首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of an eco-friendly and reliable process for the synthesis of gold nanomaterials (AuNPs) using microorganisms is gaining importance in the field of nanotechnology. In the present study, AuNPs have been synthesized by bio-reduction of chloroauric acid (HAuCl4) using the fungal culture filtrate (FCF) of Alternaria alternata. The synthesis of the AuNPs was monitored by UV–visible spectroscopy. The particles thereby obtained were characterized by UV, dynamic light scattering (DLS), X-ray diffraction (XRD), energy dispersive X-ray (EDX) analysis, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM) and transmission electron microscopy (TEM). Energy-dispersive X-ray study revealed the presence of gold in the nanoparticles. Fourier transform infrared spectroscopy confirmed the presence of a protein shell outside the nanoparticles which in turn also support their stabilization. Treatment of the fungal culture filtrate with aqueous Au+ ions produced AuNPs with an average particle size of 12 ± 5 nm. This proposed mechanistic principal might serve as a set of design rule for the synthesis of nanostructures with desired architecture and can be amenable for the large scale commercial production and technical applications.  相似文献   

2.
Intracellular bioconversion of auric ion (Au3+) to gold nanorod (Au0) by the cyanobacterium Nostoc ellipsosporum has been observed for the first time in laboratory condition. The nanorods were produced within the cell after exposing the healthy growing filaments to 15 mg L−1 gold (III) solution (pH 4.5) for 48 h at 20°C. The gold nanoparticles were extracted with sodium citrate solution and were subjected to UV–Visible spectroscopy. The characteristic surface-multiple plasmon bands at 560, 610, and 670 nm were observed. The nature and size of the particles were determined by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), and zeta potential studies. The nanorod size ranged from 137 to 209 nm in length and 33 to 69 nm in diameter. DLS study revealed the average hydrodynamic size as 435 nm and XRD study indicated the reduction of Au3+ to Au0. Methods of extraction and preservation of gold nanorod particles have also been studied.  相似文献   

3.
Immobilization of lipase on hydrophobic nano-sized magnetite particles   总被引:2,自引:0,他引:2  
As a tool for the stable enzyme reuse, enzyme immobilization has been studied for several decades. Surface-modified nano-sized magnetite (S-NSM) particles have been suggested as a support for the immobilization of enzyme in this study. Based on the finding that a lipase is strongly adsorbed onto a hydrophobic surface, NSM particles (8–12 nm) were made hydrophobic by binding of sodium dodecyl sulfate via a sulfate ester bond. Various types of measurements, such as transmission electron microscopy, X-ray diffraction, infrared spectroscopy, vibration sample magnetometer, and thermo gravimetric analysis, were conducted in characterizing S-NSM nanoparticles. S-NSM particles were used for the adsorption of porcine pancreas lipase (PPL). A dodecyl carbon chain is expected to form a spacer between the surface of the NSM and the lipase adsorbed. The immobilized PPL showed the higher specific activity of oil hydrolysis than that of free one. Immobilized PPL could be recovered by magnetic separation, and showed the constant activity during the recycles.  相似文献   

4.
Hydroxyapatites were analysed using electron microscopy, X-ray diffraction (XRD) and X-ray fluorescence (XRF) analysis. Examination of a bacterially produced hydroxyapatite (Bio-HA) by scanning electron microscopy showed agglomerated nano-sized particles; XRD analysis confirmed that the Bio-HA was hydroxyapatite, with an organic matter content of 7.6%; XRF analysis gave a Ca/P ratio of 1.55, also indicative of HA. The size of the Bio-HA crystals was calculated as ~25 nm from XRD data using the Scherrer equation, whereas Comm-HA powder size was measured as ≤50 μm. The nano-crystalline Bio-HA was ~7 times more efficient in removing Sr2+ from synthetic groundwater than Comm-HA. Dissolution of HA as indicated by the release of phosphate into the solution phase was higher in the Comm-HA than the Bio-HA, indicating a more stable biomaterial which has a potential for the remediation of contaminated sites.  相似文献   

5.
A three-dimensional (3D) continuous and interconnected network graphene foam (GF) was synthesized by chemical vapor deposition using nickel foam as a template. The morphologies of the GF were observed by scanning electron microscopy. X-ray diffraction and Raman spectroscopy were used to investigate the structure of GF. The graphene with few layers and defect free was closely coated on the backbone of the 3D nickel foam. After etching nickel, the GF was transferred onto indium tin oxide (ITO) glass, which acted as an electrode to detect uric acid using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The GF/ITO electrode showed a high sensitivity for the detection of uric acid: approximately 9.44 mA mM−1 in the range of 25 nM–0.1 μM and 1.85 mA mM−1 in the range of 0.1–60 μM. The limit of detection of GF/ITO electrode for uric acid is 3 nM. The GF/ITO electrode also showed a high selectivity for the detection of uric acid in the presence of ascorbic acid. This electrode will have a wide range of potential application prospects in electrochemical detection.  相似文献   

6.
Extracellular polymeric substances (EPS) produced by a toxic dinoflagellate Amphidinium carterae Hulburt 1957 was isolated and characterized. Molecular masses of the EPS were about 233 and 1,354 kDa. Spectral analyses by 1H nuclear magnetic resonance and Fourier Transformed–Infrared Spectroscopy revealed the characteristic of the functional groups viz. primary amine, carboxyl, halide, and sulfate groups present in the EPS. However, five elements (C, O, Na, S, and Ca) were detected by scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM-EDX) analysis. X-ray diffraction and differential scanning calorimetric analysis confirmed the amorphous nature of EPS, which was comprised of an average particle size of 13.969 μm (d 0.5) with 181 nm average roughness. Two monosaccharide constituents, galactose (73.13%) and glucose (26.87%) were detected by gas chromatography–mass spectroscopy analysis. Thermal gravimetric analysis revealed that degradation of EPS obtained from A. carterae takes place in three steps. The EPS produced by A. carterae was found to be beneficial for the growth of both A. carterae and Bacillus pumilus. The potential heterogeneous properties of EPS may play an important role in harmful algal bloom.  相似文献   

7.
The three dimensional (3-D) poly(trimethylenecarbonate-co-ε-caprolactone)-block-poly(p-dioxanone) scaffold was made using a wet electrospinning method and its application as a tissue engineered matrix was evaluated for bone regeneration. The scaffold was highly porous (90%) and interconnected among pores. Under scanning electron microscopy, the cells of the center of the scaffold showed healthy well attached shape even at 4 days after seeding. The osteoblastic MC3T3-E1 cells proliferated 1.2 times faster at 4 day, 1.5 times faster at 7 days after seeding as compared with the control in the scaffold (P < 0.05). The activity of alkaline phosphatase, a bone formation marker, of cells seeded in the scaffold was nearly four times faster compared to control 28 days after seeding (P < 0.05). Taken together, newly developed 3-D poly(trimethylenecarbonate-co-ε-caprolactone)-block-poly(p-dioxanone) scaffold is a promising candidate for bone regeneration.  相似文献   

8.
ZnO nanostructures of diverse shape were grown via a solution process with different precursors and conditions. Morphological investigation of the nanostructures was carried out using field emission scanning electron microscopy and transmission microscopy observations and revealed that the nanostructures exhibit a wurtzite phase with an ideal lattice fringe distance of approximately 0.52 nm. The powder crystallinity was examined via X-ray diffraction spectroscopy. Screening results from anticancer studies of the effects on human brain tumor U87, cervical cancer HeLa, and normal HEK cells of ZnO nanostructures of diverse shape were obtained and indicate promising activity that varies with changes in the structure and the size of the particles. Treatment-induced cell death [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and survival assay], growth inhibition, cytogenetic damage (formation of micronuclei), and apoptosis were studied as parameters for the cellular response. Treatment with nanostructures enhanced growth inhibition and cell death in a concentration-dependent manner in both U87 and HeLa cell lines. At higher concentrations (above 15.6 μg/ml) the cytotoxic effects of the nanoparticles were highly synergistic and mainly mediated through apoptosis, implying the possible interactions of lesions caused by the agents. The enhanced cell death due to nanoparticles was accompanied by a significant increase (2–3 fold at 31.25 μg/ml) in the formation of micronuclei in U87 cells. The increase in the formation of micronuclei observed after treatment indicates that these structures may interfere with the rejoining of DNA strand breaks. Among all the nanostructures, nanoparticles and sheets exhibited potent activity against both HeLa and U87 cells. However, despite potent in vitro activity, all nanostructures exhibited diminished cytotoxicity against normal human HEK cells at all effective concentrations.  相似文献   

9.
Size- and shape-controlled syntheses of silver and gold nanoparticles have been successfully developed using partially hydrolyzed starch vermicelli templates as green nanoreactors for the growth of nanoparticles. Mung bean vermicelli is of interest due to the higher amylose content and its transparency, allowing the formation of coloured particles on the vermicelli to be observed. The as-prepared silver and gold nanoparticles were characterized by UV–Visible spectroscopy, transmission electron microscopy (TEM), and X-ray diffraction (XRD). The carbonization of as-prepared vermicelli at 200 °C, 300 °C, and 500 °C was carried out to investigate nanoparticles embedded in the starch vermicelli templates. TEM of carbonized samples revealed the interesting patterns of gold nanorods and silver nanowire-liked assemblies along with carbon nanotubes. The carbonization of silver nanoparticles at 500 °C resulted to the loss of starch vermicelli capping nanoparticles and this led to the higher diffusion rate of nanoparticles to generate silver nanodendrites on TEM images. XRD data of carbonized yellow and purple silver nanoparticles revealed the presence of silver nanoparticles and a mixture of silver and silver chloride nanoparticles, respectively. This approach offers a great potential to design new fine structures of vermicelli and utilize its structure as a template for the large-scale synthesis of size- and shape-controlled silver and gold nanoparticles for chemical and biological applications.  相似文献   

10.
The leaf extract of Ocimum sanctum was used as a reducing agent for the synthesis of platinum nanoparticles from an aqueous chloroplatinic acid (H2PtCl6·6H2O). A greater conversion of platinum ions to nanoparticles was achieved by employing a tulsi leaf broth with a reaction temperature of 100 °C. Energy-dispersive absorption X-ray spectroscopy confirmed the platinum particles as major constituent in the reduction process. It is evident from scanning electron microscopy that the reduced platinum particles were found as aggregates with irregular shape. Fourier-transform infrared spectroscopy revealed that the compounds such as ascorbic acid, gallic acid, terpenoids, certain proteins and amino acids act as reducing agents for platinum ions reduction. X-ray diffraction spectroscopy suggested the associated forms of platinum with other molecules and the average particle size of platinum nanoparticle was 23 nm, calculated using Scherer equation. The reduced platinum showed similar hydrogen evolution potential and catalytic activity like pure platinum using linear scan voltammetry. This environmentally friendly method of biological platinum nanoparticles production increases the rates of synthesis faster which can potentially be used in water electrolysis applications.  相似文献   

11.

Laser Molecular Beam Epitaxy (Laser MBE) technique is utilized for the growth of InGaN/GaN quantum well (QW) structure. Present work reports the optimization of QW structure (3 to 7 QWs) using indigenously developed Surface Plasmon Resonance (SPR) technique in Otto Configuration and Electrical, structural and optical properties of the QWs were studied using Hall measurement, X-ray diffraction and Photoluminescence spectroscopy respectively. Five QWs structure with well width of 6 nm (InGaN) and 8 nm (GaN) is optimized to be exhibiting for maximum charge confinement using the SPR studies and these results are found to be in agreement with that obtained from Photoluminescence spectroscopy study. A dispersion in refractive index (n) is observed with the wavelength of incident laser light. The results indicate that the optimized QW structure is essentially required for the fabrication of highly efficient LEDs and solid-state light sources.

  相似文献   

12.
Gold nanoparticles (NPs) were synthesized using Semecarpus anacardium leaf extracts in water and the green biomass. Extract prepared at ambient condition by crushing the leaves in deionized water is identified as ‘green extract’, and that by boiling the leaf pieces as ‘boiled extract’. The mass remaining after separating the ‘green extract’ is identified as ‘green biomass’. These components triggered rapid reduction of Au(III) to Au (0) in HAuCl4 solution indicating the natural ability of the leaves of S. anacardium to synthesize NPs in ambient conditions. Green extract produced more NPs compared to the boiled extract suggesting denaturization of some of the useful factors due to boiling. NPs were quantified using UV and ICP-AES analysis. These were characterized using Transmission electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. TEM images of the particles formed with green extract, boiled extract and green biomass showed that the particles were of different shapes and sizes.  相似文献   

13.
The purpose of this study was to design and build a supercritical CO2 anti-solvent (SAS) unit and use it to produce microparticles of the class II drug carbamazepine. The operation conditions of the constructed unit affected the carbamazepine yield. Optimal conditions were: organic solution flow rate of 0.15 mL/min, CO2 flow rate of 7.5 mL/min, pressure of 4,200 psi, over 3,000 s and at 33°C. The drug solid-state characteristics, morphology and size distribution were examined before and after processing using X-ray powder diffraction and differential scanning calorimetry, scanning electron microscopy and laser diffraction particle size analysis, respectively. The in vitro dissolution of the treated particles was investigated and compared to that of untreated particles. Results revealed a change in the crystalline structure of carbamazepine with different polymorphs co-existing under various operation conditions. Scanning electron micrographs showed a change in the crystalline habit from the prismatic into bundled whiskers, fibers and filaments. The volume weighted diameter was reduced from 209 to 29 μm. Furthermore, the SAS CO2 process yielded particles with significantly improved in vitro dissolution. Further research is needed to optimize the operation conditions of the self-built unit to maximize the production yield and produce a uniform polymorphic form of carbamazepine.  相似文献   

14.
The effect of silver ionic exchange on the glass structure in a molten bath at 350 °C was presented in a previous paper Catan et al. [1] (J NonCryst Solids 354:1026–1031, 2008). In this paper, the experiment is driven for a temperature near 310 °C, the eutectic of a 10% AgNO3–NaNO3 molten salt. The various exchanged silicate glasses are further annealed to obtain silver particles in the matrix. Infrared spectroscopy combined with UV/Visible spectroscopy and scanning electron microscopy analysis allowed to correlate the silver-ion penetration and particle formation with the degree of polymerisation of the silicate network. The previous results have demonstrated an insertion of silver ions in the glass structure that is about 10% higher than the departure of sodium ions. Infrared results obtained after ion exchange have proved that local alterations lead to a higher degree of depolymerisation of the silicate network. Here, the annealing of the samples promotes the formation of silver nanoparticles, the infrared measurements prove that the aggregation is correlated to a repolymerisation of the silicate network. Transmission electron microscopy (TEM) is used to evaluate the distribution size of the silver particles after annealing and to correlate it to the evolution of the absorption curves. The TEM observations prove that the particle are below the incident wavelength but shape factor could lead to scattering contribution when particle growths and to absorption spectra evolution.  相似文献   

15.
A semiconductor nano-material was prepared, and its degradation efficiency of zearalenone (ZEN) was studied. The photocatalytic material graphitic carbon nitride (g-C3N4) was synthesized by the traditional method of hot cracking. Its structure was characterized by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The photocatalytic degradation experiment showed that under the irradiation of ultraviolet (UV) lamp (254 nm, including 185 nm), g-C3N4 could induce photocatalytic effect, which provided a new method for the degradation of ZEN in real powder samples. The experimental conditions of photocatalytic degradation of the primary reference material of ZEN and ZEN in real powder samples were explored. And the degradation products of ZEN were analyzed after high-performance liquid chromatography–mass spectrometry (HPLC–MS). Under each optimal experimental conditions, the degradation rate on primary reference material of ZEN and ZEN in real powder samples was 96.0% and 50.0%, respectively. The results in this work provide a theoretical reference and practical basis for the photocatalytic degradation of mycotoxin in real powder samples by g-C3N4.  相似文献   

16.

Background  

Transmission electron tomography is an increasingly common three-dimensional electron microscopy approach that can provide new insights into the structure of subcellular components. Transmission electron tomography fills the gap between high resolution structural methods (X-ray diffraction or nuclear magnetic resonance) and optical microscopy. We developed new software for transmission electron tomography, TomoJ. TomoJ is a plug-in for the now standard image analysis and processing software for optical microscopy, ImageJ.  相似文献   

17.
The physicochemical and bactericidal properties of thin silver films have been analysed. Silver films of 3 and 150 nm thicknesses were fabricated using a magnetron sputtering thin-film deposition system. X-ray photoelectron and energy dispersive X-ray spectroscopy and atomic force microscopy analyses confirmed that the resulting surfaces were homogeneous, and that silver was the most abundant element present on both surfaces, being 45 and 53 at.% on the 3- and 150-nm films, respectively. Inductively coupled plasma time of flight mass spectroscopy (ICP-TOF-MS) was used to measure the concentration of silver ions released from these films. Concentrations of 0.9 and 5.2 ppb were detected for the 3- and 150-nm films, respectively. The surface wettability of the films remained nearly identical for both film thicknesses, displaying a static water contact angle of 95°, while the surface free energy of the 150-nm film was found to be slightly greater than that of the 3-nm film, being 28.8 and 23.9 mN m−1, respectively. The two silver film thicknesses exhibited statistically significant differences in surface topographic profiles on the nanoscopic scale, with R a, R q and R max values of 1.4, 1.8 and 15.4 nm for the 3-nm film and 0.8, 1.2 and 10.7 nm for the 150-nm film over a 5 × 5 μm scanning area. Confocal scanning laser microscopy and scanning electron microscopy revealed that the bactericidal activity of the 3-nm silver film was not significant, whereas the nanoscopically smoother 150-nm silver film exhibited appreciable bactericidal activity towards Pseudomonas aeruginosa ATCC 9027 cells and Staphylococcus aureus CIP 65.8 cells, obtaining up to 75% and 27% sterilisation effect, respectively.  相似文献   

18.
In this paper, a new glucose biosensor was prepared. At first, Prussian blue (PB) was electrodeposited on a glassy carbon electrode (GCE) modified by titanium dioxide-multiwall carbon nanotubes-chitosan (TiO2-MWNTs-CS) composite, and then gold nanoparticles functionalized by poly(diallyldimethylammonium chloride) (PDDA-Au) were adsorbed on the PB film. Finally, the negatively charged glucose oxidase (GOD) was self-assembled on to the positively charged PDDA-Au. The electrochemical performances of the modified electrodes had been studied by cyclic voltammetry (CV) and amperometric methods, respectively. In addition, the stepwise fabrication process of the as-prepared biosensor was characterized by scanning electron microscopy. PDDA-Au nanoparticles were characterized by ultraviolet–vis absorption spectroscopy and transmission electron microscopy. Under the optimal conditions, the as-prepared biosensor exhibited a good response performance to glucose with a linear range from 6 μM to 1.2 mM with a detection limit of 0.1 μM glucose (S/N = 3). In addition, this work indicated that TiO2-MWNTs-CS composite and PDDA-Au nanoparticles held great potential for constructing biosensors.  相似文献   

19.
We report an efficient method to biosynthesize biocompatible cadmium telluride and cadmium sulphide quantum dots from the fungus Rhizopus stolonifer. The suspension of the quantum dots exhibited purple and greenish-blue luminescence respectively upon UV light illumination. Photoluminescence spectroscopy, X-ray diffraction, and transmission electron microscopy confirms the formation of the quantum dots. From the photoluminescence spectrum the emission maxima is found to be 424 and 476 nm respectively. The X-ray diffraction of the quantum dots matches with results reported in literature. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay for cell viability evaluation carried out on 3-days transfer, inoculum 3 × 105 cells, embryonic fibroblast cells lines shows that more than 80% of the cells are viable even after 48 h, indicating the biocompatible nature of the quantum dots. A good contrast in imaging has been obtained upon incorporating the quantum dots in human breast adenocarcinoma Michigan Cancer Foundation-7 cell lines.  相似文献   

20.
Synthesis of silver nanoparticles using α-NADPH-dependent nitrate reductase and phytochelatin in vitro has been demonstrated for the first time. The silver ions were reduced in the presence of nitrate reductase, leading to the formation of a stable silver hydrosol 10–25 nm diam. and stabilized by the capping peptide. The nanoparticles were characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy and UV-Vis absorption. These studies will help in designing a rational enzymatic strategy for the synthesis of nanomaterials of different chemical composition, shapes and sizes as well as their separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号