首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of a carboxylic ionophore (lasalocid) on the sarcoplasmic reticulum Ca2(+)-ATPase was investigated. The purified enzyme was preincubated with lasalocid in the presence of Ca2+ and the absence of K+ at pH 7.0 and 0 degrees C for 2 h. The Ca2(+)-dependent ATPase activity was strongly inhibited by this preincubation, whereas the activity of the contaminant Mg2(+)-ATPase was unaffected. The steady-state level of the phosphoenzyme (EP) intermediate remained constant over the wide range of lasalocid concentrations. The Ca2(+)-induced enzyme activation was unaffected. The kinetics of phosphorylation of the Ca2(+)-activated enzyme by ATP as well as the rate of conversion of ADP-sensitive EP to ADP-insensitive EP were also unaffected. Accumulation of ADP-insensitive EP was greatly enhanced, and almost all of the EP accumulating at steady state was ADP-insensitive. Hydrolysis of ADP-insensitive EP was strongly inhibited. A similar strong inhibition of the Ca2(+)-dependent ATPase activity by lasalocid was found with sarcoplasmic reticulum vesicles. To examine the effect of lasalocid on the conformational change in each reaction step, the Ca2(+)-ATPase of sarcoplasmic reticulum vesicles was labeled with a fluorescent probe (N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine) without a loss of catalytic activity and then preincubated with lasalocid as described above. The conformational changes involved in hydrolysis of ADP-insensitive EP and in the reversal of this hydrolysis were appreciably retarded by lasalocid. The conformational changes involved in other reaction steps were unaffected. These results demonstrate that hydrolysis of ADP-insensitive EP in the catalytic cycle of this enzyme is selectively inhibited by lasalocid.  相似文献   

2.
Cys-674 of the sarcoplasmic reticulum Ca2(+)-ATPase was labeled with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine without a loss of the catalytic activity, and changes in the fluorescence intensity upon addition of seven kinds of substrate were followed by the stopped-flow method. The steady-state fluorescence intensity and anisotropy were also determined. When Ca2+ was present, the fluorescence intensity and anisotropy decreased greatly upon addition of any substrate used. The observed affinity for each substrate agreed with the previously observed affinity of the catalytic site. The fluorescence drop induced by the adenine nucleotides, ATP and adenosine 5'-(beta, gamma-methylene)triphosphate (a nonhydrolyzable ATP analog), was much faster than that induced by other substrates. The ATP-induced fluorescence drop preceded phosphoenzyme formation when the ATP concentration was high, but the fluorescence drop coincided with phosphoenzyme formation when it was slowed by reducing ATP concentrations. The fluorescence drop induced by ITP or acetyl phosphate was slow even at high concentrations of the substrate, and it coincided with phosphoenzyme formation. When Ca2+ was absent, the fluorescence intensity and anisotropy decreased only slightly upon addition of any substrate other than the adenine nucleotides. They decreased substantially upon addition of the adenine nucleotides, but the kinetics of this fluorescence drop were quite different from that of the fluorescence drop induced by any substrate in the presence of Ca2+. These results show that the conformational change, which makes the bound label less constrained, is induced by substrate binding to the catalytic site of the Ca2(+)-activated enzyme. This change precedes phosphoenzyme formation in the catalytic cycle and is greatly accelerated by the adenine moiety of the substrate.  相似文献   

3.
Sarcoplasmic reticulum vesicles were modified with a fluorescent thiol reagent, N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine. One mol of readily reactive thiols per mol of the Ca2+-ATPase was labeled without a loss of the catalytic activity. The fluorescence of the label increased by 8% upon binding of Ca2+ to the high affinity sites of the enzyme. This fluorescence enhancement probably reflects a conformational change responsible for Ca2+-induced enzyme activation. Upon addition of ATP to the Ca2+-activated enzyme, the fluorescence decreased by 15%. This fluorescence drop and formation of the phosphoenzyme intermediate were determined under the same conditions with a stopped-flow apparatus and a rapid quenching system. The amplitude of the fluorescence drop thus determined was saturated with 3 microM ATP. This shows that the fluorescence drop was caused by ATP binding to the catalytic site. In contrast, the rate of the fluorescence drop was not saturated even with 50 microM ATP. The fluorescence drop coincided with phosphoenzyme formation at 0.5 or 3 microM ATP, but it became much faster than phosphoenzyme formation when the ATP concentration was raised to 100 microM. These results indicate that the ATP-induced fluorescence drop reflects a conformational change in the enzyme.ATP complex. The fluorescence drop was accompanied by a red spectrum shift, which suggests that the label was exposed to a more hydrophilic environment. The electrophoretic analysis of the tryptic digest of the labeled enzyme (10.9 kDa) showed that almost all of the label was located on the 5.2-kDa fragment which includes the carboxyl terminus and the putative ATP-binding domain. The sequencing of the two major labeled peptides, which were isolated from the thermolytic digest of the labeled enzyme, revealed that the labeled site in either of these peptides was Cys674. It seems likely that the label bound to this Cys674 could be involved in the observed fluorescence changes.  相似文献   

4.
Sarcoplasmic reticulum vesicles were phosphorylated with [gamma-32P]ATP in the presence of external Ca2+ without added Mg2+. The phosphoenzyme (EP) formed had tightly bound Ca2+ and was dephosphorylated by ADP. When the external Ca2+ was chelated after phosphorylation, Ca2+ dissociated from the EP and ADP addition no longer induced dephosphorylation. Subsequent addition of CaCl2 caused rapid recombination of Ca2+ and restoration of the ADP sensitivity. These findings show that the dissociation and recombination of Ca2+ took place on the outer surface of the membranes, indicating the existence of EP with bound Ca2+ which was exposed to the external medium (Caout.EP). The Ca2+ affinity of the Ca2+ binding site in Caout.EP was comparable to that of the high affinity Ca2+ binding site in the dephosphoenzyme (E). This shows that phosphorylation is not accompanied by an appreciable reduction in the Ca2+ affinity of the Ca2+ binding site, provided this site is exposed to the external medium. The transition from ADP-sensitive EP to ADP-insensitive induced by Ca2+ chelation was unaffected by Mg2+ in the medium. Mg2+ did not activate hydrolysis of the ADP-sensitive EP with bound Ca2+, whereas it markedly accelerated hydrolysis of the ADP-insensitive EP without bound Ca2+.  相似文献   

5.
Cys674 of the sarcoplasmic reticulum Ca2+-ATPase was selectively labeled with N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylenediamine without a loss of the catalytic activity, and the steady-state fluorescence anisotropy of this label and its total fluorescence intensity were followed throughout the catalytic cycle. At 25 degrees C, the anisotropy and the total fluorescence intensity increased by 2.1 and 9.4%, respectively, upon Ca2+ binding to the high affinity sites. Upon subsequent ATP binding to the catalytic site, the anisotropy and the total fluorescence intensity decreased by 6.8 and 23.9%, respectively. These drops likely occurred in the enzyme.ATP complex. The extents of changes upon additions of Ca2+ and ATP in the anisotropy, but not in the total fluorescence intensity, were greatly reduced by lowering the temperature. Slight drops in the anisotropy and the total fluorescence intensity occurred upon conversion of phosphoenzyme (EP) from the ADP-sensitive form to the ADP-insensitive form. The anisotropy and the total fluorescence intensity returned to the initial level when EP was hydrolyzed. Mg2+-dependent Pi-induced drops in the anisotropy and the total fluorescence intensity occurred coincidently with EP formation from Pi. These demonstrate that the ATP-induced drops in the anisotropy and the total fluorescence intensity are predominant throughout the catalytic cycle. Most probably, the changes in the anisotropy are due to changes in the rotational diffusion of the label. These findings indicate that ATP binding to the catalytic site induces a relaxed conformation in the microenvironment of the label bound to Cys674.  相似文献   

6.
The effect of an ionophore A23187 on the purified Na+,K+-ATPase from the outer medulla of pig kidney was investigated. When the enzyme was pretreated with A23187 in the presence of Na+ and K+, the ATPase activity was inhibited almost completely. When the pretreatment was performed in the presence of Na+ and absence of K+, formation of the phosphoenzyme (EP) from ATP was only slightly retarded. The steady state level of EP thus formed was not altered, but EP decomposition was strongly inhibited. Under these conditions, the accumulated EP was sensitive to ADP and insensitive to K+. On the other hand, when the pretreatment was performed in the absence of Na+ and presence of K+, EP formation following simultaneous addition of Na+ and ATP was extremely slow, but the steady state level of EP was not substantially altered. When the pretreatment was performed in the absence of Na+ and presence of K+, EP formation from Pi was unaffected, and the EP formed was in rapid equilibrium with Pi of the medium. These results demonstrate that A23187 selectively inhibits isomerization of the enzyme between the high Na+ and low K+ affinity form and the low Na+ and high K+ affinity form in the catalytic cycle, whether or not the enzyme is phosphorylated. This inhibition is quite similar to the A23187-induced inhibition of the enzyme isomerization in the catalytic cycle of the Ca2+ -ATPase from sarcoplasmic reticulum (Hara, H., and Kanazawa, T. (1986)J. Biol. Chem.261, 16584-16590). These findings suggest that some common mechanism, which is involved in the enzyme isomerization, between these two transport ATPases is strongly disturbed by A23187.  相似文献   

7.
H+ and Ca2+ concentration changes in the reaction medium following MgATP addition at pH 6.0 were determined with the partially purified Ca-ATPase from sarcoplasmic reticulum vesicles in the presence of 25-50 microM CaCl2 and 5 mM MgCl2 at 4 degrees C. Previously, we showed a sequential occurrence of H+ binding and H+ dissociation in the Ca-ATPase during ATP hydrolysis and further suggested that the H+ binding takes place inside the vesicles (Yamaguchi, M., and Kanazawa, T. (1984) J. Biol. Chem. 259, 9526-9531). The present results demonstrate that the H+ binding occurred coincidently with Ca2+ dissociation from the enzyme upon conversion of the phosphoenzyme (EP) intermediate from the ADP-sensitive form to the ADP-insensitive form in the catalytic cycle of ATP hydrolysis. As KCl decreased in the medium, the extent of the H+ binding increased almost proportionately with the extent of either the Ca2+ dissociation or the accumulation of ADP-insensitive EP. Both the H+ binding and the Ca2+ dissociation were prevented by a modification of the specific SH group of the enzyme essential for the conversion of ADP-sensitive EP to ADP-insensitive EP. In the late stage of the reaction, H+ dissociation from the enzyme occurred coincidently with Ca2+ binding to the dephosphoenzyme which was formed by EP decomposition. These results are consistent with the possibility that the H+ ejection during the Ca2+ uptake with the intact vesicles previously shown by several investigators takes place through a Ca2+/H+ exchange directly mediated by the membrane-bound Ca-ATPase.  相似文献   

8.
The kinetics of formation of the ADP-sensitive (EP) and ADP-insensitive (E*P) phosphoenzyme intermediates of the CaATPase in sarcoplasmic reticulum (SR) were investigated by means of the quenched-flow technique. At 21 degrees C, addition of saturating ADP to SR vesicles phosphorylated for 116 ms with 10 microM ATP gave a triphasic pattern of dephosphorylation in which EP and E*P accounted for 33% and 60% of the total phosphoenzyme, respectively. Inorganic phosphate (Pi) release was less than stoichiometric with respect to E*P decay and was not increased by preincubation with Ca2+ ionophore. The fraction of E*P present after only 6 ms of phosphoenzyme formation was similar to that at 116 ms, indicating that isomerization of EP to E*P occurs very rapidly. Comparison of the time course of E*P formation with intravesicular Ca2+ accumulation measured by quenching with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid + ADP revealed that Ca2+ release on the inside of the vesicle was delayed with respect to E*P formation. Since Ca2+ should dissociate rapidly dissociation from the low-affinity transport sites, these results suggest that Ca2+ remains "occluded" after phosphoenzyme isomerization and that a subsequent slow transition controls the rate of Ca2+ release at the intravesicular membrane surface. Analysis of the forward and reverse rate constants for the EP to E*P transition gave an expected steady-state distribution of phosphoenzymes strongly favoring the ADP-insensitive form. In contrast, the observed ratio of EP to E*P was about 1:2. To account for this discrepancy, a mechanism is proposed in which stabilization of the ADP-sensitive phosphoenzyme is brought about by a conformational interaction between adjacent subunits in a dimer.  相似文献   

9.
The amount of Ca2+ bound to the Ca2+,Mg2+-dependent ATPase of deoxycholic acid-treated sarcoplasmic reticulum was measured during ATP hydrolysis by the double-membrane filtration method [Yamaguchi, M. & Tonomura, Y. (1979), J. Biochem. 86, 509--523]. The maximal amount of phosphorylated intermediate (EP) was adopted as the amount of active site of the ATPase. In the absence of ATP, 2 mol of Ca2+ bound cooperatively to 1 mol of active site with high affinity and were removed rapidly by addition of EGTA. AMPPNP did not affect the Ca2+ binding to the ATPase in the presence of MgCl2. Under the conditions where most EP and ADP sensitive at steady state (58 microM Ca2+, 50 microM EGTA, and 20 mM MgCl2 at pH 7.0 and 0 degrees C), bound Ca2+ increased by 0.6--0.7 mol per mol active site upon addition of ATP. The time course of decrease in the amount of bound 45Ca2+ on addition of unlabeled Ca2+ + EGTA was biphasic, and 70% of bound 45Ca2+ was slowly displaced with a rate constant similar to that of EP decomposition. Similar results were obtained for the enzyme treated with N-ethylmaleimide, which inhibits the step of conversion of ADP-sensitive EP to the ADP-insensitive one. Under the conditions where most EP was ADP insensitive at steady state (58 microM Ca2+, 30 microM EGTA, and 20 mM MgCl2 at pH 8.8 and 0 degrees C), the amount of bound Ca2+ increased slightly, then decreased slowly by 1 mol per mol of EP formed after addition of ATP. Under the conditions where about a half of EP was ADP sensitive (58 microM Ca2+, 25 microM EGTA, and 1 mM MgCl2 at pH 8.8 and 0 degrees C), the amount of bound Ca2+ did not change upon addition of ATP. These findings suggest that the Ca2+ bound to the enzyme becomes unremovable by EGTA upon formation of ADP-sensitive EP and is released upon its conversion to ADP-insensitive EP.  相似文献   

10.
Changes in Ca2+ binding after phosphorylation of membranous or detergent-solubilized preparations of sarcoplasmic reticulum Ca2+-ATPase with ATP were followed spectrophotometrically by the use of murexide. Distinct Ca2+ release from the two high-affinity translocation sites was observed, particularly at alkaline pH and at low Ca2+/Mg2+ concentration ratios. Phosphorylation also induced additional binding of Ca2+ at a third site in competition with Mg2+. Ca2+ release was increased after solubilization of Ca2+-ATPase in predominantly monomeric form with the nonionic detergent octaethyleneglycol monododecyl ether. At 0 degree C, chemical-quench studies with [32P]ATP indicated that release of Ca2+ is correlated with the level of ADP-insensitive phosphoenzyme (2 mol of Ca2+ released per mol of E2P formed), both for membranous and detergent solubilized Ca2+-ATPase. Ca2+ release was also found to be accompanied by changes in intrinsic fluorescence. Analysis of the data at 20 degrees C, pH 8.0, showed that binding of Ca2+ to transport sites on E2P occurs with a half-saturation constant of 0.7 mM and a Hill coefficient of 1.8. This is consistent with a drastic decrease in Ca2+ affinity following conversion of ADP-sensitive E1P to ADP-insensitive E2P. The similarity between membranous and detergent-solubilized Ca2+-ATPase supports the view that not more than a single Ca2+-ATPase polypeptide chain is required to complete the conformational transitions which are the basis for active transport of Ca2+.  相似文献   

11.
A M Hanel  W P Jencks 《Biochemistry》1990,29(21):5210-5220
The calcium-transport ATPase (CaATPase) of rabbit sarcoplasmic reticulum preincubated with 0.02 mM Ca2+ (cE.Ca2) is phosphorylated upon the addition of 0.25 mM LaCl3 and 0.3 mM [gamma-32P]ATP with an observed rate constant of 6.5 s-1 (40 mM MOPS, pH 7.0, 100 mM KCl, 25 degrees C). La.ATP binds to cE.Ca2 with a rate constant of 5 X 10(6) M-1 s-1, while ATP, Ca2+, and La3+ dissociate from cE.Ca2.La.ATP at less than or equal to 1 s-1. The reaction of ADP with phosphoenzyme (EP) formed from La.ATP is biphasic. An initial rapid loss of EP is followed by a slower first-order disappearance, which proceeds to an equilibrium mixture of EP.ADP and nonphosphorylated enzyme with bound ATP. The fraction of EP that reacts in the burst (alpha) and the first-order rate constant for the slow phase (kb) increase proportionally with increasing concentrations of ADP to give maximum values of 0.34 and 65 s-1, respectively, at saturating ADP (KADPS = 0.22 mM). The burst represents rapid phosphoryl transfer and demonstrates that ATP synthesis and hydrolysis on the enzyme are fast. The phosphorylation of cE.Ca2 by La.ATP at 6.5 s-1 and the kinetics for the reaction of EP with ADP are consistent with a rate-limiting conformational change in both directions. The conformational change converts cE.Ca2.La.ATP to the form of the enzyme that is activated for phosphoryl transfer, aE.Ca2.La.ATP, at 6.5 s-1; this is much slower than the analogous conformational change at 220 s-1 with Mg2+ as the catalytic ion [Petithory & Jencks (1986) Biochemistry 25, 4493]. The rate constant for the conversion of aE.Ca2.La.ATP to cE.Ca2.La.ATP is 170 s-1. ATP does not dissociate measurably from aE.Ca2.La.ATP. Labeled EP formed from cE.Ca2 and La.ATP with leaky vesicles undergoes hydrolysis at 0.06 s-1. It is concluded that the reaction mechanism of the CaATPase is remarkably similar with Mg.ATP and La.ATP; however, the strong binding of La.ATP slows both the conformational change that is rate limiting for EP formation and the dissociation of La.ATP. An interaction between La3+ at the catalytic site and the calcium transport sites decreases the rate of calcium dissociation by greater than 60-fold. When cE-Ca2 is mixed with 0.3 mM ATP and 1.0 mM Cacl2, the phosphoenzyme is formed with an observed rate constant of 3 s-1. The phosphoenzyme formed from Ca.ATP reacts with 2.0 mM ADP and labeled ATP with a rate constant of 30 s-1; there may be a small burst (alpha less than or equal to 0.05).  相似文献   

12.
We have observed two modes each of ADP and K+ regulation of phosphoenzyme (EP) intermediates formed in the early phase of skeletal sarcoplasmic reticulum hydrolysis of ATP at 20 degrees C, using, for the first time, a five-syringe quench flow apparatus for transient-state kinetic measurements. The total acid-stable EP formed for 20.5 and 116 ms in the K+ medium appears to be composed of either two monomers in rapid equilibrium, E1P in equilibrium E'1P, or a dimer of the two subunits, PE1E'1P. The ADP-sensitive E1P may form an acid-labile ADP X E1P (or ATP X E1) complex rapidly, giving ATP as a consequence of acid quenching. The ADP may also induce decomposition of the ADP-reactive E'1P. Monomeric and dimeric mechanisms are introduced to account for the hyperbolic relation between the rate constant of the ADP-induced E'1P decomposition and [ADP], consistent with the fact that the E'1P may also give ATP in the presence of ADP. As to the K+ effects, the K+, which is bound to the unphosphorylated enzyme and possibly becomes occluded during EP formation, may either facilitate the one-to-one E1P in equilibrium E'1P equilibrium or maintain the dimeric functional unit. The subsequent forward transformation of the E'1P to the ADP-insensitive K+-sensitive E'2P, possibly the rate-determining step for the catalytic cycle, is found to be K+ independent. The major effect of the K+ in the medium is its catalytic cleavage of the E'2P, which is detected as the missing EP under these conditions. When K+ is not involved in the EP formation, the forward sequential transformation E1P----E'1P----E'2P----E2P or PE1E'1P----PE'2E2P is apparent in the time range from 20.5 to 116 ms after EP formation, and the E'2P may accumulate in the K+ devoid medium and be detected as the major component of the total acid-stable EP. The Mg2+-sensitive E2P represents the EP missing in the medium containing no ADP and K+.  相似文献   

13.
Enhanced fluorescence of the ATP analogue 2',3'-O-(2,4,6-trinitrocyclohexyldienylidine)adenosine 5'-triphosphate (TNP-ATP), bound to the Ca2+-ATPase of skeletal muscle sarcoplasmic reticulum, is closely related to phosphoenzyme levels (Bishop, J. E., Johnson, J. D., and Berman, M. C. (1984) J. Biol. Chem. 259, 15163-15171) and has an emission maximum consistent with decreased polarity of the TNP-ATP-binding site. The phosphoenzyme conformation responsible for increased nucleotide-binding site hydrophobicity has been studied by redistribution of phosphoenzyme intermediates following specific thiol group modification. N-Ethylmaleimide, in the presence of 50 microM Ca2+, 1 mM adenyl-5'-yl imidodiphosphate, pH 7.0, at 25 degrees C for 30 min, selectively modified the SH group essential for phosphoenzyme decomposition, which resulted in decreased ATPase activity, Ca2+ uptake, and a decrease in ATP-induced TNP-ATP fluorescence. Phosphorylated (Ca2+, Mg2+)-ATPase levels from [gamma-32P] ATP remained relatively unaffected (3.1 nmol/mg), but the ADP-insensitive fraction decreased from 56 to 15%. Phosphoenzyme levels from 32Pi were also decreased to the same extent as turnover, with equivalent loss of Pi-induced TNP-ATP fluorescence. The E1 to E2 transition, as monitored by the change in intrinsic tryptophan fluorescence, was unaffected. Modification of thiol groups of unknown function did not modify turnover-induced TNP-ATP fluorescence. It is concluded that the ADP-insensitive phosphoenzyme, E2-P, is responsible for enhanced TNP-ATP fluorescence. This suggests that the conformational transition, 2Ca2+outE1 approximately P----2Ca2+inE2-P, is associated with altered properties of the noncatalytic, or regulatory, nucleotide-binding site.  相似文献   

14.
Actin contains a single high-affinity cation-binding site, for which Ca2+ and Mg2+ can compete, and multiple low-affinity cation-binding sites, which can bind Ca2+, Mg2+, or K+. Binding of cations to the low-affinity sites causes polymerization of monomeric actin with either Ca2+ or Mg2+ at the high-affinity site. A rapid conformational change occurs upon binding of cations to the low-affinity sites (G----G) which is apparently associated with the initiation of polymerization. A much slower conformational change (G----G', or G----G' if the low-affinity sites are also occupied) follows the replacement of Ca2+ by Mg2+ at the high-affinity site. This slow conformational change is reflected in a 13% increase in the fluorescence of G-actin labeled with the fluorophore 7-chloro-4-nitrobenzene-2-oxadiazole (NBD-labeled actin). The rate of the ATP hydrolysis that accompanies elongation is slower with Ca-G-actin than with Mg-G'-actin (i.e. with Ca2+ rather than Mg2+ at the high-affinity site) although their rates of elongation are similar. The slow ATP hydrolysis on Ca-F-actin causes a lag in the increase in fluorescence associated with the elongation of actin labeled with the fluorophore N-pyrene iodoacetamide (pyrenyl-labeled actin), even though there is no lag in the elongation rate, because pyrenyl-labeled ATP-F-actin subunits have a lower fluorescence intensity than pyrenyl-labeled ADP-F-actin subunits. The effects of the cation bound to the high-affinity binding site must, therefore, be considered in quantitatively analyzing the kinetics of polymerization of NBD-labeled actin and pyrenyl-labeled actin. Although their elongation rates are not very different, the rate of nucleation is much slower for Ca-G-actin than for Mg-G'-actin, probably because of the slower rate of ATP hydrolysis when Ca2+ is bound to the high-affinity site.  相似文献   

15.
Reaction of the purified Ca2+-ATPase of sarcoplasmic reticulum at 0 degrees C at low [gamma-32P]ATP (0.1 to 0.67 microM) and enzyme (0.025 to 0.24 microM) concentration in the presence of 0.11 to 30 mM Ca2+ without added Mg2+ has resulted in the formation of phosphorylated intermediate (EP:maximal level of EP = 0.45 mol/mol of enzyme) at a very slow rate. Under these conditions, the reaction steps in which EP decomposition takes place are completely prevented. This has permitted us to study the EP formation reaction and its reversal specifically, with a considerably improved time resolution. An apparent rate constant of EP formation (Vf) increases in parallel with the concentration of Ca . ATP, but not with those of Mg . ATP, or of protonated or fully ionized free ATP. This suggests that Ca . ATP is the substrate under these conditions. If Co2+ or Mn2+ are in excess over the other ions during the reaction, Vf varies in parallel with [Co . ATP] or [Mn . ATP]. Thus, it appears that either Ca2+, Co2+, or Mn2+ can be complexed with ATP to form the effective substrate. An apparent rate constant of the back reaction of EP initiated by addition of ADP to EP (Vr) increases in proportion to [ADP] or [H . ADP], but is inhibited by increasing concentrations of the ADP complex with Ca2+ or Mg2+, indicating that free ADP or protonated ADP, or both, are actual substrates for the back reaction of EP. These results suggest a new type of site to which the metal moiety of metal . ATP complex remains bound after the release of ADP from the enzyme. An acid-stable phosphorylated intermediate (EP) produced in the presence of high Ca2+ concentrations (e.g. 0.11 mM) without added Mg2+ does not decompose spontaneously, and the major portion (approximately 90%) of this EP (EPD+) reacts with ADP to form ATP (ADP-sensitive). Upon chelating Ca2+ with ethylene glycol bis(beta-amino-ethyl ether)N,N,N',N'-tetraacetic acid (EGTA), EPD+ is converted to another form of EP (EPD-), which is unreactive with ADP (or ADP-insensitive). Addition of Mg2+, after initiation of the reaction leading to EPD- by EGTA, results in rapid production of Pi from a portion of EPD- with KMg approximately equal to 3.3 x 10(3) M-1. The fraction of EPD- that is Mg2+-sensitive (EPD-,M+) increases with reaction time at a much slower rate than the Mg2+-insensitive portion of EPD- (EPD-,M-). These results suggest that the enzyme reaction involves the sequential formation of at least three forms of acid-stable EP, viz. in the order of formation, EPD+, EPD-,M-, and EPD-,M+. The equilibrium between EPD+ and EPD-,M- is shifted by higher [K+] and [Ca2+] towards EPD+.  相似文献   

16.
The effect of a lipophilic antibiotic, ionophore A23187, on the purified Ca2+-ATPase from sarcoplasmic reticulum was investigated. When the enzyme was pretreated with A23187 in the presence and absence of Ca2+, the Ca2+-dependent ATPase activity was inhibited almost completely, but the activity of the contaminating Mg2+-ATPase was unaffected. The steady state level of the phosphoenzyme (EP) from ATP or Pi was not substantially altered. When the pretreatment was performed in the presence of Ca2+, EP formation from ATP was only slightly retarded, but EP decomposition was strongly inhibited. Under these conditions, the accumulated EP was ADP-sensitive. EP formation from Pi after chelating of Ca2+ was quite slow, whereas EP once formed was in rapid equilibrium with Pi of the medium. On the other hand, when the pretreatment was performed in the absence of Ca2+, EP formation from ATP was extremely slow, but EP once formed was in rapid dynamic equilibrium with ATP of the medium. EP formation from Pi was very fast, and this EP was in rapid equilibrium with Pi of the medium. These results demonstrate that A23187 selectively inhibits isomerization of the enzyme between the high Ca2+-affinity form and the low Ca2+-affinity form in the catalytic cycle, whether or not the enzyme is phosphorylated. This suggests that interactions between the enzyme protein and the surrounding lipids could play a crucial role in this isomerization.  相似文献   

17.
1. The protein fluorescence intensity of (Na+ + K+)-ATPase is enhanced following binding of K+ at low concentrations. The properties of the response suggest that one or a few tryptophan residues are affected by a conformational transition between the K-bound form E2 . (K) and a Na-bound form E1 . Na. 2. The rate of the conformational transition E2 . (K) leads to E . Na has been measured with a stopped-flow fluorimeter by exploiting the difference in fluorescence of the two states. In the absence of ATP the rate is very slow, but it is greatly accelerated by binding of ATP to a low affinity site. 3. Transient changes in tryptophan fluorescence accompany hydrolysis of ATP at low concentrations, in media containing Mg2+, Na+ and K+. The fluorescence response reflects interconversion between the initial enzyme conformation, E1 . Na and the steady-state turnover intermediate E2 . (K). 4. The phosphorylated intermediate, E2P can be detected by a fluorescence increase accompanying hydrolysis of ATP in media containing Mg2+ and Na+ but no K+. 5. The conformational states and reaction mechanism of the (Na+ + K+)-ATPase are discussed in the light of this work. The results permit a comparison of the behaviour of the enzyme at both low and high nucleotide concentrations.  相似文献   

18.
We measured the amounts of Rb+ ions (a K+ congener) as well as Na+ and K+ ions bound to the ATPase during the ATPase reaction at pH 7.5 and 0 degrees C. The affinity of the Na+-binding sites for three Na+ ions decreased markedly but that of the K+-binding sites for two K+ or Rb+ ions increased markedly upon formation of an ADP-insensitive phosphorylated intermediate. Furthermore, the present experiment did not give any indication of a change in the Hill coefficient of 2, and showed an increase in the affinity of the K+-binding sites for Rb+ ions of about 28 times upon the formation of an ADP-insensitive EP. The enzyme state with a high affinity for Rb+ was maintained after the disappearance of EP. When the ATPase was treated with N-ethylmaleimide (NEM), almost all the EP formed was ADP-sensitive. The formation of an ADP-sensitive EP with the NEM-treated enzyme induced no change in the affinities of the ATPase for Na+ and Rb+ ions.  相似文献   

19.
The fluorescent thiol reagent N-(1-anilinonaphthyl-4)maleimide (ANM) reacts covalently with the Ca2+ ATPase moiety of fragmented sarcoplasmic reticulum in two phases as determined by the increase of fluorescence intensity and optical density at 350 nm. In the rapid phase, 5.5 nmol of ANM reacts with 1 mg of fragmented sarcoplasmic reticulum protein. Assuming that 55% of the total membrane protein is the Ca2+ ATPase, this is equivalent to 1 mol of SH/10(5) g of ATPase, designated as SH1-ANM. ANM reacts with the second SH (SH2-ANM) at a much slower rate. Reaction of ANM with both SH1-ANM and SH2-ANM produces no inhibition of phosphoenzyme (EP) formation. Upon addition of Mg . ATP in the micromolar range, at [Ca2+] = 1 microM there is an increase in the fluorescence intensity of ANM attached to SH2-ANM, while the ANM attached to SH1-ANM does not respond to Mg . ATP. Under conditions in which there is no EP formation, there is no fluorescence change. Furthermore, the enhancement of ANM fluorescence produced by Mg . ATP is reversed by ADP as it reacts with EP to form ATP. Thus, it appears that the Mg . ATP-induced fluorescence increase reflects changes of enzyme conformation produced by EP formation.  相似文献   

20.
The chaperonin CCT (chaperonin containing t-complex polypeptide 1 (TCP-1)) from bovine testis was mixed rapidly with different concentrations of ATP and the time-resolved change in fluorescence emission, upon excitation at 280 nm, was followed. Two kinetic phases were observed and assigned by (i) analyzing the dependence of the corresponding observed rate constants on ATP concentration; and (ii) by carrying out mixing experiments also with ADP, ATPgammaS and ATP without K(+). The values of the observed rate constants corresponding to both phases are found to be dependent on ATP concentration. The observed rate constant corresponding to the fast phase displays a bi-sigmoidal dependence on ATP concentration with Hill coefficients that are similar to those determined in steady-state ATPase experiments. This phase most likely reflects ATP binding-induced conformational changes. The rate constant of the conformational change in the presence of excess ATP is about 17s(-1) (at 25 degrees C) and is tenfold slower than the corresponding rate constant of GroEL. The observed rate constant corresponding to the second slower phase displays a hyperbolic dependence on ATP concentration. This phase is not observed in mixing experiments of CCT with ADP, ATPgammaS or ATP without K(+) and it, therefore, reflects a conformational change associated with ATP hydrolysis. Taken together, our results indicate that the kinetic mechanism of the allosteric transitions of CCT differs considerably from that of GroEL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号