首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
3-Hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes the first committed step in the cytosolic isoprenoid biosynthesis pathway in higher plants. To understand the contribution of HMGR to plant development, we isolated T-DNA insertion mutants for HMG1 and HMG2. The hmg1 and hmg2 mutants were both more sensitive than the wild type (WT) to lovastatin, an inhibitor of HMGR. The hmg2 mutant showed no visible phenotype under normal growth conditions. In contrast, the hmg1 mutant exhibited dwarfing, early senescence, and sterility. Expression of senescence-associated genes 12 (SAG12), a marker gene for senescence, was induced in the hmg1 mutant at an earlier stage than in the WT. Levels of trans-cytokinins--hormones known to inhibit senescence--were not lower in hmg1. The mutant did not have the typical appearance of brassinosteroid (BR)-deficient mutants, except for a dwarf phenotype, because of the suppression of cell elongation. The expression of several genes involved in cell elongation was suppressed in hmg1. WT plants treated exogenously with inhibitors of sterol biosynthesis had similar gene expression and sterility characteristics as the hmg1 mutants. Pleiotropic phenotypes were rescued by feeding with squalene, the precursor of sterols and triterpenoids. The sterol levels in hmg1 mutants were lower than in the WT. These findings suggest that HMG1 plays a critical role in triterpene biosynthesis, and that sterols and/or triterpenoids contribute to cell elongation, senescence, and fertility.  相似文献   

4.
Terpenoid phytoalexins and other defense compounds play an important role in disease resistance in a variety of plant families but have been most widely studied in solanaceous species. The rate-limiting step in terpenoid phytoalexin production is mediated by 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), which catalyzes mevalonic acid synthesis. HMGRs are involved in the biosynthesis of a broad array of terpenoid compounds, and distinct isoforms of HMGR may be critical in directing the flux of pathway intermediates into specific end products. Plant HMGRs are encoded by a small gene family, and genomic or cDNA sequences encoding HMGR have been isolated from several plant species. In tomato, four genes encode HMGR; these genes are differentially activated during development and stress responses. One gene, hmg 2 , is activated in response to wounding and a variety of pathogenic agents suggesting a role in sesquiterpene phytoalexin biosynthesis. In contrast, expression patterns of tomato hmg l suggest a role in sterol biosynthesis and cell growth. Other plant species show an analogous separation of specific HMGR isoforms involved in growth and/or housekeeping function and inducible isoforms associated with biosynthesis of phytoalexins or other specialized "natural products". We are applying a variety of cell and molecular techniques to address whether subcellular localization and/or differential expression of these isoforms are key factors in determining end product accumulation during development and defense.  相似文献   

5.
6.
The biosynthesis of a phytoalexin, beta-thujaplicin, in Cupressus lusitanica cell cultures can be stimulated by a yeast elicitor, H(2)O(2), or methyl jasmonate. Lipoxygenase activity was also stimulated by these treatments, suggesting that the oxidative burst and jasmonate pathway may mediate the elicitor-induced accumulation of beta-thujaplicin. The elicitor signalling pathway involved in beta-thujaplicin induction was further investigated using pharmacological and biochemical approaches. Treatment of the cells with calcium ionophore A23187 alone stimulated the production of beta-thujaplicin. A23187 also enhanced the elicitor-induced production of beta-thujaplicin. EGTA, LaCl(3), and verapamil pretreatments partially blocked A23187- or yeast elicitor-induced accumulation of beta-thujaplicin. These results suggest that Ca(2+) influx is required for elicitor-induced production of beta-thujaplicin. Treatment of cell cultures with mastoparan, melittin or cholera toxin alone or in combination with the elicitor stimulated the production of beta-thujaplicin or enhanced the elicitor-induced production of beta-thujaplicin. The G-protein inhibitor suramin inhibited the elicitor-induced production of beta-thujaplicin, suggesting that receptor-coupled G-proteins are likely to be involved in the elicitor-induced biosynthesis of beta-thujaplicin. Indeed, both GTP-binding activity and GTPase activity of the plasma membrane were stimulated by elicitor, and suramin and cholera toxin affected G-protein activities. In addition, all inhibitors of G-proteins and Ca(2+) flux suppressed elicitor-induced increases in lipoxygenase activity whereas activators of G-proteins and the Ca(2+) signalling pathway increased lipoxygenase activity. These observations suggest that Ca(2+) and G-proteins may mediate elicitor signals to the jasmonate pathway, and the jasmonate signalling pathway may then lead to the production of beta-thujaplicin.  相似文献   

7.
Effects of Ca2+ on phytoalexin induction by fungal elicitor in soybean cells   总被引:11,自引:0,他引:11  
A glucan elicitor from the cell walls of the fungus Phytophthora megasperma f.sp. glycinea caused increases in the activities of the phytoalexin biosynthetic enzymes, phenylalanine ammonia-lyase and chalcone synthase, and induced the production of the phytoalexin, glyceollin, in soybean (Glycine max) cell suspension cultures when tested in culture medium containing 1.2 mmol/liter Ca2+. Removal of extracellular Ca2+ by treatment with ethylene glycol bis(beta-aminoethyl ether)-N, N'-tetraacetic acid followed by washing the cells with Ca2+-free culture medium abolished the elicitor-mediated phytoalexin response. This suppression was largely reversed on readdition of Ca2+. Elicitor-mediated enhancement of biosynthetic enzyme activities and accumulation of glyceollin was strongly inhibited by La3+; effective concentrations for 50% inhibition were (mumol/liter) 40 for phenylalanine ammonia-lyase, 100 for chalcone synthase, and 30 for glyceollin. Verapamil caused similar effects only at concentrations higher than 0.1 mmol/liter, whereas trifluoperazine and 8-(diethylamino)-octyl-3,4,5-trimethoxybenzoate did not affect enzyme induction by the elicitor in the concentration range tested. Uptake of alpha-amino isobutyric acid into soybean cells, which was rapidly inhibited in the presence of the glucan elicitor, was not affected by La3+ nor was uptake inhibition by the elicitor relieved by La3+. The Ca2+ ionophore, A23187, enhanced phytoalexin biosynthetic enzyme activities and glyceollin accumulation in a dose-dependent manner, with 50% stimulation (relative to the elicitor) occurring at about 5 mumol/liter. The results suggest that the glucan elicitor causes changes in metabolite fluxes across the plasma membrane of soybean cells, among which changes in Ca2+ fluxes appear to be important for the stimulation of the phytoalexin response.  相似文献   

8.
9.
The hypothesis that arachidonic acid (AA) induction of sesquiterpene accumulation and browning in potato (Solanum tuberosum) is mediated by a lipoxygenase metabolite of AA was tested using lipoxygenase inhibitors. Salicylhydroxamic acid (SHAM) and 3-amino-1-(3-trifluoromethylphenyl)-2-pyrazoline hydrochloride (BW755C) delayed the response to AA. Inhibition by eicosatetraynoic acid (ETYA) was more persistent. These results are consistent with previous reports that SHAM and BW755C are reversible inhibitors of lipoxygenase and easily oxidized by potato while ETYA acts as an irreversible inhibitor. Disulfiram (tetraethylthiuram disulfide) also inhibited AA elicitor activity. SHAM was most effective if applied at the time of AA treatment, having no effect if applied 6 hours afterward. SHAM was effective in the presence of MES or MOPS buffers but not in acetate-buffered or unbuffered solutions; neither BW755C nor ETYA exhibited this restriction. However, SHAM, BW755C, and ETYA also were inhibitors of browning and sesquiterpene accumulation elicited in potato by poly-l-lysine, which, unlike AA, is not a lipoxygenase substrate. SHAM effectiveness also was restricted to 6 hours after treatment with poly-l-lysine. While the results with AA support a role for lipoxygenase, those with poly-l-lysine may be evidence that these compounds are having other effects in potato tissue.  相似文献   

10.
Exposure of osteoblast-like MC3T3-E1 cells to sodium arsenite (arsenite) increased the level of heat shock protein 27 (hsp27). The effect of arsenite was dose-dependent in the range of 50 to 200 μM. Arsenite also stimulated arachidonic acid release dose-dependently in the range between 50 and 200 μM in these cells. Both indomethacin, an inhibitor of cyclooxygenase, and nordihydroguaiaretic acid, a lipoxygenase inhibitor, significantly enhanced the arsenite-induced accumulation of hsp27. Melittin, an activator of phospholipase A2, significantly enhanced the arsenite-induced accumulation of hsp27. 12-O-Tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC)-activating phorbol ester, inhibited the arsenite-induced accumulation of hsp27. In contrast, 4α-phorbol 12, 13-didecanoate (4α-PDD), a PKC-nonactivating phorbol ester, had little effect. TPA suppressed the arsenite-induced arachidonic acid release, but 4α-PDD had little effect. Arsenite no longer affected cAMP accumulation, inositol phosphates formation nor the formation of choline and phosphocholine in these cells. These results suggest that the response to stress of hsp27 is coupled with the metabolic activity of the arachidonic acid cascade, and the activation of PKC inhibits the induction of hsp27 through the suppression of arachidonic acid release in osteoblast-like cells. © 1996 Wiley-Liss, Inc.  相似文献   

11.
We have isolated and characterized a rice isoflavone reductase-like gene, OsIRL, whose expression is induced by a fungal elicitor. The OsIRL cDNA contains 1203 bp with an open reading frame of 942 nucleotides encoding 314 amino acids. The deduced amino acid sequence of OsIRL has a putative pyridine nucleotide binding domain and is 68% homologous with the maize isoflavone reductase-like gene. Southern blot analysis revealed that OsIRL belongs to a small multigene family. Expression of OsIRL was induced by treatment with a fungal elicitor and jasmonic acid as well as by inoculation with rice blast fungus. Cycloheximide (1 microM), strongly inhibited the induction of OsIRL by the fungal elicitor, indicating that new protein synthesis is required. The protein kinase inhibitor, staurosporine (1 microM), had little effect, but the phosphatase inhibitor, calyculin A (1 microM), strongly inhibited induction. Treatment with salicylic acid (SA, 5 mM) strongly inhibited expression of OsIRL in response to fungal elicitor and JA, while abscisic acid (ABA, 200 microM) also strongly antagonized OsIRL induction by JA, but had only a weak effect on induction by the fungal elicitor. These results suggest that the expression of OsIRL is positively regulated by phytohormones such as JA, and negatively by phytohormones such as SA, ABA.  相似文献   

12.
Regulation of isoprenoid end-product synthesis required for normal growth and development in plants is not well understood. To investigate the extent to which specific genes for the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) are involved in end-product regulation, we manipulated expression of the HMG1 and HMG2 genes in tomato (Lycopersicon esculentum) fruit using arachidonic acid (AA). In developing young fruit AA blocked fruit growth, inhibited HMG1, and activated HMG2 expression. These results are consistent with other reports indicating that HMG1 expression is closely correlated with growth processes requiring phytosterol production. In mature-green fruit AA strongly induced the expression of HMG2, PSY1 (the gene for phytoene synthase), and lycopene accumulation before the normal onset of carotenoid synthesis and ripening. The induction of lycopene synthesis was not blocked by inhibition of HMGR activity using mevinolin, suggesting that cytoplasmic HMGR is not required for carotenoid synthesis. Our results are consistent with the function of an alternative plastid isoprenoid pathway (the Rohmer pathway) that appears to direct the production of carotenoids during tomato fruit ripening.  相似文献   

13.
The Proteinase Inhibitor Inducing Factor, PIIF, a pectic polysaccharide that induces synthesis and accumulation of proteinase inhibitor proteins in tomato and potato leaves, is an effective elicitor of the phytoalexin pisatin in pea pod tissues. The levels of pisatin induced by PIIF, and the time course of elicitation, are similar to those induced by chitosans, β-1,4 glucosamine polymers, which are potent elicitors of pisatin in pea pods. Similarly, the chitosans, found in both insect and fungal cell walls, are the most potent inducers yet found of proteinase inhibitor accumulation in excised tomato cotyledons. The similarity in the induction of synthesis of proteinase inhibitors in tomato cotyledons and of pisatin in pea pods by pectic polysaccharides and chitosans suggests that the two polysaccharide types may be triggering a similar fundamental system present in pea and tomato plants that regulates the expression of genes for natural protection systems.  相似文献   

14.
The Ceratocystis fimbriata f.sp. platani 66 kDa glycoprotein elicitor-induced secretion of soluble coumarins by plane tree (Platanus acerifolia (Aiton) Wild) cell-suspension cultures was investigated by studying the possible involvement of the octadecanoid pathway in the cell response. When cell-suspension cultures were treated with the glycoprotein elicitor, the cells exhibited a rapid and transient increase in lipoxygenase activity, in synthesis of endogenous jasmonic acid prior to the accumulation of coumarin phytoalexins. The treatment of cells with an inhibitor of lipoxygenase (ETYA) before elicitor addition, drastically reduced the lipoxygenase activity, the production of endogenous jasmonic acid and phytoalexin accumulation. The results demonstrate the role of the jasmonate pathway in the intracellular signal cascade.  相似文献   

15.
Jasmonic acid, a product of the lipoxygenase (LOX) pathway, has been proposed to be a signal transducer of defence reactions in plants. We have reported previously that methyl jasmonate (MJ) induced accumulation of proteinase inhibitors in tobacco cell suspensions (Rickauer et al., 1992, Plant Physiol Biochem 30: 579–584). The role of this compound in the induction of this and of other defence reactions is further studied in this paper. Treatment of tobacco cell suspensions with an elicitor from Phytophthora parasitica var. nicotianae induced a rapid and transient increase in jasmonic acid levels, which was abolished when cells were preincubated with eicosatetraynoic acid (ETYA), an inhibitor of LOX. Pretreatment with ETYA also inhibited the induction of proteinase inhibitors by fungal elicitor, but not by MJ. Linolenic acid, a precursor of jasmonate biosynthesis, induced this defence response, whereas linoleic acid had no effect. Expression of defence-related genes encoding proteinase inhibitor II, hydroxyproline-rich or glycine-rich glycoproteins, glucanase and chitinase, was induced in a basically similar manner by fungal elicitor or MJ. However, ETYA did not inhibit, or only partially inhibited, the elicitation of these defence genes. Expression of the sesquiterpene cyclase (5-epi-aristolochene synthase) gene was not induced by MJ, but only by fungal elicitor, and ETYA pretreatment had no effect on this induction. The obtained results indicate that synthesis of jasmonate via the LOX pathway seems to be only part of a complex regulatory mechanism for the onset of many, but not all, defence reactions. Received: 4 July 1996 / Accepted: 23 November 1996  相似文献   

16.
A role for calcium/calcium-binding proteins in a mechanism of signaling elicitor-inducible phytoalexin biosynthesis was investigated. Two classes of calcium/calmodulin antagonists, phenothiazines and naphthalenesulfonamides, inhibited sesquiterpene phytoalexin accumulation in tobacco (Nicotiana tabacum) cell-suspension cultures when added 1 h before elicitor. The antagonists also inhibited the induction of sesquiterpene cyclase enzyme activity, a key regulatory enzyme for sesquiterpene biosynthesis. The antagonists suppressed the induction of sesquiterpene cyclase only if added before or simultaneously with elicitor. Additionally, the antagonists inhibited (a) accumulation of the cyclase protein as measured in immunoblots; (b) the in vivo synthesis rate of the cyclase protein, measured as the incorporation of [35S]methionine into immunoprecipitable cyclase protein; and (c) the cyclase mRNA translational activity, measured as the incorporation of [35S]methionine into immunoprecipitable cyclase protein synthesized by in vitro translation of RNA isolated from antagonist-treated, elicitor-induced cells. In contrast, elicitor-inducible phenylalanine ammonia lyase enzyme activity, the level of the enzyme protein, the in vivo synthesis rate, and the mRNA translational activity were not affected by any of the antagonist treatments. Uptake and incorporation of [35S]methionine into total cellular proteins and total in vitro translation products were also not indiscriminately altered by the antagonist treatments. The current results suggest that calcium and/or calmodulin-like proteins may be elements of a signal transduction pathway mediating elicitor-induced accumulation of phytoalexins in tobacco.  相似文献   

17.
U Conrath  W Jeblick  H Kauss 《FEBS letters》1991,279(1):141-144
An elicitor preparation from fungal cell walls known to induce coumarin synthesis in suspension-cultured parsley cells also elicits a rapid and transient Ca2+ uptake, K+ release and external alkalinization, and increases uptake of 45Ca2+ into the cells. The latter three responses were inhibited by the protein kinase inhibitor K-252a at 0.2 microM. Elicitor-induced coumarin synthesis, a process which requires gene activation, was greatly enhanced by K-252a. These results suggest that protein phosphorylation might be involved in the initial steps of signal transduction as well as in the long-term induction of coumarin synthesis.  相似文献   

18.
19.
The rice (Oryza sativa) phytoalexins, momilactones and oryzalexins, are synthesized by the isoprenoid pathway. An early step in this pathway, one that is rate-limiting in mammalian systems, is catalyzed by the enzyme 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR). A gene that encodes this enzyme has been isolated from rice, and found to contain an open reading frame of 1527 bases. The encoded protein sequence of the rice HMGR appears to be conserved with respect to other HMGR proteins, and 1 or 2 membrane-spanning domains characteristic of plant HMGRs are predicted by a hydropathy plot of the amino acid sequence. The protein is truncated at its 5 end, and shows reduced sequence conservation in this region as compared to other plant sequences. The rice genome contains a small family of HMGR genes. The isolated gene, HMGR I, is expressed at low levels in both vegetative and floral organs of rice plants. It is not induced in plants by wounding, but is strongly and rapidly induced in suspension cells by a fungal cell wall elicitor from the pathogenMagnaporthe grisea, causal agent of rice blast disease. This suggests that HMGR I may be important in the induction of rice phytoalexin biosynthesis in response to pathogen attack, and therefore may play a key role as a component of the inducible defense mechanism in rice.  相似文献   

20.
Arachidonic acid inhibits adipocyte differentiation of 3T3-L1 cells via a prostaglandin synthesis-dependent pathway. Here we show that this inhibition requires the presence of a cAMP-elevating agent during the first two days of treatment. Suppression of protein kinase A activity by H-89 restored differentiation in the presence of arachidonic acid. Arachidonic acid treatment led to a prolonged activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), and suppression of ERK1/2 activity by the addition of U0126 rescued differentiation. Upon induction of differentiation, expression of cyclooxygenase-2 (COX-2) was transiently induced and then declined, whereas COX-1 expression declined gradually as differentiation progressed. Treatment with arachidonic acid led to sustained expression of COX-1 and COX-2. Omission of a cAMP-elevating agent or addition of H-89 or U0126 prevented sustained expression of COX-2. Unexpectedly, we observed that selective COX-1 or COX-2 inhibitors rescued adipocyte differentiation in the presence of arachidonic acid as effectively as did the nonselective COX-inhibitor indomethacin. De novo fatty acid synthesis, diacylglycerol acyltransferase (DGAT) activity, and triacylglycerol accumulation were repressed in cells treated with arachidonic acid. Indomethacin restored DGAT activity and triacylglycerol accumulation without restoring de novo fatty acid synthesis, resulting in an enhanced incorporation of arachidonic acid into cellular triacylglycerols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号