首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proportion of pyruvate dehydrogenase complex in the active, dephosphorylated form was decreased (compared with lean controls) in heart muscle in gold thioglucose-treated obese hyperinsulinaemic mice, and the extent of enzyme inactivation was significantly linearly correlated with both body weight and body fat content. A single oral dose (25 mg/kg body wt.) of the beta-oxidation inhibitor 2-tetradecylglycidic acid to obese animals restored pyruvate dehydrogenase complex activity to that of lean controls. It is suggested that increased fatty acid oxidation may be a major factor in mediating the phosphorylation and inactivation of pyruvate dehydrogenase complex in mouse heart muscle in obesity, and this may represent an important mechanism in the development and/or expression of insulin resistance in respect of abnormalities of cellular glucose homoeostasis in these animals.  相似文献   

2.
Regulation of heart muscle pyruvate dehydrogenase kinase   总被引:31,自引:25,他引:6       下载免费PDF全文
1. The activity of pig heart pyruvate dehydrogenase kinase was assayed by the incorporation of [(32)P]phosphate from [gamma-(32)P]ATP into the dehydrogenase complex. There was a very close correlation between this incorporation and the loss of pyruvate dehydrogenase activity with all preparations studied. 2. Nucleoside triphosphates other than ATP (at 100mum) and cyclic 3':5'-nucleotides (at 10mum) had no significant effect on kinase activity. 3. The K(m) for thiamin pyrophosphate in the pyruvate dehydrogenase reaction was 0.76mum. Sodium pyrophosphate, adenylyl imidodiphosphate, ADP and GTP were competitive inhibitors against thiamin pyrophosphate in the dehydrogenase reaction. 4. The K(m) for ATP of the intrinsic kinase assayed in three preparations of pig heart pyruvate dehydrogenase was in the range 13.9-25.4mum. Inhibition by ADP and adenylyl imidodiphosphate was predominantly competitive, but there was nevertheless a definite non-competitive element. Thiamin pyrophosphate and sodium pyrophosphate were uncompetitive inhibitors against ATP. It is suggested that ADP and adenylyl imidodiphosphate inhibit the kinase mainly by binding to the ATP site and that the adenosine moiety may be involved in this binding. It is suggested that thiamin pyrophosphate, sodium pyrophosphate, adenylyl imidodiphosphate and ADP may inhibit the kinase by binding through pyrophosphate or imidodiphosphate moieties at some site other than the ATP site. It is not known whether this is the coenzyme-binding site in the pyruvate dehydrogenase reaction. 5. The K(m) for pyruvate in the pyruvate dehydrogenase reaction was 35.5mum. 2-Oxobutyrate and 3-hydroxypyruvate but not glyoxylate were also substrates; all three compounds inhibited pyruvate oxidation. 6. In preparations of pig heart pyruvate dehydrogenase free of thiamin pyrophosphate, pyruvate inhibited the kinase reaction at all concentrations in the range 25-500mum. The inhibition was uncompetitive. In the presence of thiamin pyrophosphate (endogenous or added at 2 or 10mum) the kinase activity was enhanced by low concentrations of pyruvate (25-100mum) and inhibited by a high concentration (500mum). Activation of the kinase reaction was not seen when sodium pyrophosphate was substituted for thiamin pyrophosphate. 7. Under the conditions of the kinase assay, pig heart pyruvate dehydrogenase forms (14)CO(2) from [1-(14)C]pyruvate in the presence of thiamin pyrophosphate. Previous work suggests that the products may include acetoin. Acetoin activated the kinase reaction in the presence of thiamin pyrophosphate but not with sodium pyrophosphate. It is suggested that acetoin formation may contribute to activation of the kinase reaction by low pyruvate concentrations in the presence of thiamin pyrophosphate. 8. Pyruvate effected the conversion of pyruvate dehydrogenase phosphate into pyruvate dehydrogenase in rat heart mitochondria incubated with 5mm-2-oxoglutarate and 0.5mm-l-malate as respiratory substrates. It is suggested that this effect of pyruvate is due to inhibition of the pyruvate dehydrogenase kinase reaction in the mitochondrion. 9. Pyruvate dehydrogenase kinase activity was inhibited by high concentrations of Mg(2+) (15mm) and by Ca(2+) (10nm-10mum) at low Mg(2+) (0.15mm) but not at high Mg(2+) (15mm).  相似文献   

3.
The effect of the mitochondrial pyruvate transport inhibitors, α-cyanocinnamate and α-cyano-4-hydroxycinnamate, on the regulation of the pyruvate dehydrogenase multienzyme complex was investigated in the isolated perfused rat heart. Metabolic flux through pyruvate dehydrogenase was monitored by measuring 14CO2 production from [1-14C]pyruvate infused into the heart. A stepwise increase in the concentration of the inhibitor in the influent perfusate effected a stepwise reduction of the flux through the enzyme complex at all pyruvate concentrations tested. However, the magnitude of the α-cyanocinnamate-insensitive flux through pyruvate dehydrogenase increased markedly as the infused pyruvate concentration was elevated. The inhibition of pyruvate decarboxylation in the heart was nearly completely reversed following cessation of the inhibitor infusion. α-Cyanocinnamate was nearly 10 times more potent than α-cyano-4-hydroxycinnamate as an inhibitor of the flux through pyruvate dehydrogenase. Maximally inhibiting levels of α-cyano-4-hydroxycinnamate caused an increase in the ratio of the active form of pyruvate dehydrogenase to the total extractable enzyme complex from a value of 0.5 at 1 mm infused pyruvate (in the absence of the inhibitor) to a value of near unity. This result indicated that the intramitochondrial pyruvate concentration was severely depleted by the infusion of the inhibitor and that the enzyme complex was interconverted to its active form under these conditions. Removal of the inhibitor from the perfusion medium again lowered the ratio of the active/total pyruvate dehydrogenase to near its original level of 0.5 and restored the original flux through the enzyme complex indicating that mitochondrial pyruvate transport has been restored. The results of this study indicate that α-cyanocinnamate and its derivatives are effective inhibitors of pyruvate transport in the perfused heart and that carrier-mediated pyruvate transport can be an important parameter in the regulation of the activation state and the metabolic flux through the pyruvate dehydrogenase multienzyme complex in the heart.  相似文献   

4.
1. The conversion of inactive (phosphorylated) pyruvate dehydrogenase complex into active (dephosphorylated) complex by pyruvate dehydrogenase phosphate phosphatase is inhibited in heart mitochondria prepared from alloxan-diabetic or 48h-starved rats, in mitochondria prepared from acetate-perfused rat hearts and in mitochondria prepared from normal rat hearts incubated with respiratory substrates for 6 min (as compared with 1 min). 2. This conclusion is based on experiments with isolated intact mitochondria in which the pyruvate dehydrogenase kinase reaction was inhibited by pyruvate or ATP depletion (by using oligomycin and carbonyl cyanide m-chlorophenylhydrazone), and in experiments in which the rate of conversion of inactive complex into active complex by the phosphatase was measured in extracts of mitochondria. The inhibition of the phosphatase reaction was seen with constant concentrations of Ca2+ and Mg2+ (activators of the phosphatase). The phosphatase reaction in these mitochondrial extracts was not inhibited when an excess of exogenous pig heart pyruvate dehydrogenase phosphate was used as substrate. It is concluded that this inhibition is due to some factor(s) associated with the substrate (pyruvate dehydrogenase phosphate complex) and not to inhibition of the phosphatase as such. 3. This conclusion was verified by isolating pyruvate dehydrogenase phosphate complex, free of phosphatase, from hearts of control and diabetic rats an from heart mitochondria incubed for 1min (control) or 6min with respiratory substrates. The rates of re-activation of the inactive complexes were then measured with preparations of ox heart or rat heart phosphatase. The rates were lower (relative to controls) with inactive complex from hearts of diabetic rats or from heart mitochondria incubated for 6min with respiratory substrates. 4. The incorporation of 32Pi into inactive complex took 6min to complete in rat heart mitocondria. The extent of incorporation was consistent with three or four sites of phosphorylation in rat heart pyruvate dehydrogenase complex. 5. It is suggested that phosphorylation of sites additional to an inactivating site may inhibit the conversion of inactive complex into active complex by the phosphatase in heart mitochondria from alloxan-diabetic or 48h-starved rats or in mitochondria incubated for 6min with respiratory substrates.  相似文献   

5.
The rate of pyruvate oxidation by isolated rabbit heart mitochondria was inhibited by fatty acylcarnitine derivatives. The extent of inhibition by pyruvate oxidation in State 3 was greatest with palmitylcarnitine and only a minimal inhibition was observed with acetylcarnitine, while octanoylcarnitine or octanoate caused an intermediate extent of inhibition. Analyses of the intramitochondrial ATPADP and NADHNAD+ ratios under the different conditions of incubation indicated that it is unlikely that changes in either or both of these parameters were the primary negative effectors of the rate of pyruvate oxidation. A positive correlation between the decrease in the rate of pyruvate oxidation and the decrease in the level of free CoASH in the mitochondria was observed. Extraction and assay of the pyruvate dehydrogenase from rabbit heart mitochondria during the time course of the fatty acid-mediated inhibition of pyruvate oxidation indicated that pyruvate dehydrogenase was strongly inactivated when palmitylcarnitine was the fatty acid, while incubation with octanoate and acetylcarnitine resulted in less extensive inactivation of pyruvate dehydrogenase. Measurement of the effects of NADH, NAD+, acetyl-CoA, and CoASH on the inactivation of pyruvate dehydrogenase extracted from rabbit heart mitochondria indicated that NADH and acetyl-CoA activated the pyruvate dehydrogenasee kinase while CoASH strongly inhibited the kinase and NAD+ was without effect. In addition, palmityl-CoA and octanoyl-CoA had little, if any, effect on the pyruvate dehydrogenase kinase activity. It was observed that palmityl-CoA but not octanoyl-CoA strongly inhibited the activity of the extracted pyruvate dehydrogenase. Hence, it is concluded that (a) decreased mitochondrial CoASH levels, which essentially remove a potent inhibitor of the pyruvate dehydrogenase kinase, (b) possibly a diminished free CoASH supply, which may be utilized as a substrate for the active complex, and (c) direct inhibitory effects of palmityl-CoA on the active form of the pyruvate dehydrogenase complex combine to make palmitylcarnitine a much more potent inhibitor of mitochondrial pyruvate oxidation than shorter chain length acylcarnitine derivatives.  相似文献   

6.
The regulatory effects of alpha-ketoisovalerate on purified bovine heart pyruvate dehydrogenase complex and endogenous pyruvate dehydrogenase kinase were investigated. Incubation of pyruvate dehydrogenase complex with 0.125 to 10 mM alpha-ketoisovalerate caused an initial lag in enzymatic activity, followed by a more linear but inhibited rate of NADH production. Incubation with 0.0125 or 0.05 mM alpha-ketoisovalerate caused pyruvate dehydrogenase inhibition, but did not cause the initial lag in pyruvate dehydrogenase activity. Gel electrophoresis and fluorography demonstrated the incorporation of acyl groups from alpha-keto[2-14C]isovalerate into the dihydrolipoyl transacetylase component of the enzyme complex. Acylation was prevented by pyruvate and by arsenite plus NADH. Endogenous pyruvate dehydrogenase kinase activity was stimulated specifically by K+, in contrast to previous reports, and kinase stimulation by K+ correlated with pyruvate dehydrogenase inactivation. Maximum kinase activity in the presence of K+ was inhibited 62% by 0.1 mM thiamin pyrophosphate, but was inhibited only 27% in the presence of 0.1 mM thiamin pyrophosphate and 0.1 mM alpha-ketoisovalerate. Pyruvate did not affect kinase inhibition by thiamin pyrophosphate at either 0.05 or 2 mM. The present study demonstrates that alpha-ketoisovalerate acylates heart pyruvate dehydrogenase complex and suggests that acylation prevents thiamin pyrophosphate-mediated kinase inhibition.  相似文献   

7.
J.K. Hiltunen  I.E. Hassinen 《BBA》1976,440(2):377-390
1. The regulation of glycolysis and pyruvate oxidation under varying conditions of ATP and oxygen consumption was studied in isolated perfused rat hearts. Potassium-induced arrest was employed to inhibit the ATP consumption of the heart.2. Under the experimental conditions, the beating heart used solely glucose as the oxidisable substrate. The glycolytic flux through the aldolase step decreased in pace with the decreasing oxygen consumption during the potassium-induced arrest of the heart. The decrease in glucose oxidation was larger than the inhibition of the oxygen consumption, suggesting that the arrested heart switches to fatty acid oxidation.The time course and percentage changes of the inhibition of pyruvate oxidation and the decrease in the amount of the active form of pyruvate dehydrogenase suggest that the amount of active pyruvate dehydrogenase is the main regulator of pyruvate oxidation in the perfused heart.3. To test the relative significance of the possible mechanisms regulating covalent interconversions of pyruvate dehydrogenase, the following parameters were measured in response to the potassium-induced cardiac arrest: concentrations of pyruvate, acetyl-CoA, CoA-SH, citrate, α-oxoglutarate, ATP, ADP, AMP, creatine, creatine phosphate and inorganic phosphate and the mitochondrial NADH/NAD+ ratio.In cardiac tissue the adenylate system is not a good indicator of the energy state of the mitochondrion, even when the concentrations of AMP and free cytosolic ADP are calculated from the adenylate kinase and creatine kinase equilibria. Only creatine phosphate and inorganic phosphate undergo significant changes, but evidence of the participation of the latter compounds in the regulation of the pyruvate dehydrogenase interconversions is lacking.The potassium-induced arrest of the heart resulted in a decrease in pyruvate, a slight increase in acetyl-CoA, a large increase in the concentration of citrate and an increase in the mitochondrial NADH/NAD+.The results can be interpreted as showing that in the heart, the pyruvate dehydrogenase interconversions are mainly regulated by the pyruvate concentration and the mitochondrial redox state. Concentrations of all the regulators tested shifted to directions which one would expect to result in a decrease in the amount of active pyruvate dehydrogenase, but the changes were quite small. Therefore, the energy-linked regulation of pyruvate dehydrogenase in intact tissue is possibly mediated by the equilibrium relations between the cellular redox state and the phosphorylation potential recently confirmed in cardiac tissue.  相似文献   

8.
1. The regulation of glycolysis and pyruvate oxidation under varying conditions of ATP and oxygen consumption was studied in isolated perfused rat hearts. Potassium-induced arrest was employed to inhibit the ATP consumption of the heart. 2. Under the experimental conditions, the beating heart used solely glucose as the oxidisable substrate. The glycolytic flux through the aldolase step decreased in pace with the decreasing oxygen consumption during the potassium-induced arrest of the heart. The decrease in glucose oxidation was larger than the inhibition of the oxygen consumption, suggesting that the arrested heart switches to fatty acid oxidation. The time course and percentage changes of the inhibition of pyruvate oxidation and the decrease in the amount of the active form of pyruvate dehydrogenase suggest that the amount of active pyruvate dehydrogenase is the main regulator of pyruvate oxidation in the perfused heart. 3. To test the relative significance of the possible mechanisms regulating covalent interconversions of pyruvate dehydrogenase, the following parameters were measured in response to the potassium-induced cardiac arrest: concentrations of pyruvate, acetyl-CoA, CoA-SH, citrate, alpha-oxoglutarate, ATP, ADP, AMP, creatine, creatine phosphate and inorganic phosphate and the mitochondrial NADH/NAD+ ratio. In cardiac tissue the adenylate system is not a good indicator of the energy state of the mitochondrion, even when the concentrations of AMP and free cytosolic ADP are calculated from the adenylate kinase and creatine kinase equilibria. Only creatine phosphate and inorganic phosphate undergo significant changes, but evidence of the participation of the latter compounds in the regulation of the pyruvate dehydrogenase interconversions is lacking. The potassium-induced arrest of the heart resulted in a decrease in pyruvate, a slight increase in acetyl-CoA, a large increase in the concentration of citrate and an increase in the mitochondrial NADH/NAD+. The results can be interpreted as showing that in the heart, the pyruvate dehydrogenase interconversions are mainly regulated by the pyruvate concentration and the mitochondrial redox state. Concentrations of all the regulators tested shifted to directions which one would expect to result in a decrease in the amount of active pyruvate dehydrogenase, but the changes were quite small. Therefore, the energy-linked regulation of pyruvate dehydrogenase in intact tissue is possibly mediated by the equilibrium relations between the cellular redox state and the phosphorylation potential recently confirmed in cardiac tissue.  相似文献   

9.
1. Incubation of mitochondria from heart, liver and kidney with [32P]phosphate allowed 32P incorporation into two intramitochondrial proteins, the decarboxylase alpha-subunit of the pyruvate dehydrogenase complex (mol.wt 42000) and a protein of mol.wt. 48000. 2. This latter protein incorporated 32P more slowly than did pyruvate dehydrogenase, was not precipitated by antibody to pyruvate dehydrogenase and showed behaviour distinct from that of pyruvate dehydrogenase towards high-speed centrifugation and pyruvate dehydrogenase phosphate phosphatase. 3. 32P incorporation into the protein was greatly diminished by the presence of 0.1 mM-4-methyl-2-oxopentanoate, but enhanced by pyruvate (1 mM), hypo-osmotic treatment of mitochondria and, under some conditions, by uncoupler. 4. The activity of branched-chain 2-oxo acid dehydrogenase was assayed in parallel experiments. Under appropriate conditions the enzyme was inhibited when 32P incorporation was increased and activated when incorporation was decreased. The data suggest that the 48000-mol.wt. phosphorylated protein is identical with the decarboxylase subunit of branched-chain 2-oxo acid dehydrogenase and that this enzyme may be controlled by a phosphorylation-dephosphorylation cycle akin to that for pyruvate dehydrogenase. 5. Strict correlation between activity and 32P incorporation was not observed, and a scheme for the regulation of the enzyme is proposed to account for these discrepancies.  相似文献   

10.
The amount of pyruvate dehydrogenase in the active form (PDHa) was increased 1.7-fold compared with controls in heart muscle of mice 1 week after induction of obesity with a single injection of gold-thioglucose. At 4 weeks post injection, the amount of PDHa was decreased to 32% of control, a value which was observed in later stages of the obesity syndrome. In contrast, liver PDHa was increased and remained at an increased activity during the development of obesity. Despite normal post-prandial serum insulin contents, liver membrane insulin-receptor numbers were decreased 1 week after gold-thioglucose injection, and there was no change in receptor affinity. The decrease in heart PDHa in the obese animals was reversed by a single dose of 2-tetradecylglycidic acid, but this inhibitor of mitochondrial fatty acid oxidation did not affect liver PDHa in these animals. These early and diverse changes in PDHa argue for a multifactorial aetiology in the development of the whole-body insulin resistance seen in older gold-thioglucose-treated obese animals.  相似文献   

11.
Obese gold thioglucose injected mice were reduced to lean control weight by food restriction. When pair fed with lean controls these animals then gained weight (were metabolically more efficient). Serum glucose was also elevated in this group (14.5±0.4 (14)vs 12.1±0.3 mmol/L, p<0.001). If previously obese animals were weight maintained with lean controls (by mild food restriction), serum glucose remained at control levels. The activity of the pyruvate dehydrogenase complex in heart muscle was decreased in both obese and pair fed previously obese, whilst it was similar to that of lean controls in the weight maintained previously obese and in obese mice actually dieted. In all obese and previously obese animals serum insulin was elevated. In hearts from control animals subjected to mild food restriction the pyruvate dehydrogenase complex was activated (11.53±1.80 (5)vs 3.34±0.62 (9) U/g dry weight), despite a reduced serum insulin level (42±2vs 74±10 U/ml, p<0.01). These diverse changes in the proportion of the pyruvate dehydrogenase complex in the active form and insulin levels argue for a persistent alteration in the sensitivity of the pyruvate dehydrogenase complex to insulin in obesity, as well as indicating that glucose metabolism in obese animals is altered by both body weight and diet amount.To whom correspondence should be addressed.  相似文献   

12.
The proportion of active (dephosphorylated) pyruvate dehydrogenase in perfused rat heart was decreased by alloxan-diabetes or by perfusion with media containing acetate, n-octanoate or palmitate. The total activity of the dehydrogenase was unchanged. 2. Pyruvate (5 or 25mM) or dichloroacetate (1mM) increased the proportion of active (dephosphorylated) pyruvate dehydrogenase in perfused rat heart, presumably by inhibiting the pyruvate dehydrogenase kinase reaction. Alloxan-diabetes markedly decreased the proportion of active dehydrogenase in hearts perfused with pyruvate or dichloroacetate. 3. The total activity of pyruvate dehydrogenase in mitochondria prepared from rat heart was unchanged by diabetes. Incubation of mitochondria with 2-oxo-glutarate plus malate increased ATP and NADH concentrations and decreased the proportion of active pyruvate dehydrogenase. The decrease in active dehydrogenase was somewhat greater in mitochondria prepared from hearts of diabetic rats than in those from hearts of non-diabetic rats. Pyruvate (0.1-10 mM) or dichloroacetate (4-50 muM) increased the proportion of active dehydrogenase in isolated mitochondria presumably by inhibition of the pyruvate dehydrogenase kinase reaction. They were much less effective in mitochondria from the hearts of diabetic rats than in those of non-diabetic rats. 4. The matrix water space was increased in preparations of mitochondria from hearts of diabetic rats. Dichloroacetate was concentrated in the matrix water of mitochondria of non-diabetic rats (approx. 16-fold at 10 muM); mitochondria from hearts of diabetic rats concentrated dichloroacetate less effectively. 5. The pyruvate dehydrogenase phosphate phosphatase activity of rat hearts and of rat heart mitochondria (approx. 1-2 munit/unit of pyruvate dehydrogenase) was not affected by diabetes. 6. The rate of oxidation of [1-14C]pyruvate by rat heart mitochondria (6.85 nmol/min per mg of protein with 50 muM-pyruvate) was approx. 46% of the Vmax. value of extracted pyruvate dehydrogenase (active form). Palmitoyl-L-carnitine, which increased the ratio of [acetyl-CoA]/[CoA] 16-fold, inhibited oxidation of pyruvate by about 90% without changing the proportion of active pyruvate dehydrogenase.  相似文献   

13.
1. Previous studies showed that the activation of pyruvate dehydrogenase within intact rat heart mitochondria of pyruvate is much diminished in mitochondria from starved or diabetic animals [see Kerbey, Randle, Cooper, Whitehouse, Pask & Denton (1976) Biochem. J. 154, 327-348]. In the present study, diminished responses to added Ca2+ and ADP were also found in these mitochondria. 2. Starvation or diabetes did not affect the mitochondrial respiratory control ratio of the ATP content. Moreover, starvation and diabetes did not alter the response of the intramitochondrial Ca2+-sensitive enzyme, 2-oxoglutarate dehydrogenase, to changes in the extramitochondrial concentration of Ca2+ and 2-oxoglutarate, thus indicating that there were no appreciable changes in the distribution of Ca2+ and H+ across the mitochondrial inner membrane. 3. Pyruvate, Ca2+ and ADP were found to have synergistic effects on pyruvate dehydrogenase activity, particularly in mitochondria from starved and diabetic rats. 4. The results suggest that the effects of diabetes and starvation on pyruvate dehydrogenase are not brought about by changes in the distribution of these effectors across the mitochondrial inner membrane or by changes in the intrinsic sensitivity of the kinase or phosphatase of the pyruvate dehydrogenase system to pyruvate, Ca2+ or ADP; rather it is probably that there is an increase in the maximum activity of kinase relative to that of the phosphatase. 6. The results also lend further support to the hypothesis that adrenaline may bring about the activation of pyruvate dehydrogenase in the rat heart by an increase in the intramitochondrial concentration of Ca2+.  相似文献   

14.
The proportion of pyruvate dehydrogenase (PDH) complex in the active dephosphorylated form was decreased (compared with fed lean control mice) in heart muscle mitochondria after the induction of obesity with gold-thioglucose (by 54%) or starvation of lean mice for 48 h (by 81%). The effects of obesity to inactivate PDH complex were demonstrable 4 weeks after administration of gold-thioglucose, and occurred despite significant hyperinsulinaemia in obese animals. Phosphorylation and inactivation of PDH complex in mouse heart muscle in starvation was attributed to a stable increase (2.7-fold) in the activity of PDH kinase as measured in extracts of mitochondria mediated by increased specific activity of a protein activator of PDH kinase (KAP) [Denyer, Kerbey & Randle (1986) Biochem. J. 239, 347-354]. In obese mice no such increase in kinase activity was observed, and we conclude that phosphorylation and inactivation of PDH complex in heart muscle in obesity is not mediated by KAP, but rather is a consequence of increased lipid oxidation.  相似文献   

15.
1. In order to assess whether the potential ability of heart ventricular muscle and liver to metabolise substrates such as alanine, aspartate and lactate varies as the sheep matures and its nutrition changes, the activities of the following enzymes were determined in tissues of lambs obtained at varying intervals between 50 days after conception to 16 weeks after birth and in livers from adult pregnant ewes: lactate dehydrogenase (EC 1.1.1.27), alanine aminotransferase (EC 2.6.1.2), pyruvate kinase (EC 2.7.1.40), pyruvate carboxylase (EC 6.4.1.1), phosphoenolpyruvate carboxykinase (GTP)(EC 4.1.1.32), malate dehydrogenase (EC 1.1.1.37), aspartate aminotransferase (EC 2.6.1.1) and citrate (si)-synthase (EC 4.1.3.7). 2. In the heart a most marked increase in alanine aminotransferase activity was found throughout development. During this period the activities of citrate (si)-synthase, lactate dehydrogenase and pyruvate carboxylase also increased. There were no substantial changes in the activities of aspartate aminotransferase, malate dehydrogenase or pyruvate kinase. Pyruvate kinase activities were five times greater in the heart compared with those found in the liver. No significant activity of phosphoenolpyruvate carboxykinase (GTP) was detected in heart muscle. 3. In the liver the activities of both alanine aminotransferase and aspartate aminotransferase increased immediately following birth although the activity of alanine aminotransferase was lower in livers of pregnant ewes than in any of the lambs. As with alanine aminotransferase the highest activities of lactate dehydrogenase were found during the period of postnatal growth. No marked changes were observed in malate dehydrogenase or citrate (si)-synthase activities during development. A small decline in pyruvate kinase activity occurred whilst the activities of pyruvate carboxylase and phosphoenolpyruvate carboxykinase (GTP) tended to rise during development.  相似文献   

16.
Lipoamide dehydrogenases from various sources were purified and their immunochemical properties were compared. Antibody against rat lipoamide dehydrogenase reacted with rat, human, pig, pigeon and frog enzymes, but not with enzymes from E. coli, yeast and Ascaris. Anti-Ascaris enzyme and anti-E. coli enzyme antibodies reacted with Ascaris and E. coli enzymes, respectively. The pyruvate dehydrogenase subcomplex, which consists of pyruvate dehydrogenase and lipoate acetyltransferase, was prepared by releasing the lipoamide dehydrogenase from rat heart pyruvate dehydrogenase complex by anti-lipoamide dehydrogenase antibody. Lipoamide dehydrogenases from various sources were added to rat pyruvate dehydrogenase subcomplex and the complex overall activity was measured. Each lipoamide dehydrogenase effectively recovered the overall activity of rat pyruvate dehydrogenase subcomplex to 80% of the original activity.  相似文献   

17.
18.
The regulation of the pyruvate dehydrogenase multienzyme complex of isolated beef heart mitochondria by a phosphorylation-dephosphorylation mechanism was investigated. From mitochondria incubated under conditions favoring either a protein kinasemediated inactivation or a phosphatase-mediated reactivation, the pyruvate dehydrogenase complex was extracted and partially purified. Incorporation of 32P from [γ-32P]ATP into the pyruvate dehydrogenase complex corresponded to the loss of enzymatic activity. Upon incubation of the mitochondria that were preincubated with [γ-32P]ATP under metabolic conditions favoring the phosphatase reaction, the amount of radioactivity in the 32P-labeled fraction decreased significantly with a concomitant increase in the pyruvate dehydrogenase activity. The estimated molecular weight of the 32P-labeled fraction derived from the mitochondrial incubation was 41,000, corresponding to the reported molecular weight of the α-subunit of the pyruvate dehydrogenase portion of the multienzyme complex.  相似文献   

19.
Reaction rates of succinate and lactate dehydrogenase activity in cryostat sections of rat liver, tracheal epithelium and heart muscle were monitored by continuous measurement of formazan formation by cytophotometry at room temperature. Incubation media contained polyvinyl alcohol as tissue protectant and Tetranitro BT as final electron acceptor. Control media lacked either substrate or substrate and coenzyme. Controls were also performed by adding malonate (a competitive inhibitor of succinate dehydrogenase), pyruvate (a non-competitive inhibitor of lactate dehydrogenase), oxalate (a competitive inhibitor of lactate dehydrogenase) or N-ethylmaleimide (a blocker of SH groups). A specific malonate-sensitive linear test minus control response for succinate dehydrogenase activity was obtained in liver (1.6 mumol H2cm-3 min-1) and tracheal epithelium (0.8 mumol H2cm-3 min-1) but not in heart muscle. All variations in the incubation conditions tested did not result in a linear test minus control response in the latter tissue. Because the reaction was sensitive to malonate, it was concluded that the initial reaction rate was the specific rate of succinate dehydrogenase activity in heart muscle (9.1 mumol H2 cm-3 min-1). Test minus control reactions for lactate dehydrogenase activity were distinctly non-linear for all tissues tested. This appeared to be due to product inhibition by pyruvate generated during the reaction and therefore it was concluded that the appropriate control reaction was the test reaction in the presence of 20 mM pyruvate. The initial rate of the test minus this control was the true rate of lactate dehydrogenase activity. The lactate dehydrogenase activity thus found in liver parenchyma was 5.0 mumol of H2 generated per cm3 liver tissue per min.  相似文献   

20.
Purified pig heart pyruvate dehydrogenase complex is denuded of its intrinsic pyruvate dehydrogenase kinase activity by sedimentation from dilute solution (60 munits/ml). Kinase activity is restored by a supernatant fraction prepared by high-speed centrifugation of rat heart mitochondrial extracts; the factor responsible is referred to as kinase/activator. Kinase/activator was also assayed by its ability to accelerate NgATP-induced inactivation in dilute solutions of unprocessed complex (50 munits/ml). With this assay it has been shown that the activity of kinase/activator in heart mitochondria is increased 3-6 fold by starvation of rats for 48 h. This increase was prevented completely by cycloheximide treatment and prevented partially by puromycin treatment of rats during starvation. The concentration of kinase/activator in heart mitochondria fell during 20 h of re-feeding of 48 h-starved rats; this fall was correlated with an increase in the proportion of complex in the active form. Kinase/activator was also extracted from ox kidney mitochondria, and on gel filtration (Sephadex G-100, superfine grade) was eluted close to the void volume. Kinase/activator (ox kidney or rat heart) was thermolabile, non-diffusable on dialysis, and inactivated by trypsin. The results of this study appear to show increased cytoplasmic synthesis in starvation of pyruvate dehydrogenase kinase and/or of an activator of the kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号