozoa. These research findings will enable further study to determine molecular mechanism associated with fertility in capacitation and fertilization. It is also an important pivotal precondition to the progress of diagnostic test to identify infertility and to apply male contraception.  相似文献   

14.
Protein tyrosine phosphorylation is a key event accompanying sperm capacitation. Although this signaling cascade generates an array of tyrosine-phosphorylated polypeptides, their molecular characterization is still limited. It is necessary to differentiate the localization of the tyrosine-phosphorylated proteins in spermatozoa to understand the link between the different phosphorylated proteins and the corresponding regulated sperm function. cAMP plays a pivotal role in the regulation of tyrosine phosphorylation. The intracellular cAMP levels were raised in goat spermatozoa by the addition of the phosphodiesterase inhibitor, IBMX in conjugation with caffeine. Tyrosine phosphorylation was significantly up-regulated following treatment with these two reagents. Treatment of caudal spermatozoa with IBMX and caffeine, time dependent up-regulated phosphorylation of the protein of molecular weights 50 and 200 kDa was observed. Increased phosphorylation was observed with a combination of IBMX and caffeine treatment. Tyrosine phosphorylation in caput spermatozoa was not affected significantly under these conditions. The expression level of tyrosine kinase in sperm was examined with specific inhibitors and with anti-phosphotyrosine antibody. The indirect immunofluorescence staining was carried out on ethanol permeabilized sperm using anti-phosphotyrosine antibody. Western blot analysis was done using two separate PKA antibodies: anti-PKA catalytic and anti-PKA RIα. Almost no difference was found in the intracellular presence of the PKA RIα and RIIα subunits in caput and caudal epididymal spermatozoa. However, the catalytic subunit seemed to be present in higher amount in caudal spermatozoa. The results show that caprine sperm displays an enhancement of phosphorylation in the tyrosine residues of specific proteins under in vitro capacitation conditions.  相似文献   

15.
H Zhang  H Yu  X Wang  W Zheng  B Yang  J Pi  G He  W Qu 《PloS one》2012,7(8):e43004
α-Chlorohydrin is a common contaminant in food. Its (S)-isomer, (S)-α-chlorohydrin (SACH), is known for causing infertility in animals by inhibiting glycolysis of spermatozoa. The aim of present work was to examine the relationship between SACH and protein tyrosine phosphorylation (PTP), which plays a critical role in regulating mammalian sperm capacitation. In vitro exposure of SACH 50 μM to isolated rat epididymal sperm inhibited PTP. Sperm-specific glyceraldehyde 3-phosphate dehydrogenase (GAPDS) activities, the intracellular adenosine 5'-triphosphate (ATP) levels, 3'-5'-cyclic adenosine monophosphate (cAMP) levels and phosphorylation of protein kinase A (PKA) substrates in rat sperm were diminished dramatically, indicating that both glycolysis and the cAMP/PKA signaling pathway were impaired by SACH. The inhibition of both PTP and phosphorylation of PKA substrates by SACH could be restored by addition of cAMP analog dibutyryl-cAMP (dbcAMP) and phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). Moreover, addition of glycerol protected glycolysis, ATP levels, phosphorylation of PKA substrates and PTP against the influence of SACH. These results suggested SACH inhibited PTP through blocking cAMP/PKA pathway in sperm, and PTP inhibition may play a role in infertility associated with SACH.  相似文献   

16.
To fertilize the oocyte, mammalian spermatozoa must undergo capacitation and acrosome reaction. These events are believed to be associated with various biochemical changes primarily mediated by cAMP, Ca2+ and protein kinases. But the precise signaling mechanisms governing sperm function are not clear. To study this, we used pentoxifylline (PF), a sperm motility stimulant and a cAMP-phosphodiesterase inhibitor, during capacitation and acrosome reaction of hamster spermatozoa. PF induced an early onset of sperm capacitation and its action involved modulation of sperm cell signaling molecules viz, cAMP, [Ca2+]i and protein kinases. The PF-induced capacitation was associated with an early and increased total protein phosphorylation coupled with changes in the levels of reactive oxygen species. Protein kinase (PK)-A inhibitor (H-89) completely inhibited phosphorylation of a 29 kDa protein while PK-C inhibitor (staurosporine) did not inhibit phosphorylation. Interestingly, PF induced protein tyrosine phosphorylation of a set of proteins (Mr 45-80 K) and a greater proportion of PF-treated spermatozoa exhibited protein tyrosine phosphorylation, compared to untreated controls (82 + 9% vs 34 +/- 10%; p < 0.001); tyrosine-phosphorylated proteins were localized specifically to the mid-piece of the sperm. The profile of protein tyrosine phosphorylation was inhibitable by higher concentrations (> 0.5 mM) of tyrosine kinase inhibitor, tyrphostin A47. However, at lower (0.1-0.25 mM) concentrations, the compound interestingly induced early sperm capacitation and protein tyrosine phosphorylation, like PF. These results show that protein tyrosine phosphorylation in the mid-piece segment (mitochondrial sheath) appears to be an early and essential event during PF-induced capacitation and a regulated level of tyrosine phosphorylation of sperm proteins is critical for capacitation of hamster spermatozoa.  相似文献   

17.
The second messenger cAMP mediates its intracellular effects in spermatozoa through cAMP-dependent kinase (PKA, formally known as PRKACA). The intracellular organization of PKA in spermatozoa is controlled through its association with A-kinase-anchoring proteins (AKAPs). AKAP4 (A kinase [PRKA] anchor protein 4; also called fibrous sheath component 1 or AKAP 82) is sperm specific and the major fibrous sheath protein of the principal piece of the sperm flagellum. Presumably, AKAP4 recruits PKA to the fibrous sheath and facilitates local phosphorylation to regulate flagellar function. It is also proposed to act as a scaffolding protein for signaling proteins and proteins involved in metabolism. Akap4 gene knockout mice are infertile due to the lack of sperm motility. The fibrous sheath is disrupted in spermatozoa from mutant mice. In this article, we used Akap4 gene knockout mice to study the effect of fibrous sheath disruption on the presence, subcellular distribution, and/or activity changes of PKA catalytic and regulatory subunits, sperm flagellum proteins PP1gamma2 (protein phosphatase 1, catalytic subunit, gamma isoform, formally known as PPP1CC), GSK-3 (glycogen synthase kinase-3), SP17 (sperm autoantigenic protein 17, formally known as SPA17), and other signaling proteins. There were no changes in the presence and subcellular distribution for PP1gamma2, GSK-3, hsp90 (heat shock protein 1, alpha, formally known as HSPCA), sds22 (protein phosphatase 1, regulatory [inhibitor] subunit 7, formally known as PPP1R7), 14-3-3 protein (tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein), and PKB (thymoma viral proto-oncogene, also known as AKT) in mutant mice. However, the subcellular distributions for PKA catalytic subunit and regulatory subunits, PI 3-kinase (phosphatidylinositol 3-kinase), and SP17 were disrupted in mutant mice. Furthermore, there was a significant change in the activity and phosphorylation of PP1gamma2 in mutant compared with wild-type spermatozoa. These studies have identified potentially significant new roles for the fibrous sheath in regulating the activity and function of key signaling enzymes.  相似文献   

18.
Mammalian sperm capacitation is the obligatory maturational process leading to the development of the fertilization-competent state. Heparin is known to be a unique species-specific inducer of bovine sperm capacitation in vitro and glucose a unique inhibitor of this induction. Heparin-induced capacitation of bovine sperm has been shown to correlate with protein kinase A (PKA)-dependent protein tyrosine phosphorylation driven by an increase in intracellular cAMP. This study examines the possible roles of cyclic nucleotide phosphodiesterase (PDE) activity and intracellular alkalinization on bovine sperm capacitation and the protein tyrosine phosphorylation associated with it. Measurement of whole cell PDE kinetics during capacitation reveals neither a substantial change with heparin nor one with glucose: PDE activity is effectively constitutive in maintaining intracellular cAMP levels during capacitation. In contrast to a transient increase in intracellular pH, a sustained increase in medium pH by switching from 5% CO(2)/95% air incubation to 1% CO(2)/99% air incubation over 4 hr in the absence of heparin resulted in an increase in protein tyrosine phosphorylation and in the extent of induced acrosome reaction comparable to that observed following heparin-induced capacitation in 5% CO(2). These results suggest that increased bicarbonate-dependent adenylyl cyclase activity, driven by alkalinization, increases intracellular cAMP and so increases PKA activity mediating protein tyrosine phosphorylation. Quantitative analysis of the lactic acid production rate by bovine sperm glycolysis accounts fully for intracellular acidification sufficient to offset heparin-induced alkalinization, thus inhibiting capacitation. The mechanism by which heparin uniquely induces intracellular alkalinization in bovine sperm leading to capacitation remains obscure, inviting future investigation.  相似文献   

19.
Phosphorylation of tyrosine residues on sperm proteins is one important intracellular mechanism regulating sperm function that may be a meaningful indicator of capacitation. There is substantial evidence that cryopreservation promotes the capacitation of sperm and this cryocapacitation is frequently cited as one factor associated with the reduced longevity of cryopreserved sperm in the female reproductive tract. This study was designed to determine whether stallion sperm express different levels of tyrosine phosphorylation after in vitro capacitation and whether thawed sperm display similar phosphorylation characteristics in comparison with freshly ejaculated sperm. Experiments were performed to facilitate comparisons of tyrosine phosphorylation, motility, and viability of sperm prior to and following in vitro capacitation in fresh and frozen-thawed sperm. We hypothesized that equine spermatozoa undergo tyrosine phosphorylation during capacitation and that this phosphorylation is modified when sperm have been cryopreserved. We also hypothesized that tyrosine phosphorylation could be enhanced by the use of the activators dibutyryl cAMP (db cAMP) and caffeine, as well as methyl beta-cyclodextrin-which causes cholesterol efflux from the spermatozoa-and inhibited by the protein kinase A (PK-A) inhibitor H-89. Our results indicate that equine sperm capacitation is mediated by a signaling pathway that involves cAMP-dependent PK-A and tyrosine kinases and that cryopreserved sperm may be more sensitive to inducers of capacitation, which could explain their limited life span when compared with fresh sperm.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号