首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Allozyme variation at six polymorphic loci was examined in 10 populations of Tridacna maxima from reefs in the Western Coral Sea, to test whether patterns of relatedness previously reported for foraminiferan populations reflected a fundamental structuring of the fauna in the region. Genetic distances (Nei's D) among populations of T. maxima ranged from 0–0.065 and increased with increasing geographical separation. No significant differences in gene frequencies were observed among populations within two groups of reefs identified by cluster analysis: the Great Barrier Reef (GBR), and among the offshore reefs excluding Lihou and Osprey. Significant genetic differences among these groups and the outliers Lihou and Osprey were consistent with the greater geographical separation of populations between areas than within areas. There was no evidence of differentiation along a north-south axis as reported for the foraminiferan Marginopora vertebralis, nor did populations from offshore reefs on the Queensland Plateau form a well-defined group that was genetically distinct from the GBR. The patterns observed for M. vertebralis do not appear to reflect a fundamental structuring of biota in the region. The differences in the pattern of genetic variation for M. vertebralis as compared with those for T. maxima may be due to several differences in the biological characteristics of the two species. The time of breeding in particular may influence the extent to which the divergence of the East Australian Current restricts larval dispersal among reefs in the central Queensland Plateau.  相似文献   

2.
Connectivity underpins the persistence and recovery of marine ecosystems. The Great Barrier Reef (GBR) is the world's largest coral reef ecosystem and managed by an extensive network of no‐take zones; however, information about connectivity was not available to optimize the network's configuration. We use multivariate analyses, Bayesian clustering algorithms and assignment tests of the largest population genetic data set for any organism on the GBR to date (Acropora tenuis, >2500 colonies; >50 reefs, genotyped for ten microsatellite loci) to demonstrate highly congruent patterns of connectivity between this common broadcast spawning reef‐building coral and its congener Acropora millepora (~950 colonies; 20 reefs, genotyped for 12 microsatellite loci). For both species, there is a genetic divide at around 19°S latitude, most probably reflecting allopatric differentiation during the Pleistocene. GBR reefs north of 19°S are essentially panmictic whereas southern reefs are genetically distinct with higher levels of genetic diversity and population structure, most notably genetic subdivision between inshore and offshore reefs south of 19°S. These broadly congruent patterns of higher genetic diversities found on southern GBR reefs most likely represent the accumulation of alleles via the southward flowing East Australia Current. In addition, signatures of genetic admixture between the Coral Sea and outer‐shelf reefs in the northern, central and southern GBR provide evidence of recent gene flow. Our connectivity results are consistent with predictions from recently published larval dispersal models for broadcast spawning corals on the GBR, thereby providing robust connectivity information about the dominant reef‐building genus Acropora for coral reef managers.  相似文献   

3.
Abstract Acanthochromis polyacanthus is an unusual tropical marine damselfish that uniquely lacks pelagic larvae and has lost the capacity for broad‐scale dispersal among coral reefs. On the modern Great Barrier Reef (GBR), three color morphs meet and hydridize at two zones of secondary contact. Allozyme electrophoreses revealed strong differences between morphs from the southern zone but few differences between morphs from the northern counterpart, thus suggesting different contact histories. We explore the phylogeography of Acanthochromis polyacanthus with mitochondrial cytochrome b region sequences (alignment of 565 positions) obtained from 126 individuals representing seven to 12 fish from 13 sites distributed over 12 reefs of the GBR and the Coral Sea. The samples revealed three major clades: (1) black fish collected from the southern GBR; (2) bicolored fish collected from the GBR and one reef (Osprey) from the northern Coral Sea; (3) black and white monomorphs collected from six reefs in the Coral Sea. All three clades were well supported (72–100%) by bootstrap analyses. Sequence divergences were very high between the major clades (mean = 7.6%) as well as within them (2.0–3.6%). Within clades, most reefs segregated as monophyletic assemblages. This was revealed both by phylogenetic analyses and AMOVAs that showed that 72–90% of the variance originated from differences among groups, whereas only 5–13% originated within populations. These patterns are discussed in relation to the known geological history of coral reefs of the GBR and the Coral Sea. Finally, we ask whether the monospecific status of Acanthochromis should be revisited because the sequence divergences found among our samples is substantially greater than those recorded among well‐recognized species in other reef fishes.  相似文献   

4.
The resilience of Symbiodinium harboured by corals is dependent on the genetic diversity and extent of connectivity among reef populations. This study presents genetic analyses of Great Barrier Reef (GBR) populations of clade C Symbiodinium hosted by the alcyonacean coral, Sinularia flexibilis. Allelic variation at four newly developed microsatellite loci demonstrated that Symbiodinium populations are genetically differentiated at all spatial scales from 16 to 1,360 km (pairwise ΦST = 0.01–0.47, mean = 0.22); the only exception being two neighbouring populations in the Cairns region separated by 17 km. This indicates that gene flow is restricted for Symbiodinium C hosted by S. flexibilis on the GBR. Patterns of population structure reflect longshore circulation patterns and limited cross-shelf mixing, suggesting that passive transport by currents is the primary mechanism of dispersal in Symbiodinium types that are acquired horizontally. There was no correlation between the genetic structure of Symbiodinium populations and their host S. flexibilis, most likely because different factors affect the dispersal and recruitment of each partner in the symbiosis. The genetic diversity of these Symbiodinium reef populations is on average 1.5 times lower on inshore reefs than on offshore reefs. Lower inshore diversity may reflect the impact of recent bleaching events on Sinularia assemblages, which have been more widespread and severe on inshore reefs, but may also have been shaped by historical sea level fluctuations or recent migration patterns. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Communicated by Biology Editor Dr. Ruth Gates.  相似文献   

5.
Discrepancies between potential and observed dispersal distances of reef fish indicate the need for a better understanding of the influence of larval behaviour on recruitment and dispersal. Population genetic studies can provide insight on the degree to which populations are connected, and the development of restriction site‐associated sequencing (RAD‐Seq) methods has made such studies of nonmodel organisms more accessible. We applied double‐digest RAD‐Seq methods to test for population differentiation in the coral reef‐dwelling cardinalfish, Siphamia tubifer, which based on behavioural studies, have the potential to use navigational cues to return to natal reefs. Analysis of 11,836 SNPs from fish collected at coral reefs in Okinawa, Japan, from eleven locations over 3 years reveals little genetic differentiation between groups of S. tubifer at spatial scales from 2 to 140 km and between years at one location: pairwise FST values were between 0.0116 and 0.0214. These results suggest that the Kuroshio Current largely influences larval dispersal in the region, and in contrast to expectations based on studies of other cardinalfishes, there is no evidence of population structure for S. tubifer at the spatial scales examined. However, analyses of outlier loci putatively under selection reveal patterns of temporal differentiation that indicate high population turnover and variable larval supply from divergent source populations between years. These findings highlight the need for more studies of fishes across various geographic regions that also examine temporal patterns of genetic differentiation to better understand the potential connections between early life‐history traits and connectivity of reef fish populations.  相似文献   

6.
Remote populations are predicted to be vulnerable owing to their isolation from potential source reefs, and usually low population size and associated increased extinction risk. We investigated genetic diversity, population subdivision and connectivity in the brooding reef coral Seriatopora hystrix at the limits of its Eastern Australian (EA) distribution and three sites in the southern Great Barrier Reef (GBR). Over the approximately 1270 km survey range, high levels of population subdivision were detected (global FST = 0.224), with the greatest range in pairwise FST values observed among the three southernmost locations: Lord Howe Island, Elizabeth Reef and Middleton Reef. Flinders Reef, located between the GBR and the more southerly offshore reefs, was highly isolated and showed the signature of a recent bottleneck. High pairwise FST values and the presence of multiple genetic clusters indicate that EA subtropical coral populations have been historically isolated from each other and the GBR. One putative first-generation migrant was detected from the GBR into the EA subtropics. Occasional long-distance dispersal is supported by changes in species composition at these high-latitude reefs and the occurrence of new species records over the past three decades. While subtropical populations exhibited significantly lower allelic richness than their GBR counterparts, genetic diversity was still moderately high. Furthermore, subtropical populations were not inbred and had a considerable number of private alleles. The results suggest that these high-latitude S. hystrix populations are supplemented by infrequent long-distance migrants from the GBR and may have adequate population sizes to maintain viability and resist severe losses of genetic diversity.  相似文献   

7.
The spiny damselfish, Acanthochromis polyacanthus, is widely distributed throughout the Indo‐Australian archipelago. However, this species lacks a larval dispersal stage and shows genetic differentiation between populations from closely spaced reefs. To investigate the dispersal strategy of this unique species, we used microsatellite markers to determine genetic relatedness at five dispersal scales: within broods of juveniles, between adults within a collection site (~30 m2), between sites on single reefs, between nearby reefs in a reef cluster, and between reef clusters. We sampled broods of juveniles and adults from seven reefs in the Capricorn‐Bunker and Swain groups of the Great Barrier Reef. We found that extra‐pair mating is rare and juveniles remain with their parents until fledged. Adults from single sites are less related than broods but more related than expected by chance. However, there is no evidence of inbreeding suggesting the existence of assortative mating and/or adult migration. Genetic differences were found between all of the reefs tested except between Heron and Sykes reefs, which are separated only by a 2‐km area of shallow water (less than 10 m). There was a strong correlation between genetic distance, geographical distance and water depth. Apparently, under present‐day conditions spiny damselfish populations are connected only between sites of shallow water, through dispersal of adults over short distances. Assuming that dispersal behaviour has not changed, the broad distribution of A. polyacanthus as a species is likely based on historical colonization patterns when reefs were connected by shallow water at times of lower sea levels.  相似文献   

8.
Surveys of microsatellite variation show that genetic diversity has largely recovered in two reef-building corals, Pocillopora damicornis and Seriatopora hystrix (Scleractinia: Pocilloporidae), on reefs which were decimated by the eruption of the volcano Krakatau in 1883. Assignment methods and gene flow estimates indicate that the recolonization of Krakatau occurred mainly from the closest upstream reef system, Pulau Seribu, but that larval input from other regions has also occurred. This pattern is clearer in S. hystrix, which is traditionally the more dispersal-limited species. Despite these observed patterns of larval dispersal, self-recruitment appears to now be the most important factor in supplying larvae to coral populations in Krakatau. This suggests that the colonization of devastated reefs can occur quickly through larval dispersal; however, their survival requires local sources of larvae for self-recruitment. This research supports the observation that the recovery of genetic diversity in coral reef animals can occur on the order of decades and centuries rather than millennia. Conservation measures aimed at sustaining coral reef populations in Krakatau and elsewhere should include both the protection of upstream source populations for larval replenishment should disaster occur as well as the protection of large adult colonies to serve as local larval sources.  相似文献   

9.
Understanding how genetic diversity is maintained across patchy marine environments remains a fundamental problem in marine biology. The Coral Triangle, located in the Indo‐West Pacific, is the centre of marine biodiversity and has been proposed as an important source of genetic diversity for remote Pacific reefs. Several studies highlight Micronesia, a scattering of hundreds of small islands situated within the North Equatorial Counter Current, as a potentially important migration corridor. To test this hypothesis, we characterized the population genetic structure of two ecologically important congeneric species of reef‐building corals across greater Micronesia, from Palau to the Marshall Islands. Genetic divergences between islands followed an isolation‐by‐distance pattern, with Acropora hyacinthus exhibiting greater genetic divergences than A. digitifera, suggesting different migration capabilities or different effective population sizes for these closely related species. We inferred dispersal distance using a biophysical larval transport model, which explained an additional 15–21% of the observed genetic variation compared to between‐island geographical distance alone. For both species, genetic divergence accumulates and genetic diversity diminishes with distance from the Coral Triangle, supporting the hypothesis that Micronesian islands act as important stepping stones connecting the central Pacific with the species‐rich Coral Triangle. However, for Ahyacinthus, the species with lower genetic connectivity, immigration from the subequatorial Pacific begins to play a larger role in shaping diversity than input from the Coral Triangle. This work highlights the enormous dispersal potential of broadcast‐spawning corals and identifies the biological and physical drivers that influence coral genetic diversity on a regional scale.  相似文献   

10.
Nautilus species are the only remaining cephalopods with an external shell. Targeted heavily by the shell trade across their distribution area, these species have a poorly known population structure and genetics. Molecular techniques have been used to assess levels of inter- and intra-population genetic diversity in isolated populations of Nautilus in the northern sections of the Great Barrier Reef (GBR), Australia and in the Coral Sea. Distinct populations, physically separated by depths in excess of 1,000 m were examined. RAPD analysis of genetic differences showed limited differentiation of the “Northern GBR” populations and the “Coral Sea” populations. Discrimination between the two geographic groups was observed from these data. In addition, partial sequencing of the CoxI gene region, yielded 575 bp of sequence, which was aligned for 43 samples and phylogenetic trees constructed to examine genetic relationships. Two distinct clades were resolved in the resulting trees, representing the “Northern GBR” and “Coral Sea” population groups. Inter- and intra-population relationships are presented and discussed. The differentiation of the Nautilus populations from the Northern section of the Great Barrier Reef and those from the Coral Sea were supported by two distinctly different methodologies and the significance of this separation and the potential evolutionary divergence of these two population groups is discussed.  相似文献   

11.
The broad range in physiological variation displayed by Symbiodinium spp. has proven imperative during periods of environmental change and contribute to the survival of their coral host. Characterizing how host and Symbiodinium community assemblages differ across environmentally distinct habitats provides useful information to predict how corals will respond to major environmental change. Despite the extensive characterizations of Symbiodinium diversity found amongst reef cnidarians on the Great Barrier Reef (GBR) substantial biogeographic gaps exist, especially across inshore habitats. Here, we investigate Symbiodinium community patterns in invertebrates from inshore and mid‐shelf reefs on the southern GBR, Australia. Dominant Symbiodinium types were characterized using denaturing gradient gel electrophoresis fingerprinting and sequencing of the ITS2 region of the ribosomal DNA. Twenty one genetically distinct Symbiodinium types including four novel types were identified from 321 reef‐invertebrate samples comprising three sub‐generic clades (A, C, and D). A range of host genera harbored C22a, which is normally rare or absent from inshore or low latitude reefs in the GBR. Multivariate analysis showed that host identity and sea surface temperature best explained the variation in symbiont communities across sites. Patterns of changes in Symbiodinium community assemblage over small geographic distances (100s of kilometers or less) indicate the likelihood that shifts in Symbiodinium distributions and associated host populations, may occur in response to future climate change impacting the GBR.  相似文献   

12.
Understanding connectivity of coral populations among and within reefs over ecologically significant timescales is essential for developing evidence‐based management strategies, including the design of marineprotected areas. Here, we present the first assessment of contemporary connectivity among populations of two Molecular Operational Taxonomic Units (MOTUs) of the brooding coral Pocillopora damicornis. We used individual‐based genetic assignment methods to identify the proportions of philopatric and migrant larval recruits, settling over 12 months at sites around Lizard Island (northern Great Barrier Reef [GBR]) and over 24 months at sites around the Palms Islands (central GBR). Overall, we found spatially and temporally variable rates of self‐recruitment and dispersal, demonstrating the importance of variation in local physical characteristics in driving dispersal processes. Recruitment patterns and inferred dispersal distances differed between the two P. damicornis MOTUs, with type α recruits exhibiting predominantly philopatric recruitment, while the majority of type β recruits were either migrants from identified putative source populations or assumed migrants based on genetic exclusion from all known populations. While P. damicornis invests much energy into brooding clonal larvae, we found that only 15% and 7% of type α and type β recruits, respectively, were clones of sampled adult colonies or other recruits, challenging the hypothesis that reproduction is predominantly asexual in this species on the GBR. We explain high rates of self‐recruitment and low rates of clonality in these MOTUs by suggesting that locally retained larvae originate predominantly from spawned gametes, while brooded larvae are mainly vagabonds.  相似文献   

13.
Coral reef sponge populations were surveyed at two spatial scales: different depths and different reef locations across the continental shelf of the central Great Barrier Reef. The surveys were conducted on the forereef slopes of 12 reefs from land-influenced, inner-shelf reefs to those in the oligotrophic waters of the Coral Sea. Few sponges occur in shallow waters and the largest populations are found between 10 and 30 m depth. Sponges are apparently excluded from shallow waters because of excessive turbulence and possibly by high levels of damaging light. Sponge biomass is highest on the innershelf reefs and decreases away from the coast, whereas abundance is generally higher on middle-shelf reefs. There are considerable overlaps in the species composition on middle-, outer-shelf and Coral Sea reefs, but those on inner-shelf reefs are significantly different. The nature and size of sponge populations reflect environmental conditions across the continental shelf. The larger inner-shelf populations probably reflect higher levels of organic and inorganic nutrients and reduced amounts of physical turbulence, whereas sponges on reefs further from shore may be able to resist greater turbulence but appear more sensitive to the effects of fine sediments. These latter populations are smaller, reflecting the reduced availability of organic matter, however, many of these sponges rely on cyanobacterial symbionts to augment nutrition in these clearer, more oligotrophic waters.Contribution no. 487 from the Australian Institute of Marine Science  相似文献   

14.
Understanding levels of connectivity among scleractinian coral populations over a range of temporal and spatial scales is vital for managing tropical coral reef ecosystems. Here, we use multilocus microsatellite genotypes to assess the spatial genetic structure of two molecular operational taxonomic units (MOTUs, types α and β) of the widespread coral Pocillopora damicornis on the Great Barrier Reef (GBR) and infer the extent of connectivity on spatial scales spanning from local habitat types to latitudinal sectors of the GBR. We found high genetic similarities over large spatial scales spanning > 1000 km from the northern to the southern GBR, but also strong genetic differentiation at local scales in both MOTUs. The presence of a considerable number of first‐generation migrants within the populations sampled (12% and 27% for types α and β, respectively) suggests that genetic differentiation over small spatial scales is probably a consequence of stochastic recruitment from different genetic pools into recently opened up spaces on the reef, for example, following major disturbance events. We explain high genetic similarity among populations over hundreds of kilometres by long competency periods of brooded zooxanthellate larvae and multiple larval release events each year, combined with strong longshore currents typical along the GBR. The lack of genetic evidence for predominantly clonal reproduction in adult populations of P. damicornis, which broods predominantly asexually produced larvae, further undermines the paradigm that brooded larvae settle close to parent colonies shortly after the release.  相似文献   

15.

Coral cover and community structure in the Arabian Gulf have changed considerably in recent decades. Recurrent bleaching events have dramatically reduced the abundance of previously dominant Acropora corals and have given space to other more thermally resistant coral taxa. The loss of Acropora spp. has reduced reef structural complexity and associated biodiversity. Sir Bu Nair Island (SBN) is a nature reserve in the United Arab Emirates that sustains some of the last dense and extensive Acropora stands in the southern Gulf. This study investigated coral recruitment at a southern coral reef on SBN and examined larval dispersal and reef connectivity between SBN and other local and regional reefs through an agent-based model coupled with a 3D hydrodynamic model. Recruitment was surveyed with settlement tiles deployed from April to September 2019. Contrary to other reefs in the Gulf, we found that Acropora is indeed the major coral recruiter settling at SBN reefs, followed by Porites. The models indicate that SBN reefs are mostly self-seeding but also connected to other reefs in the Gulf. SBN can supply coral larvae to the neighbouring islands Siri and Abu Musa, and nearby reefs along with the north-eastern Emirates, Iranian coast and Strait of Hormuz. Findings highlight the importance of SBN to protect remnant populations of the locally almost extinct Acropora in a region where natural coral recovery is increasingly sparse.

  相似文献   

16.
 Population genetic structure was studied in one nearshore and two offshore populations of Stichopus chloronotus, a common holothurian species on Indo-Pacific coral reefs. Genetic variation at five polymorphic loci was examined using allozyme electrophoresis. The nearshore population consisted almost exclusively of male individuals, and more males than females were found in all populations studied. Deviations of heterozygosity from that predicted under Hardy-Weinberg equilibrium indicated that asexual reproduction occurred in all populations. Estimates of the level of asexual reproduction using the ratios of the number of sexually produced individuals to sample size, observed genotypic diversity to expected genotypic diversity, and number of genotypes to sample size confirmed that this reproductive mode was more important at the nearshore reef compared to the two offshore reefs. There were large differences in genotypic frequencies between males and females. F-statistics on clonal genotypic frequencies were not statistically significant between populations for neither females or males, suggesting high dispersal of larvae between reefs. A higher mortality of females during larval or early post-settlement stages, or reduced dispersal capability of female larvae are the most likely reasons for biased sex ratios. Accepted: 23 November 1998  相似文献   

17.
Summary The roles of Permian colonial corals in forming organic reefs have not been adequately assessed, although they are common fossils in the Permian strata. It is now known that colonial corals were important contributors to reef framework during the middle and late Permian such as those in South China, northeast Japan, Oman and Thailand. A coral reef occurs in Kanjia-ping, Cili County, Hunan, South China. It is formed by erect and unscathed colonies ofWaagenophyllum growing on top of one anotherin situ to form a baffle and framework. Paleontological data of the Cili coral reef indicates a middle to late Changhsing age (Late Permian), corresponding to thePalaeofusulina zone. The coral reef exposure extends along the inner platform margin striking in E-S direction for nearly 4 km laterally and generally 35 to 57 m thick. The Cili coral reef exhibits a lateral differentiation into three main reef facies; reef core facies, fore-reef facies, and marginal slope facies. The major reef-core facies is well exposed in Shenxian-wan and Guanyin-an sections where it rests on the marginal slope facies. Colonial corals are dispersed and preserved in non-living position easward. Sponges become major stabilizing organisms in the eastern part of Changhsing limestone outcrop in Kanjia-ping, but no read sponge reefs were formed. Coral reefs at Cili County in Human are different distinctly from calcisponge reefs in South China in their palaeogeography, lithofacies development, organic constitutuents, palaeoecology and diagenesis. The Cili coral reef also shows differences in age, depositional facies association, reef organisms and diagenesis from coral reefs in South Kitakami of Japan, Khorat Plateau of Thailand, and Saih Hatat of Oman. Although some sponge reefs and mounds can reach up to the unconformable Permian/Triassic boundary, coral reef at Kanjia-ping, Cili County, is the latest Permian reef known. This reef appears to had been formed in a palaeoenvironment that is different from that of the sponge reefs and provides an example of new and unique Permian reef type in South China, and could help us to: 1) understand the significance of colonial corals in Permian carbonate buildups; 2) evaluate the importance of coral community evolution prior to the collapse of reef ecosystems at the Permian/Triassic boundary; 3) better understand the effects of the biotic extinction events in Palaeotethys realm; 4) look for environmental factors that may have controlled reefs through time and space, and 5) provide valuable data for the study of Permian palaeoclimate and global evolutionary changes of Permian reefs and reef community.  相似文献   

18.

Cyclones have one of the greatest effects on the biodiversity of coral reefs and the associated species. But it is unknown how stochastic alterations in habitat structure influence metapopulation structure, connectivity and genetic diversity. From 1993 to 2018, the reefs of the Capricorn Bunker Reef group in the southern part of the Great Barrier Reef were impacted by three tropical cyclones including cyclone Hamish (2009, category 5). This resulted in substantial loss of live habitat-forming coral and coral reef fish communities. Within 6–8 years after cyclones had devastated, live hard corals recovered by 50–60%. We show the relationship between hard coral cover and the abundance of the neon damselfish (Pomacentrus coelestis), the first fish colonizing destroyed reefs. We present the first long-term (2008–2015 years corresponding to 16–24 generations of P. coelestis) population genetic study to understand the impact of cyclones on the meta-population structure, connectivity and genetic diversity of the neon damselfish. After the cyclone, we observed the largest change in the genetic structure at reef populations compared to other years. Simultaneously, allelic richness of genetic microsatellite markers dropped indicating a great loss of genetic diversity, which increased again in subsequent years. Over years, metapopulation dynamics were characterized by high connectivity among fish populations associated with the Capricorn Bunker reefs (2200 km2); however, despite high exchange, genetic patchiness was observed with annual strong genetic divergence between populations among reefs. Some broad similarities in the genetic structure in 2015 could be explained by dispersal from a source reef and the related expansion of local populations. This study has shown that alternating cyclone-driven changes and subsequent recovery phases of coral habitat can greatly influence patterns of reef fish connectivity. The frequency of disturbances determines abundance of fish and genetic diversity within species.

  相似文献   

19.
Understanding the spatial and environmental variation in demographic processes of fisheries target species, such as coral grouper (Genus: Plectropomus), is important for establishing effective management and conservation strategies. Herein we compare the demography of Plectropomus leopardus and P. laevis between Australia's Great Barrier Reef Marine Park (GBRMP), which has been subject to sustained and extensive fishing pressure, and the oceanic atolls of Australia's Coral Sea Marine Park (CSMP), where there is very limited fishing for reef fishes. Coral grouper length-at-age data from contemporary and historical otolith collections across 9.4 degrees of latitude showed little difference in lifetime growth between GBRMP and CSMP regions. Plectropomus laevis populations in GBRMP reefs had significantly higher rates of total mortality than populations in the CSMP. Mean maximum lengths and mean maximum ages of P. laevis were also smaller in the GBRMP than in the CSMP, even when considering populations sampled within GBRMP no-take marine reserves (NTMRs). Plectropomus leopardus, individuals were on average smaller on fished reefs than NTMRs in the GBRMP, but all other aspects of demography were broadly similar between regions despite the negligible levels of fishing pressure in the CSMP. Similarities between regions in growth profiles and length-at-age comparisons of P. laevis and P. leopardus suggest that the environmental differences between the CSMP and the GBRMP may not have significant impacts on lifetime growth. Our results show that fishing may have influenced the demography of coral grouper on the GBR, particularly for the slower growing and longer lived species, P. laevis.  相似文献   

20.
A new nuclear marker system for sponges, the second intron of the nuclear ATP synthetase beta subunit gene (ATPSbeta-iII), was analysed together with nuclear ribosomal DNA (nrDNA) internal transcribed spacer (ITS) sequences aiming to uncover phylogeographic patterns of the coral reef sponge Pericharax heteroraphis in the south-west Pacific, focussing on the Great Barrier Reef (GBR). Variation among ITS sequences was low (<1.1% p-distance), in contrast to ATPSbeta-iII (<8.3% p-distance). Single-Stranded Conformation Polymorphism (SSCP) analysis proved to be an effective tool for phasing ATPSbeta-iII alleles of 292 bp length. Although sample sizes were limited for most populations and these results await corroboration by an extended sampling regime, a past population subdivision with subsequent range expansion was indicated by a ‘dumb-bell’ shaped statistical parsimony network of GBR ATPSbeta-iII alleles. Although no clear phylogeographic break was discovered on the GBR, the northern GBR was genetically differentiated from the central/southern GBR and Queensland Plateau, based on significant pairwise F st values (0.137–0.275 and p ≤ 0.05) of pooled regional populations. The ATPSbeta-iII used in this study outperformed the frequently employed nrDNA ITS and might also turn out to be useful for phylogeographic studies of other coral reef taxa. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号