首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
The kinetics of the partial digestion of bovine -lactalbumin (-LA) by trypsin, -chymotrypsin, and pepsin was monitored by lactose synthase activity, HPLC, and difference spectrophotometry. The relative stabilities of the various metal-bound states of -LA to trypsin and chymotrypsin at 37 and 5°C decrease in the following order: Ca(II)--LA>Zn(II), Ca(II)--LA>apo--LA. The HPLC digestion patterns of Ca(II)--LA and Zn(II), Ca(II)--LA at 5 and 37°C were similar, while the corresponding digestion patterns for apo--LA were quite different, reflecting the existence of the thermally induced denaturation states of apo--LA within this temperature region. Occupation of the first Zn(II)-binding site in Ca(II)-loaded -LA slightly alters the HPLC digestion patterns at both temperatures and accelerates the digestion at 37°C due to Zn(II)-induced shift of the thermal transition of -LA, exposing some portion of thermally denatured protein. The results suggest that the binding of Zn(II) to the first Zn(II)- (or Cu(II))-specific site does not cause any drastic changes in the overall structure of -LA. The acidic form of -LA (atpH 2.2 and 37°C) was digested by pepsin at rates similar to that for the apo- or Cu(II), Ca(II)-loaded forms by trypsin or -chymotrypsin at neutralpH. Complexation of -LA with bis-ANS affords protection against pepsin cleavage. It is suggested that the protective effects of similar small lipophilic compounds to -LA may have physiological significance (e.g., for nutritional transport).On leave from the Institute of Biological Physics, USSR Academy of Sciences, Pushchino, Moscow Region, 142292, USSR.  相似文献   

2.
Parkinson disease (PD) is the most common movement disorder affecting people. It is characterized by the accumulation of the protein α-synuclein in Lewy body inclusions in vulnerable neurons. α-Synuclein overexpression caused by gene multiplications is sufficient to cause this disease, suggesting that α-synuclein accumulation is toxic. Here we review our recent study showing that α-synuclein inhibits autophagy. We discuss our mechanistic understanding of this phenomenon and also speculate how a deficiency in autophagy may contribute to a range of pleiotropic features of PD biology.  相似文献   

3.
《Autophagy》2013,9(4):429-431
Parkinson disease (PD) is the most common movement disorder affecting people. It is characterized by the accumulation of the protein α-synuclein in Lewy body inclusions in vulnerable neurons. α-Synuclein overexpression caused by gene multiplications is sufficient to cause this disease, suggesting that α-synuclein accumulation is toxic. Here we review our recent study showing that α-synuclein inhibits autophagy. We discuss our mechanistic understanding of this phenomenon and also speculate how a deficiency in autophagy may contribute to a range of pleiotropic features of PD biology.  相似文献   

4.
A key feature in Parkinson’s disease is the deposition of Lewy bodies. The major protein component of these intracellular deposits is the 140-amino acid protein α-synuclein that is widely distributed throughout the brain. α-synuclein was identified in presynaptic terminals and in synaptosomal preparations. The protein is remarkable for its structural variability. It is almost unstructured as a monomer in aqueous solution. Self-aggregation leads to a variety of β-structures, while membrane association may result in the formation of an amphipathic helical structure. The present article strives to give an overview of what is currently known on the interaction of α-synuclein with lipid membranes, including synthetic lipid bilayers, membraneous cell fractions, synaptic vesicles and intact cells. Manifestations of a functional relevance of the α-synuclein–lipid interaction will be discussed and the potential pathogenicity of oligomeric α-synuclein aggregates will be briefly reviewed.  相似文献   

5.
Parkinson disease (PD), a prevalent neurodegenerative motor disorder, is characterized by the rather selective loss of dopaminergic neurons and the presence of α-synuclein-enriched Lewy body inclusions in the substantia nigra of the midbrain. Although the etiology of PD remains incompletely understood, emerging evidence suggests that dysregulated iron homeostasis may be involved. Notably, nigral dopaminergic neurons are enriched in iron, the uptake of which is facilitated by the divalent metal ion transporter DMT1. To clarify the role of iron in PD, we generated SH-SY5Y cells stably expressing DMT1 either singly or in combination with wild type or mutant α-synuclein. We found that DMT1 overexpression dramatically enhances Fe(2+) uptake, which concomitantly promotes cell death. This Fe(2+)-mediated toxicity is aggravated by the presence of mutant α-synuclein expression, resulting in increased oxidative stress and DNA damage. Curiously, Fe(2+)-mediated cell death does not appear to involve apoptosis. Instead, the phenomenon seems to occur as a result of excessive autophagic activity. Accordingly, pharmacological inhibition of autophagy reverses cell death mediated by Fe(2+) overloading. Taken together, our results suggest a role for iron in PD pathogenesis and provide a mechanism underlying Fe(2+)-mediated cell death.  相似文献   

6.
Chung JY  Lee SJ  Lee SH  Jung YS  Ha NC  Seol W  Park BJ 《Neuro-Signals》2011,19(2):86-96
Genetic mutation of α-synuclein (α-SYN) is clearly verified as the causal factor of human and mouse Parkinson's disease. However, biological function of α-SYN has not been clearly demonstrated until now. In this investigation, we reveal that α-SYN is a co-regulator of growth factor-induced AKT activation. Elimination of SYN reduces the IGF-1-mediated AKT activation. Similarly, mutant SYN suppresses the IGF-1-induced AKT activation. Wild-type SYN can interact with AKT and enhance the solubility and plasma localization of AKT in response to IGF-1, whereas mutant α-SYNs do not interact with AKT. In addition, elevated expression of SYN blocks the AKT activation. We also find that si-RNA against α-SYN abolished the protective effect of IGF-1 against DNA damage-induced apoptosis. Our result strongly indicates that Parkinson's disease, induced by α-SYN mutation, is evoked by deregulation of the AKT-signaling cascade.  相似文献   

7.
Environmental toxins and α-synuclein in Parkinson’s disease   总被引:3,自引:0,他引:3  
Liu Y  Yang H 《Molecular neurobiology》2005,31(1-3):273-282
In recent years, environmental influences have been thought to play an important role in Parkinson’s disease (PD). Evidence from epidemiological investigations suggests that environmental factors might take part in the disease process. Intriguingly, most of environmental toxins share the common mechanism of causing mitochondria dysfunction by inhibiting complex I and promoting α-synuclein aggregation, a key factor in PD. Therefore, understanding the mechanism of interactions between α-synuclein and environmental factors could lead to new therapeutic approaches to PD.  相似文献   

8.
Parkinson’s disease (PD) is characterized pathologically by intraneuronal inclusions called Lewy bodies, largely comprised of α-synuclein. Multiplication of the α-synuclein gene locus increases α-synuclein expression and causes PD. Thus, overexpression of wild-type α-synuclein is toxic. In this study, we demonstrate that α-synuclein overexpression impairs macroautophagy in mammalian cells and in transgenic mice. Our data show that α-synuclein compromises autophagy via Rab1a inhibition and Rab1a overexpression rescues the autophagy defect caused by α-synuclein. Inhibition of autophagy by α-synuclein overexpression or Rab1a knockdown causes mislocalization of the autophagy protein, Atg9, and decreases omegasome formation. Rab1a, α-synuclein, and Atg9 all regulate formation of the omegasome, which marks autophagosome precursors.  相似文献   

9.
The etiology of sporadic Parkinson’s disease (PD) is unknown, although mitochondrial dysfunction and oxidative stress have been implicated in the mechanisms associated with PD pathogenesis. Dopamine (DA) neurons of the substantia nigra pars compacta have been shown to degenerate to a greater extent in PD than other neurons suggesting the possibility that DA itself may be contributing to the neurodegenerative process. This review discusses our work on the effects of DA oxidation and reactive DA quinones on mitochondrial function and protein modification and the potential for exacerbating toxicity associated with mitochondrial dysfunction in PD.  相似文献   

10.
The intracellular oligomerization of α-synuclein is associated with Parkinson's disease and appears to be an important target for disease-modifying treatment. Yet, to date, there is no specific inhibitor for this aggregation process. Using unbiased systematic peptide array analysis, we identified molecular interaction domains within the β-synuclein polypeptide that specifically binds α-synuclein. Adding such peptide fragments to α-synuclein significantly reduced both amyloid fibrils and soluble oligomer formation in vitro. A retro-inverso analogue of the best peptide inhibitor was designed to develop the identified molecular recognition module into a drug candidate. While this peptide shows indistinguishable activity as compared to the native peptide, it is stable in mouse serum and penetrates α-synuclein over-expressing cells. The interaction interface between the D-amino acid peptide and α-synuclein was mapped by Nuclear Magnetic Resonance spectroscopy. Finally, administering the retro-inverso peptide to a Drosophila model expressing mutant A53T α-synuclein in the nervous system, resulted in a significant recovery of the behavioral abnormalities of the treated flies and in a significant reduction in α-synuclein accumulation in the brains of the flies. The engineered retro-inverso peptide can serve as a lead for developing a novel class of therapeutic agents to treat Parkinson's disease.  相似文献   

11.
α-Synuclein is the major amyloidogenic component observed in the Lewy bodies of Parkinson's disease. Amyloid fibrils of α-synuclein prepared in vitro were instantaneously disintegrated by dequalinium (DQ). Double-headed cationic amphipathic structure of DQ with two aminoquinaldinium rings at both ends turned out to be crucial to exert the disintegration activity. The defibrillation activity was shown to be selective toward the fibrils of α-synuclein and Aβ40 while the other β2-microglobulin amyloid fibrils were not susceptible so much. Besides the common cross β-sheet conformation of amyloid fibrils, therefore, additional specific molecular interactions with the target amyloidogenic proteins have been expected to be involved for DQ to exhibit its defibrillation activity. The disintegrating activity of DQ was also evaluated in vivo with the yeast system overexpressing α-synuclein-GFP. With the DQ treatment, the intracellular green inclusions turned into green smears, which resulted in the enhanced cell death. Based on the data, the previous observation that DQ led to the predominant protofibril formation of α-synuclein could be explained by the dual function of DQ showing both the facilitated self-oligomerization of α-synuclein and the instantaneous defibrillation of its amyloid fibrils. In addition, amyloidosis-related cytotoxicity has been demonstrated to be amplified by the fragmentation of mature amyloid fibrils by DQ.  相似文献   

12.
Liquid-liquid phase separation (LLPS) is currently recognized as a common mechanism involved in the regulation of a number of cellular functions. On the other hand, aberrant phase separation has been linked to the biogenesis of several neurodegenerative disorders since many proteins that undergo LLPS are also found in pathological aggregates. The formation of mixed protein coacervates may constitute a risk factor in overlapping neuropathologies, such as Parkinson's (PD) and Alzheimer's (AD) diseases. In this work, we evaluated the homotypic and heterotypic phase behaviour of the PD-related protein α-synuclein (AS) in the presence of the biologically relevant molecules ATP, polyamines, and the AD-related protein Tau. We found that AS exhibits a low propensity to form homotypic liquid droplets, yet phase separates into liquid-like or solid-like phases depending on the interacting biomolecule. We further demonstrated the synergistic droplet formation of AS and Tau providing support for a mechanism in which mixed condensates might contribute to the biogenesis of AS/Tau pathologies.  相似文献   

13.
We have previously shown that phospholipase D (PLD) pathways have a role in neuronal degeneration; in particular, we found that PLD activation is associated with synaptic injury induced by oxidative stress. In the present study, we investigated the effect of α-synuclein (α-syn) overexpression on PLD signaling. Wild Type (WT) α-syn was found to trigger the inhibition of PLD1 expression as well as a decrease in ERK1/2 phosphorylation and expression levels. Moreover, ERK1/2 subcellular localization was shown to be modulated by WT α-syn in a PLD1-dependent manner. Indeed, PLD1 inhibition was found to alter the neurofilament network and F-actin distribution regardless of the presence of WT α-syn. In line with this, neuroblastoma cells expressing WT α-syn exhibited a degenerative-like phenotype characterized by a marked reduction in neurofilament light subunit (NFL) expression and the rearrangement of the F-actin organization, compared with either the untransfected or the empty vector-transfected cells. The gain of function of PLD1 through the overexpression of its active form had the effect of restoring NFL expression in WT α-syn neurons. Taken together, our findings reveal an unforeseen role for α-syn in PLD regulation: PLD1 downregulation may constitute an early mechanism in the initial stages of WT α-syn-triggered neurodegeneration.  相似文献   

14.

Background

Protein aggregation in the brain is a central hallmark in many neurodegenerative diseases. In Parkinson's disease, α-synuclein (α-Syn) is the major component of the intraneuronal inclusions found in the brains of patients. Current therapeutics is merely symptomatic, and there is a pressing need for developing novel therapies. Previously we showed that mannosylglycerate (MG), a compatible solute typical of marine microorganisms thriving in hot environments, is highly effective in protecting a variety of model proteins against thermal denaturation and aggregation in vitro.

Methods

Saccharomyces cerevisiae cells expressing eGFP-tagged α-Syn, were further engineered to synthesize MG. The number of cells with fluorescent foci was assessed by fluorescence microscopy. Fluorescence spectroscopy and transmission electron microscopy were used to monitor fibril formation in vitro.

Results

We observed a 3.3-fold reduction in the number of cells with α-Syn foci and mild attenuation of α-Syn-induced toxicity. Accordingly, sucrose gradient analysis confirmed a clear reduction in the size-range of α-Syn species in the cells. MG did not affect the expression levels of α-Syn or its degradation rate. Moreover, MG did not induce molecular chaperones (Hsp104, Hsp70 and Hsp40), suggesting the implication of other mechanisms for α-Syn stabilization. MG also inhibited α-Syn fibrillation in vitro.

Conclusions

MG acts as a chemical chaperone and the stabilization mechanism involves direct solute/protein interactions.

General significance

This is the first demonstration of the anti-aggregating ability of MG in the intracellular milieu. The work shows that MG is a good candidate to inspire the development of new drugs for protein-misfolding diseases.  相似文献   

15.
《Autophagy》2013,9(3):372-374
α-synuclein is mutated in Parkinson's disease (PD) and is found in cytosolic inclusions, called Lewy bodies, in sporadic forms of the disease. A fraction of α-synuclein purified from Lewy bodies is monoubiquitinated, but the role of this monoubiquitination has been obscure. We now review recent data indicating a role of α-synuclein monoubiquitination in Lewy body formation and implicating the autophagic pathway in regulating these processes. The E3 ubiquitin-ligase SIAH is present in Lewy bodies and monoubiquitinates α-synuclein at the same lysines that are monoubiquitinated in Lewy bodies. Monoubiquitination by SIAH promotes the aggregation of α-synuclein into amorphous aggregates and increases the formation of inclusions within dopaminergic cells. Such effect is observed even at low monoubiquitination levels, suggesting that monoubiquitinated α-synuclein may work as a seed for aggregation. Accumulation of monoubiquitinated α-synuclein and formation of cytosolic inclusions is promoted by autophagy inhibition and to a lesser extent by proteasomal and lysosomal inhibition. Monoubiquitinated α-synuclein inclusions are toxic to cells and recruit PD-related proteins, such as synphilin-1 and UCH-L1. Altogether, the new data indicate that monoubiquitination might play an important role in Lewy body formation. Decreasing α-synuclein monoubiquitination, by preventing SIAH function or by stimulating autophagy, constitutes a new therapeutic strategy for Parkinson's disease.

Addendum to: Rott R, Szargel R, Haskin J, Shani V, Shainskaya A, Manov I, Liani E, Avraham E, Engelender S. Monoubiquitination of α-synuclein by SIAH promotes its aggregation in dopaminergic cells. J Biol Chem 2007; Epub ahead of print.  相似文献   

16.
17.
α-Synuclein is a key protein in Parkinson disease. Not only is it the major protein component of Lewy bodies, but it is implicated in several cellular processes that are disrupted in Parkinson disease. Misfolded α-synuclein has also been shown to spread from cell-to-cell and, in a prion-like fashion, trigger aggregation of α-synuclein in the recipient cell. In this mini-review we explore the evidence that misfolded α-synuclein underlies the spread of pathology in Parkinson disease and discuss why it should be considered a prion-like protein.  相似文献   

18.

Background

The pathological features of Parkinson’s disease (PD) include an abnormal accumulation of α-synuclein in the surviving dopaminergic neurons. Though PD is multifactorial, several epidemiological reports show an increased incidence of PD with co-exposure to pesticides such as Maneb and paraquat (MP). In pesticide-related PD, mitochondrial dysfunction and α-synuclein oligomers have been strongly implicated, but the link between the two has not yet been understood. Similarly, the biological effects of α-synuclein or its radical chemistry in PD is largely unknown. Mitochondrial dysfunction during PD pathogenesis leads to release of cytochrome c in the cytosol. Once in the cytosol, cytochrome c has one of two fates: It either binds to apaf1 and initiates apoptosis or can act as a peroxidase. We hypothesized that as a peroxidase, cytochrome c leaked out from mitochondria can form radicals on α-synuclein and initiate its oligomerization.

Method

Samples from controls, and MP co-exposed wild-type and α-synuclein knockout mice were studied using immuno-spin trapping, confocal microscopy, immunohistochemistry, and microarray experiments.

Results

Experiments with MP co-exposed mice showed cytochrome c release in cytosol and its co-localization with α-synuclein. Subsequently, we used immuno-spin trapping method to detect the formation of α-synuclein radical in samples from an in vitro reaction mixture consisting of cytochrome c, α-synuclein, and hydrogen peroxide. These experiments indicated that cytochrome c plays a role in α-synuclein radical formation and oligomerization. Experiments with MP co-exposed α-synuclein knockout mice, in which cytochrome c-α synuclein co-localization and interaction cannot occur, mice showed diminished protein radical formation and neuronal death, compared to wild-type MP co-exposed mice. Microarray data from MP co-exposed wild-type and α-synuclein knockout mice further showed that the absence of α-synuclein per se or its co-localization with cytochrome c confers protection from MP co-exposure, as several important pathways were unaffected in α-synuclein knockout mice.

Conclusions

Altogether, these results show that peroxidase activity of cytochrome c contributes to α-synuclein radical formation and oligomerization, and that α-synuclein, through its co-localization with cytochrome c or on its own, affects several biological pathways which contribute to increased neuronal death in an MP-induced model of PD.
  相似文献   

19.
20.
This review describes different ways to achieve and monitor reproducible aggregation of α-synuclein, a key protein in the development of Parkinson's disease. For most globular proteins, aggregation is promoted by partially denaturing conditions which compromise the native state without destabilizing the intermolecular contacts required for accumulation of regular amyloid structure. As a natively disordered protein, α-synuclein can fibrillate under physiological conditions and this process is actually stimulated by conditions that promote structure formation, such as low pH, ions, polyamines, anionic surfactants, fluorinated alcohols and agitation. Reproducibility is a critical issue since α-synuclein shows erratic fibrillation behavior on its own. Agitation in combination with glass beads significantly reduces the variability of aggregation time curves, but the most reproducible aggregation is achieved by sub-micellar concentrations of SDS, which promote the rapid formation of small clusters of α-synuclein around shared micelles. Although the fibrils produced this way have a different appearance and secondary structure, they are rich in cross-β structure and are amenable to high-throughput screening assays. Although such assays at best provide a very simplistic recapitulation of physiological conditions, they allow the investigator to focus on well-defined molecular events and may provide the opportunity to identify, e.g. small molecule inhibitors of aggregation that affect these steps. Subsequent experiments in more complex cellular and whole-organism environments can then validate whether there is any relation between these molecular interactions and the broader biological context.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号