首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyze looping of thin charged elastic filaments under applied torques and end forces, using the solution of linear elasticity theory equations. In application to DNA, we account for its polyelectrolyte character and charge renormalization, calculating electrostatic energies stored in the loops. We argue that the standard theory of electrostatic persistence is only valid when the loop’s radius of curvature and close-contact distance are much larger than the Debye screening length. We predict that larger twist rates are required to trigger looping of charged rods as compared with neutral ones. We then analyze loop shapes formed on charged filaments of finite length, mimicking DNA looping by proteins with two DNA-binding domains. We find optimal loop shapes at different salt amounts, minimizing the sum of DNA elastic, DNA electrostatic, and protein elastic energies. We implement a simple model where intercharge repulsions do not affect the loop shape directly but can choose the energy-optimized shape from the allowed loop types. At low salt concentrations more open loops are favored due to enhanced repulsion of DNA charges, consistent with the results of computer simulations on formation of DNA loops by lac repressor. Then, we model the precise geometry of DNA binding by the lac tetramer and explore loop shapes, varying the confined DNA length and protein opening angle. The characteristics of complexes obtained, such as the total loop energy, stretching forces required to maintain its shape, and the reduction of electrostatic energy with increment of salt, are in good agreement with the outcomes of more elaborate numerical calculations for lac-repressor-induced DNA looping.  相似文献   

2.
The development of protein chips has suffered from problems regarding long-term protein stability and activity. We present a protein sensor surface for immunodetection that is prepared by a DNA-directed protein immobilization method on a mixed self-assembled monolayer (SAM). By this approach, an immobilized single-stranded DNA (ssDNA) surface can be transferred/modified into a protein chip by flowing in ssDNA-conjugated protein when the protein chip measurement is needed. Therefore, the long-term stability of the protein chip will not be a problem for various applications. We tried various compositions for the SAM layer, the length of the ssDNA spacer, the end-point nucleotide composition, and the processes of ssDNA immobilization of the SAM for an optimized condition for shifting the DNA chip to a protein chip. The evaluations were made by using surface plasmon resonance. Our results indicated that a 50:1 ratio of oligo(ethylene glycol) (OEG)/COOH-terminated OEG and DNA sequences with 20mer are the best conditions found here for making a protein chip via a DNA-directed immobilization (DDI) method. The designed end-point nucleotide composition contains a few guanines or cytosines, and ssDNA immobilization of the SAM by dehybridizing immobilized double-stranded DNA (dsDNA) can improve the hybridization efficiency.  相似文献   

3.
In label-free biodetections based on microcantilever technology, double-stranded DNA (dsDNA) structures form through the linkage between probe single-stranded DNA (ssDNA) molecules immobilized on solid substrates and target ssDNA molecules in solutions. Mechanical/electrical properties of these biolayers are important factors for nanomechanical deflections of microcantilevers. In this paper, the biolayer immobilized on microcantilever is treated as a bar with a macroscopic elastic modulus on the basis of continuum mechanics viewpoints. In consideration of hydration force, screened electrostatic repulsion and conformational fluctuation in biolayers, load-deformation curves of dsDNA biolayers under axial compression are depicted with the help of the energy conservation law and a mesoscopic free energy presented by Strey et al. (1997, 1999) [Strey, H.H., Parsegian, V.A., Podgornik, R., 1997. Equation of state for DNA liquid crystals: fluctuation enhanced electrostatic double layer repulsion. Physical Review Letters 78, 895–898; Strey, H.H., Parsegian, V.A., Podgornik, R., 1999. Equation of state for polymer liquid crystals: theory and experiment. Physical Review E 59, 999–1008] from a liquid crystal theory. And the analytical relation between macroscopic Young's modulus of biolayers and nanoscopic geometrical properties of dsDNA, packing density, buffer salt solution concentration, etc. is also formulated.  相似文献   

4.
The role of the 5′ terminal phosphate group downstream from the primer and magnesium cations in the energetics and dynamics of the gapped DNA recognition by rat polymerase β have been examined, using the fluorescence titration and stopped-flow techniques. The analyses have been performed with the entire series of gapped DNA substrates differing in the size of the ssDNA gap. The 5′ terminal phosphate group and magnesium cations exert antagonistic effect on enzyme binding to gapped DNA that depends on the length of the ssDNA gap. The PO 4 group amplifies the differences between the substrates with different ssDNA gaps, while in the presence of magnesium, affinities and structural changes induced in the DNA are very similar among examined DNA substrates. Both, the phosphate group and Mg+2 differ dramatically in affecting the thermodynamic response of the gapped DNA-rat pol β system to the salt concentration. The data indicate that these distinct effects result from affecting the structure of the DNA, in the case of the phosphate group, and from direct magnesium binding to the protein. The mechanism of rat enzyme binding depends on the length of the ssDNA gap and the presence of the 5′ terminal phosphate group. Complex formation with DNAs having three, four, and five residues in the gap occurs by a minimum three-step sequential mechanism. Depending on the presence of the 5′ terminal phosphate group and/or magnesium, binding of the enzyme to a DNA containing two residues in the ssDNA gap is described by the same three-step or by a simpler two-step mechanism. With the DNA containing only one residue in the gap, binding is always described by only a two-step mechanism. The PO 4 group and magnesium cations have opposite effects on internal stability of the complexes with different length of the ssDNA gap. While the PO 4 group increases the stability of internal intermediates with the increasing length of the gap, Mg+2 decreases the stability of the intermediates with longer ssDNA gap. As a result, the combined favorable orientation effect of the phosphate group and the unfavorable Mg+2 effect lead to the optimal docking of the ssDNA gaps with three and four residues by the enzyme. This work was supported by NIH Grant GM-58565 (to W. B.)  相似文献   

5.
The theory for the salt dependence of the free energy, entropy, and enthalpy of a polyelectrolyte in the PB (PB) model is extended to treat the nonspecific salt dependence of polyelectrolyte–ligand binding reactions. The salt dependence of the binding constant (K) is given by the difference in osmotic pressure terms between the react ants and the products. For simple 1-1 salts it is shown that this treatment is equivalent to the general preferential interaction model for the salt dependence of binding [C. Anderson and M. Record (1993) Journal of Physical Chemistry, Vol. 97, pp. 7116–7126]. The salt dependence, entropy, and enthalpy are compared for the PB model and one specific form of the preferential interaction coefficient model that uses counterion condensation/limiting law (LL) behavior. The PB and LL models are applied to three ligand–polyelectrolyte systems with the same net ligand charge: a model sphere–cylinder binding reaction, a drug–DNA binding reaction, and a protein–DNA binding reaction. For the small ligands both the PB and limiting law models give (ln K vs. In [salt]) slopes close in magnitude to the net ligand charge. However, the enthalpy/entropy breakdown of the salt dependence is quite different. In the PB model there are considerable contributions from electrostatic enthalpy and dielectric (water reorientation) entropy, compared to the predominant ion cratic (release) entropy in the limiting law model. The relative contributions of these three terms in the PB model depends on the ligand: for the protein, ion release entropy is the smallest contribution to the salt dependence of binding. The effect of three approximations made in the LL model is examined: These approximations are (1) the ligand behaves ideally, (2) the preferential interaction coefficient of the polyelectrolyte is unchanged upon ligand binding, and (3) the polyelectrolyte preferential interaction coefficient is given by the limiting law/counterion-condensation value. Analysis of the PB model shows that assumptions 2 and 3 break down at finite salt concentrations. For the small ligands the effects on the slope cancel, however, giving net slopes that are similar in the PB and LL models, but with a different entropy/enthalpy breakdown. For the protein ligand the errors from assumptions 2 and 3 in the LL model do not cancel. In addition, the ligand no longer behaves ideally due to its complex structure and charge distribution. Thus for the protein the slope is no longer related simply to the net ligand charge, and the PB model gives a much larger slope than the LL model. Additionally, in the PB model most of the salt dependence of the protein binding comes from the change in ligand activity, i.e. from nonspecific anion effects, in contrast to the small ligand case. While the absolute binding is sensitive to polyelectrolyte length, little length effect is seen on the salt dependence for the small ligands at 0.1M salt, and for lengths > 60 Å. Almost no DNA length dependenceis seen in the salt dependence of the protein binding, since this is determined primarily by the protein, not the DNA. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
We present experiments on the bias-induced release of immobilized, single-stranded (ss) 24-mer oligonucleotides from Au-surfaces into electrolyte solutions of varying ionic strength. Desorption is evidenced by fluorescence measurements of dye-labeled ssDNA. Electrostatic interactions between adsorbed ssDNA and the Au-surface are investigated with respect to 1), a variation of the bias potential applied to the Au-electrode; and 2), the screening effect of the electrolyte solution. For the latter, the concentration of monovalent salt in solution is varied from 3 to 1600 mM. We find that the strength of electric interaction is predominantly determined by the effective charge of the ssDNA itself and that the release of DNA mainly occurs before the electrochemical double layer has been established at the electrolyte/Au interface. In agreement with Manning's condensation theory, the measured desorption efficiency (etarel) stays constant over a wide range of salt concentrations; however, as the Debye length is reduced below a value comparable to the axial charge spacing of the DNA, etarel decreases substantially. We assign this effect to excessive counterion condensation on the DNA in solutions of high ionic strength. In addition, the relative translational diffusion coefficient of ssDNA in solution is evaluated for different salt concentrations.  相似文献   

7.
Helicase from hepatitis C virus,energetics of DNA binding   总被引:9,自引:0,他引:9  
The ability of a helicase to bind single-stranded nucleic acid is critical for nucleic acid unwinding. The helicase from the hepatitis C virus, NS3 protein, binds to the 3'-DNA or the RNA strand during unwinding. As a step to understand the mechanism of unwinding, DNA binding properties of the helicase domain of NS3 (NS3h) were investigated by fluorimetric binding equilibrium titrations. The global analysis of the binding data by a combinatorial approach was done using MATLAB. NS3h interactions with single-stranded DNA (ssDNA) are 300-1000-fold tighter relative to duplex DNA. The NS3h protein binds to ssDNA less than 15 nt in length with a stoichiometry of one protein per DNA. The minimal ssDNA binding site of NS3h helicase was determined to be 8 nucleotides with the microscopic K(d) of 2-4 nm or an observed free energy of -50 kJ/mol. These NS3h-DNA interactions are highly sensitive to salt, and the K(d) increases 4 times when the NaCl concentration is doubled. Multiple HCV helicase proteins bind to ssDNA >15 nucleotides in length, with an apparent occluded site of 8-11 nucleotides. The DNA binding data indicate that the interactions of multiple NS3h protein molecules with long ssDNA are both noncooperative and sequence-independent. We discuss the DNA binding properties of HCV helicase in relation to other superfamily 1 and 2 helicases. These studies provide the basis to investigate the DNA binding interactions with the unwinding substrate and their modulation by the ATPase activity of HCV helicase.  相似文献   

8.
9.
Surface plasmon resonance (SPR) spectroscopy has been used to study DNA assembly, DNA hybridization, and protein-DNA interactions on two streptavidin (SA) sensor chips. On one chip, SA molecules are immobilized on a biotin-exposed surface, forming an ordered two-dimensional (2D) SA monolayer. The other chip, BIAcore's SA chip, contains SA molecules immobilized within a three-dimensional (3D) carboxylated dextran matrix. Compared to the 2D chip, the 3D SA matrix allows for a slower immobilization rate of biotinylated DNA due to diffusion limitation in the dextran matrix, but with twice the amount of the immobilized DNA due to the greater number of reactive sites, which in turn enables a higher sensitivity for DNA hybridization detection. Interestingly, having a greater DNA probe dispersion in the 3D matrix does not induce a higher DNA hybridization efficiency. In a study of protein binding to immobilized DNA (estrogen receptor to estrogen response elements), aiming at assessing the DNA sequence dependent protein binding behavior, the 2D and 3D chips produce different binding characteristics. On the 2D chip, the protein binding exhibits a better selectivity to the specific sequences, regardless of binding stringency (e.g. salt concentration), whereas on the 3D chip, the liquid handling system needs to be optimized in order to minimize transport limitations and to detect small affinity differences. Through this study we demonstrate that the physicochemical structure of SPR chips affects the apparent binding behaviors of biomolecules. When interpreting SPR binding curves and selecting a sensor chip, these effects should be taken into account.  相似文献   

10.
Approach to the limit of counterion condensation   总被引:5,自引:0,他引:5  
M O Fenley  G S Manning  W K Olson 《Biopolymers》1990,30(13-14):1191-1203
According to counterion condensation theory, one of the contributions to the polyelectrolyte free energy is a pairwise sum of Debye-Hückel potentials between polymer charges that are reduced by condensed counterions. When the polyion model is taken as an infinitely long and uniformly spaced line of charges, a simple closed expression for the summation, combined with entropy-derived mixing contributions, leads to the central result of the theory, a condensed fraction of counterions dependent only on the linear charge density of the polyion and the valence of the counterion, stable against increases of salt up to concentrations in excess of 0.1 M. Here we evaluate the sum numerically for B-DNA models other than the infinite line of B-DNA charges. For a finite-length line there are end effects at low salt. The condensation limit is reached as a flat plateau by increasing the salt concentration. At a fixed salt concentration the condensation limit is reached by increasing the length of the line. At moderate salt even very short B-DNA line-model oligomers have condensed fractions not far from the infinite polymer limit. For a long double-helical array with charge coordinates at the phosphates of B-DNA, the limiting condensed fraction appears to be approached at low salt. In contrast to the results for the line of charges, however, the computed condensed fraction varies strongly with salt in the range of experimentally typical concentrations. Salt invariance is restored, in agreement with both the line model and experimental data, when dielectric saturation is considered by means of a distance-dependent dielectric function. For sufficiently long B-DNA line and helical models, as typical salt concentrations, the counterion binding fraction approaches the polymer limit as a linear function of 1/P, where P is the number of phosphate groups of B-DNA.  相似文献   

11.
Bacteriophage T4 gene 32 protein (gp32) is a well-studied representative of the large family of single-stranded DNA (ssDNA) binding proteins, which are essential for DNA replication, recombination and repair. Surprisingly, gp32 has not previously been observed to melt natural dsDNA. At the same time, *I, a truncated version of gp32 lacking its C-terminal domain (CTD), was shown to decrease the melting temperature of natural DNA by about 50 deg. C. This profound difference in the duplex destabilizing ability of gp32 and *I is especially puzzling given that the previously measured binding of both proteins to ssDNA was similar. Here, we resolve this apparent contradiction by studying the effect of gp32 and *I on the thermodynamics and kinetics of duplex DNA melting. We use a previously developed single molecule technique for measuring the non-cooperative association constants (K(ds)) to double-stranded DNA to determine K(ds) as a function of salt concentration for gp32 and *I. We then develop a new single molecule method for measuring K(ss), the association constant of these proteins to ssDNA. Comparing our measured binding constants to ssDNA for gp32 and *I we see that while they are very similar in high salt, they strongly diverge at [Na+] < 0.2 M. These results suggest that intact protein must undergo a conformational rearrangement involving the CTD that is in pre-equilibrium to its non-cooperative binding to both dsDNA and ssDNA. This lowers the effective concentration of protein available for binding, which in turn lowers the rate at which it can destabilize dsDNA. For the first time, we quantify the free energy of this CTD unfolding, and show it to be strongly salt dependent and associated with sodium counter-ion condensation on the CTD.  相似文献   

12.
Using the numerical model of Scheutjens and Fleer, we investigated, on a self-consistent field level, the equilibrium structure of the neurofilament brush formed by projection domains of the constituent NF-H, NF-M, and NF-L proteins. The phosphorylation of such a brush is a major regulatory process that triggers the relocation of the H tails from the NF core to the brush periphery. We explore how the pH and the ionic strength affect the rearrangements in the NF brush structure upon phosphorylation. We demonstrate that the translocation of H tails in an individual NF occurs as a sharp cooperative transition below and up to the physiological salt concentration. Regularities of this process are reminiscent of the collapse-to-stretching transition in a cylindrical polyelectrolyte brush in a poor solvent. The effect of pH at physiological ionic strength is noticeable only in the acidic range and is more pronounced for a dephosphorylated NF.  相似文献   

13.
《Biophysical journal》2022,121(11):2127-2134
Measuring the mechanical properties of single-stranded DNA (ssDNA) is a complex challenge that has been addressed lately by different methods. We measured the persistence length of ring ssDNA using a combination of a special DNA origami structure, a self-avoiding ring polymer simulation model, and nonparametric estimation statistics. The method overcomes the complexities set forth by previously used methods. We designed the DNA origami nano structures and measured the ring ssDNA polymer conformations using atomic force microscopy. We then calculated their radius of gyration, which was used as a fitting parameter for finding the persistence length. As there is no simple formulation for the radius of gyration distribution, we developed a simulation program consisting of a self-avoiding ring polymer to fit the persistence length to the experimental data. ssDNA naturally forms stem-loops, which should be taken into account in fitting a model to the experimental measurement. To overcome that hurdle, we found the possible loops using minimal energy considerations and used them in our fitting procedure of the persistence length. Due to the statistical nature of the loops formation, we calculated the persistence length for different percentages of loops that are formed. In the range of 25–75% loop formation, we found the persistence length to be 1.9–4.4 nm, and for 50% loop formation we get a persistence length of 2.83 ± 0.63 nm. This estimation narrows the previously known persistence length and provides tools for finding the conformations of ssDNA.  相似文献   

14.
The homotetrameric Escherichia coli single-stranded DNA-binding (SSB) protein plays a central role in DNA replication, repair, and recombination. In addition to its essential activity of binding to transiently formed single-stranded (ss) DNA, SSB also binds an array of partner proteins and recruits them to their sites of action using its four intrinsically disordered C-terminal tails. Here we show that the binding of ssDNA to SSB is inhibited by the SSB C-terminal tails, specifically by the last 8 highly acidic amino acids that comprise the binding site for its multiple partner proteins. We examined the energetics of ssDNA binding to short oligodeoxynucleotides and find that at moderate salt concentration, removal of the acidic C-terminal ends increases the intrinsic affinity for ssDNA and enhances the negative cooperativity between ssDNA binding sites, indicating that the C termini exert an inhibitory effect on ssDNA binding. This inhibitory effect decreases as the salt concentration increases. Binding of ssDNA to approximately half of the SSB subunits relieves the inhibitory effect for all of the subunits. The inhibition by the C termini is due primarily to a less favorable entropy change upon ssDNA binding. These observations explain why ssDNA binding to SSB enhances the affinity of SSB for its partner proteins and suggest that the C termini of SSB may interact, at least transiently, with its ssDNA binding sites. This inhibition and its relief by ssDNA binding suggest a mechanism that enhances the ability of SSB to selectively recruit its partner proteins to sites on DNA.  相似文献   

15.
Li Z  Wu J  Wang ZG 《Biophysical journal》2008,94(3):737-746
We present a theoretical model for aqueous solutions of double-stranded (ds) DNA with explicit consideration of electrostatic interactions, excluded-volume effects, van der Waals attractions, and salt ions. With reasonable parameters estimated from the DNA structure and experimental data for electrolytes, we are able to reproduce the DNA osmotic pressure in the bulk in good agreement with experiment. The predicted DNA osmotic pressure in λ-bacteriophages is found to coincide with that of the PEG8000 solution that inhibits DNA ejection as reported in recent experiments. Based on the radial distributions of DNA segments and of counterions at different degrees of packaging, we find that in the presence of Mg2+, DNA forms a multilayer structure near the inner surface of a fully loaded bacteriophage, but at low packing density the DNA segments are depleted from the surface owing to the local condensation of DNA induced by the divalent counterions. By contrast, the multilayer DNA structure is less distinctive in the presence of Na+ despite the increase of the DNA density at contact, and the depletion near the capsid surface is not found at low packing density.  相似文献   

16.
A biodevice involving thiolated ssDNA and engineered cytochrome b5 linked through a cis-platine bridge is described. This original nanostructure is associated to a supported membrane through a floating anchor, thus constituting a dynamic bidimensionnal DNA capture device contrasting with the constrained geometry of currently available DNA chips. Characterization by optical spectroscopy, surface plasmon resonance and gel electrophoresis demonstrated that an unique molecular supra-assembly featuring specific DNA recognition capability has been obtained. This device is characterized by the reversibility of its assembly, self-organization and fluidity properties and is of interest as a prototype to design new generations of DNA chip biosensors.  相似文献   

17.
In our studies of lac repressor tetramer (T)-lac operator (O) interactions, we observed that the presence of extended regions of non-operator DNA flanking a single lac operator sequence embedded in plasmid DNA produced large and unusual cooperative and anticooperative effects on binding constants (Kobs) and their salt concentration dependences for the formation of 1:1 (TO) and especially 1:2 (TO2) complexes. To explore the origin of this striking behavior we report and analyze binding data on 1:1 (TO) and 1:2 (TO2) complexes between repressor and a single O(sym) operator embedded in 40 bp, 101 bp, and 2514 bp DNA, over very wide ranges of [salt]. We find large interrelated effects of flanking DNA length and [salt] on binding constants (K(TO)obs, K(TO2)obs) and on their [salt]-derivatives, and quantify these effects in terms of the free energy contributions of two wrapping modes, designated local and global. Both local and global wrapping of flanking DNA occur to an increasing extent as [salt] decreases. Global wrapping of plasmid-length DNA is extraordinarily dependent on [salt]. We propose that global wrapping is driven at low salt concentration by the polyelectrolyte effect, and involves a very large number (>/similar 20) of coulombic interactions between DNA phosphates and positively charged groups on lac repressor. Coulombic interactions in the global wrap must involve both the core and the second DNA-binding domain of lac repressor, and result in a complex which is looped by DNA wrapping. The non-coulombic contribution to the free energy of global wrapping is highly unfavorable ( approximately +30-50 kcal mol(-1)), which presumably results from a significant extent of DNA distortion and/or entropic constraints. We propose a structural model for global wrapping, and consider its implications for looping of intervening non-operator DNA in forming a complex between a tetrameric repressor (LacI) and one multi-operator DNA molecule in vivo and in vitro. The existence of DNA wrapping in LacI-DNA interactions motivates the proposal that most if not all DNA binding proteins may have evolved the capability to wrap and thereby organize flanking regions of DNA.  相似文献   

18.
19.
Escherichia coli SSB (EcSSB) is a model single-stranded DNA (ssDNA) binding protein critical in genome maintenance. EcSSB forms homotetramers that wrap ssDNA in multiple conformations to facilitate DNA replication and repair. Here we measure the binding and wrapping of many EcSSB proteins to a single long ssDNA substrate held at fixed tensions. We show EcSSB binds in a biphasic manner, where initial wrapping events are followed by unwrapping events as ssDNA-bound protein density passes critical saturation and high free protein concentration increases the fraction of EcSSBs in less-wrapped conformations. By destabilizing EcSSB wrapping through increased substrate tension, decreased substrate length, and protein mutation, we also directly observe an unstable bound but unwrapped state in which ∼8 nucleotides of ssDNA are bound by a single domain, which could act as a transition state through which rapid reorganization of the EcSSB–ssDNA complex occurs. When ssDNA is over-saturated, stimulated dissociation rapidly removes excess EcSSB, leaving an array of stably-wrapped complexes. These results provide a mechanism through which otherwise stably bound and wrapped EcSSB tetramers are rapidly removed from ssDNA to allow for DNA maintenance and replication functions, while still fully protecting ssDNA over a wide range of protein concentrations.  相似文献   

20.
Hyaluronan (HA) is a naturally occurring linear, negatively charged polysaccharide that plays a vital role in the organization and function of pericellular coats and extracellular matrices in vertebrates, and that is becoming increasingly popular in biomedical applications. To gain insight into the physical phenomena that govern the mechanical behavior of HA assemblies, we have studied the response of films of end-grafted HA to compression over a large range of ionic strength. Compression forces were measured as a function of the absolute distance between a colloidal probe and the planar surface on which the HA film was constructed, using a combined atomic force microscopy and reflection interference contrast microscopy setup. The HA films were well-defined in the sense that they are made of chains with a narrow size distribution that are grafted at controlled density to a solid support. Detailed comparison of the experimental data with analytical expressions derived from polymer and polyelectrolyte brush theory reveals that films of end-grafted HA behave as strongly charged polyelectrolyte brushes. To quantitatively reproduce the experimental data, intrinsic excluded volume interactions and chain stiffness of the polymer backbone must be taken into account. At low ionic strength, chains become almost fully stretched. In our experimental system, several micrometer thick films are formed that reach a hydration of up to 99.98%, and the brush thickness decreases by more than 5-fold with increasing ionic strength. More generally, the study provides quantitative theoretical predictions for the film thickness and compressive response as a function of HA length, grafting density and ionic strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号