首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polysialic acid is common to humans and a few bacterial pathogens and it holds great potential for the development of new therapeutic reagents. Currently, the bacterial polysialyltransferases (polySTs) are the only source of polysialic acid for research and biotechnological purposes either directly, by enzymatic polysialylation of therapeutic proteins, or indirectly, by harvest of polysialic acid from bacterial fermentation. Further engineering and optimization of these enzymes is hindered by the lack of high-throughput screening methodologies for polysialyltransferase activity. Here we report the development of an efficient in vivo activity screen for bacterial polySTs. The screen exploits complementation of a dormant capsule export complex in the expression strain, Escherichia coli BL21-Gold(DE3). This strain was metabolically engineered to synthesize CMP-Neu5Ac, the donor sugar for the polysialylation reaction. Using the new strain, a colony blotting procedure that enables the routine testing of more than 10(4) polyST genes was developed. To test the usefulness of the methodology, we screened a library of N-terminally truncated polySTs derived from the Neisseria meningitidis serogroup B (NmB)-polyST. We identified truncations that remove a putative membrane interaction domain, resulting in soluble and active enzymes.  相似文献   

2.
Polysialic acid (PSA) capsules are cell-associated homopolymers of alpha2,8-, alpha2,9-, or alternating alpha2,8/2,9-linked sialic acid residues that function as essential virulence factors in neuroinvasive diseases caused by certain strains of Escherichia coli and Neisseria meningitidis. PSA chains structurally identical to the bacterial alpha2,8-linked capsular polysaccharides are also synthesized by the mammalian central nervous system, where they regulate neuronal function in association with the neural cell adhesion molecule (NCAM). Despite the structural identity between bacterial and NCAM PSAs, the respective polysialyltransferases (polySTs) responsible for polymerizing sialyl residues from donor CMP-sialic acid are not homologous glycosyltransferases. To better define the mechanism of capsule biosynthesis, we established the functional interchangeability of bacterial polySTs by complementation of a polymerase-deficient E. coli K1 mutant with the polyST genes from groups B or C N. meningitidis and the control E. coli K92 polymerase gene. The biochemical and immunochemical results demonstrated that linkage specificity is dictated solely by the source of the polymerase structural gene. To determine the molecular basis for linkage specificity, we created chimeras of the K1 and K92 polySTs by overlap extension PCR. Exchanging the first 52 N-terminal amino acids of the K1 NeuS with the C terminus of the K92 homologue did not alter specificity of the resulting chimera, whereas exchanging the first 85 or reciprocally exchanging the first 100 residues did. These results demonstrated that linkage specificity is dependent on residues located between positions 53 and 85 from the N terminus. Site-directed mutagenesis of the K92 polyST N terminus indicated that no single residue alteration was sufficient to affect specificity, consistent with the proposed function of this domain in orienting the acceptor. The combined results provide the first evidence for residues critical to acceptor binding and elongation in polysialyltransferase.  相似文献   

3.
The neuS-encoded polysialytransferase (polyST) in Escherichia coli K1 catalyzes synthesis of polysialic acid homopolymers composed of unbranched sialyl alpha 2,8 linkages. Subcloning and complementation experiments showed that the K1 neuS was functionally interchangeable with the neuS from E. coli K92 (S. M. Steenbergen, T. J. Wrona, and E. R. Vimr, J. Bacteriol. 174:1099-1108, 1992), which synthesizes polysialic acid capsules with alternating sialyl alpha 2,8-2,9 linkages. To better understand the relationship between these polySTs, the complete K92 neuS sequence was determined. The results demonstrated that K1 and K92 neuS genes are homologous and indicated that the K92 copy may have evolved from its K1 homolog. Both K1 and K92 structural genes comprised 1,227 bp. There were 156 (12.7%) differences between the two sequences; among these mutations, 55 did not affect the derived primary structure of K92 polyST and hence were synonymous with the K1 sequence. Assuming maximum parsimony, another estimated 17 synonymous mutations plus 84 nonsynonymous mutations could account for the 70 amino acid replacements in K92 polyST; 36 of these replacements were judged to be conservative when compared with those of K1 polyST. There were no changes detected in the first 146 5' or last 129 3' bp of either gene, suggesting, in addition to the observed mutational differences, the possibility of a past recombination event between neuS loci of two different kps clusters. The results indicate that relatively few amino acid changes can account for the evolution of a glycosyltransferase with novel linkage specificity.  相似文献   

4.
Efforts to improve the activity of cellulases, which catalyze the hydrolysis of insoluble cellulose, have been hindered by uncertainty surrounding the mechanistic origins of rate-limiting phenomena and by an incomplete understanding of complementary enzyme function. In particular, direct kinetic measurements of individual steps occurring after enzymes adsorb to the cellulose surface have proven to be experimentally elusive. This work describes an experimental and analytical approach, derived from a detailed mechanistic model of cellobiohydrolase action, for determining rates of initial- and processive-cut product generation by Trichoderma longibrachiatum cellobiohydrolase I (TlCel7A) as it catalyzes the hydrolysis of bacterial microcrystalline cellulose (BMCC) alone and in the presence of Talaromyces emersonii endoglucanase II (TemGH5). This analysis revealed that the rate of TlCel7A-catalyzed hydrolysis of crystalline cellulose is limited by the rate of enzyme complexation with glycan chains, which is shown to be equivalent to the rate of initial-cut product generation. This rate is enhanced in the presence of endoglucanase enzymes. The results confirm recent reports about the role of morphological obstacles in enzyme processivity and also provide the first direct evidence that processive length may be increased by the presence of companion enzymes, including small amounts of TemGH5. The findings of this work indicate that efforts to improve cellobiohydrolase activity should focus on enhancing the enzyme's ability to complex with cellulose chains, and the analysis employed provides a new technique for investigating the mechanism by which companion enzymes influence cellobiohydrolase activity.  相似文献   

5.
The neural cell adhesion molecule (NCAM) is the major substrate for the polysialyltransferases (polySTs), ST8SiaII/STX and ST8SiaIV/PST. The polysialylation of NCAM N-glycans decreases cell adhesion and alters signaling. Previous work demonstrated that the first fibronectin type III repeat (FN1) of NCAM is required for polyST recognition and the polysialylation of the N-glycans on the adjacent Ig5 domain. In this work, we highlight the importance of an FN1 acidic patch in polyST recognition and also reveal that the polySTs are required to interact with sequences in the Ig5 domain for polysialylation to occur. We find that features of the Ig5 domain of the olfactory cell adhesion molecule (OCAM) are responsible for its lack of polysialylation. Specifically, two basic OCAM Ig5 residues (Lys and Arg) found near asparagines equivalent to those carrying the polysialylated N-glycans in NCAM substantially decrease or eliminate polysialylation when used to replace the smaller and more neutral residues (Ser and Asn) in analogous positions in NCAM Ig5. This decrease in polysialylation does not reflect altered glycosylation but instead is correlated with a decrease in polyST-NCAM binding. In addition, inserting non-conserved OCAM sequences into NCAM Ig5, including an “extra” N-glycosylation site, decreases or completely blocks NCAM polysialylation. Taken together, these results indicate that the polySTs not only recognize an acidic patch in the FN1 domain of NCAM but also must contact sequences in the Ig5 domain for polysialylation of Ig5 N-glycans to occur.  相似文献   

6.
The recent chemical identification of polysialylated glycoproteins in the jelly coat and on the cell surface of the sea urchin egg raises important questions about their biosynthesis and possible function. Using CMP-[14C]-Neu5Ac as substrate and cell free preparations from eggs and embryos of the sea urchin Lytechinus pictus , we have identified a membrane associated CMP-Neu5Ac:poly-α2,8 sialosyl sialyltransferase (polyST) that transferred Neu5Ac from CMP-Neu5Ac to an endogenous acceptor membrane protein of approximately 38kDa. An average of five to six [14C]-Neu5Ac residues were transferred to the glycan moiety of this protein. The membrane-associated polyST also catalyzed the polysialylation of several exogenous mammalian ganglioside acceptors, including GD3. Given that no structurally similar naturally occurring polysialylated gangliosides have been described, nor were observed in the present study, we conclude that a single polyST activity catalyzes sialylation of the endogenous acceptor protein and the gangliosides. Using an excess of GD3 as an exogenous acceptor, it was established that the expression of the polyST in L. pictus embryos increased rapidly at the mesenchyme blastula stage and reached a maximum at the gastrula stage. The finding that this polyST in the sea urchin embryo is developmentally regulated raises the possibility that it may play a role in the changing cell and tissue interactions that occur during gastrulation and the early stages of spicule formation.  相似文献   

7.
Polysialic acid is an anti-adhesive glycan that modifies a select group of mammalian proteins. The primary substrate of the polysialyltransferases (polySTs) is the neural cell adhesion molecule (NCAM). Polysialic acid negatively regulates cell adhesion, is required for proper brain development, and is expressed in specific areas of the adult brain where it promotes on-going cell migration and synaptic plasticity. The first fibronectin type III repeat (FN1) of NCAM is required for polysialylation of the N-glycans on the adjacent immunoglobulin-like domain (Ig5), and acidic residues on the surface of FN1 play a role in polyST recognition. Recent work demonstrated that the FN1 domain from the unpolysialylated olfactory cell adhesion molecule (OCAM) was able to partially replace NCAM FN1 (Foley, D. A., Swartzentruber, K. G., Thompson, M. G., Mendiratta, S. S., and Colley, K. J. (2010) J. Biol. Chem. 285, 35056-35067). Here we demonstrate that individually replacing three identical regions shared by NCAM and OCAM FN1, (500)PSSP(503) (PSSP), (526)GGVPI(530) (GGVPI), and (580)NGKG(583) (NGKG), dramatically reduces NCAM polysialylation. In addition, we show that the polyST, ST8SiaIV/PST, specifically binds NCAM and that this binding requires the FN1 domain. Replacing the FN1 PSSP sequences and the acidic patch residues decreases NCAM-polyST binding, whereas replacing the GGVPI and NGKG sequences has no effect. The location of GGVPI and NGKG in loops that flank the Ig5-FN1 linker and the proximity of PSSP to this linker suggest that GGVPI and NGKG sequences may be critical for stabilizing the Ig5-FN1 linker, whereas PSSP may play a dual role maintaining the Ig5-FN1 interface and a polyST recognition site.  相似文献   

8.
To determine the molecular basis of eukaryotic polysialylation, the function of a structurally unique polybasic motif of 32 amino acids (pI∼12) in the polysialyltransferases (polySTs), ST8Sia II (STX and ST8Sia IV (PST) was investigated. This motif, designated the “polysialyltransferase domain” (PSTD), is immediately upstream of the sialylmotif S (SM-S). PolyST activity was lost in COS-1 mutants in which the entire PSTD in ST8Sia IV was deleted, or in mutants in which 10 and 15 amino acids in either the N- or C- terminus of PSTD were deleted. Site-directed mutagenesis showed that Ile275, Lys276 and Arg277 in the C-terminus of PSTD in ST8Sia IV, which is contiguous with the N-terminus of sialylmotif-S, were essential for polysialylation. Arg252 in the N-terminus segment of the PSTD was also required, as was the overall positive charge. Thus, multiple domains in the polySTs can influence their activity. Immunofluorescent microscopy showed that the mutated proteins were folded correctly, based on their Golgi localization. The structural distinctness of the conserved PSTD in the polySTs, and its absence in the mono- oligoSTs, suggests that it is a “polymerization domain” that distinguishes a polyST from a monosialyltransferases. We postulate that the electrostatic interaction between the polybasic PSTD and the polyanionic polySia chains may function to tether nascent polySia chains to the enzyme, thus facilitating the processive addition of new Sia residues to the non-reducing end of the growing chain. In accord with this hypothesis, the polyanion heparin was shown to inhibit recombinant human ST8Sia II and ST8Sia IV at 10 μM.  相似文献   

9.
Glycan structures on glycoproteins and glycolipids play critical roles in biological recognition, targeting, and modulation of functions in animal systems. Many classes of glycan structures are capped with terminal sialic acid residues, which contribute to biological functions by either forming or masking glycan recognition sites on the cell surface or secreted glycoconjugates. Sialylated glycans are synthesized in mammals by a single conserved family of sialyltransferases that have diverse linkage and acceptor specificities. We examined the enzymatic basis for glycan sialylation in animal systems by determining the crystal structures of rat ST6GAL1, an enzyme that creates terminal α2,6-sialic acid linkages on complex-type N-glycans, at 2.4 Å resolution. Crystals were obtained from enzyme preparations generated in mammalian cells. The resulting structure revealed an overall protein fold broadly resembling the previously determined structure of pig ST3GAL1, including a CMP-sialic acid-binding site assembled from conserved sialylmotif sequence elements. Significant differences in structure and disulfide bonding patterns were found outside the sialylmotif sequences, including differences in residues predicted to interact with the glycan acceptor. Computational substrate docking and molecular dynamics simulations were performed to predict and evaluate the CMP-sialic acid donor and glycan acceptor interactions, and the results were compared with kinetic analysis of active site mutants. Comparisons of the structure with pig ST3GAL1 and a bacterial sialyltransferase revealed a similar positioning of donor, acceptor, and catalytic residues that provide a common structural framework for catalysis by the mammalian and bacterial sialyltransferases.  相似文献   

10.
The lysA gene encodes meso-diaminopimelate (DAP) decarboxylase (E.C.4.1.1.20), the last enzyme of the lysine biosynthetic pathway in bacteria. We have determined the nucleotide sequence of the lysA gene from Pseudomonas aeruginosa. Comparison of the deduced amino acid sequence of the lysA gene product revealed extensive similarity with the sequences of the functionally equivalent enzymes from Escherichia coli and Corynebacterium glutamicum. Even though both P. aeruginosa and E. coli are Gram-negative bacteria, sequence comparisons indicate a greater similarity between enzymes of P. aeruginosa and the Gram- positive bacterium C. glutamicum than between those of P. aeruginosa and E. coli enzymes. Comparison of DAP decarboxylase with protein sequences present in data bases revealed that bacterial DAP decarboxylases are homologous to mouse (Mus musculus) ornithine decarboxylase (E.C.4.1.1.17), the key enzyme in polyamine biosynthesis in mammals. On the other hand, no similarity was detected between DAP decarboxylases and other bacterial amino acid decarboxylases.   相似文献   

11.
The glucosyltransferases (GTFs) of mutans streptococci are important virulence factors in the sucrose-dependent colonization of tooth surfaces by these organisms. To investigate the structure-function relationship of the GTFs, an approach was initiated to identify amino acid residues of the GTFs which affect the incorporation of glucose residues into the glucan polymer. Conserved amino acid residues were identified in the GTF-S and GTF-I enzymes of the mutans streptococci and were selected for site-directed mutagenesis in the corresponding enzymes from Streptococcus mutans GS5. Conversion of six amino acid residues of the GTF-I enzyme to those present at the corresponding positions in GTF-S, either singly or in multiple combinations, resulted in enzymes synthesizing increased levels of soluble glucans. The enzyme containing six alterations synthesized 73% water-soluble glucan in the absence of acceptor dextran T10, while parental enzyme GTF-I synthesized no such glucan product. Conversely, when residue 589 of the GTF-S enzyme was converted from Thr to either Asp or Glu, the resulting enzyme synthesized primarily water-insoluble glucan in the absence of the acceptor. Therefore, this approach has identified several amino acid positions which influence the nature of the glucan product synthesized by GTFs.  相似文献   

12.
13.
Fucose transfer from GDP-fucose to GlcNAc residues of the sialylated polylactosamine acceptor NeuAcalpha2-3Galbeta1-4Glc-NAcbeta1-3Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glcbeta1-ceramide leads to two isomeric monofucosyl antigens, VIM2 and sialyl-Le(x). Human alpha1,3/4-fucosyltransferase (FucT)-V catalyzes primarily the synthesis of VIM2, whereas human FucT-VI catalyzes primarily the synthesis of sialyl-Le(x). Thus, these two enzymes have distinct "site-specific fucosylation" properties. Amino acid sequence alignment of these enzymes showed that there are 24 amino acid differences in their catalytic domains. Studies were conducted to determine which of the amino acid differences are responsible for the site-specific fucosylation properties of each enzyme. Domain swapping (replacing a portion of the catalytic domain from one enzyme with an analogous portion from the other enzyme) demonstrated that site-specific fucosylation was defined within a 40-amino acid segment containing 8 amino acid differences between the two enzymes. Site-directed mutagenesis studies demonstrated that the site-specific fucosylation properties of these enzymes could be reversed by substituting 4 amino acids from one sequence with the other. These results were observed in both in vitro enzyme assays and flow cytometric analyses of Chinese hamster ovary cells transfected with plasmids containing the various enzyme constructs. Modeling studies of human FucT using a structure of a bacterial fucosyltransferase as a template demonstrated that the amino acids responsible for site-specific fucosylation map near the GDP-fucose-binding site. Additional enzyme studies demonstrated that FucT-VI has approximately 12-fold higher activity compared with FucT-V and that the Trp(124)/Arg(110) site in these enzymes is responsible primarily for this activity difference.  相似文献   

14.
Thiolactomycin (TLM), a natural product thiolactone antibiotic produced by species of Nocardia and Streptomyces, is an inhibitor of the β-ketoacyl-acyl carrier protein synthase (KAS) enzymes in the bacterial fatty acid synthase pathway. Using enzyme kinetics and direct binding studies, TLM has been shown to bind preferentially to the acyl-enzyme intermediates of the KASI and KASII enzymes from Mycobacterium tuberculosis and Escherichia coli. These studies, which utilized acyl-enzyme mimics in which the active site cysteine was replaced by a glutamine, also revealed that TLM is a slow onset inhibitor of the KASI enzymes KasA and ecFabB but not of the KASII enzymes KasB and ecFabF. The differential affinity of TLM for the acyl-KAS enzymes is proposed to result from structural change involving the movement of helices α5 and α6 that prepare the enzyme to bind malonyl-AcpM or TLM and that is initiated by formation of hydrogen bonds between the acyl-enzyme thioester and the oxyanion hole. The finding that TLM is a slow onset inhibitor of ecFabB supports the proposal that the long residence time of TLM on the ecFabB homologues in Serratia marcescens and Klebsiella pneumonia is an important factor for the in vivo antibacterial activity of TLM against these two organisms despite the fact that the in vitro MIC values are only 100–200 μg/ml. The mechanistic data on the interaction of TLM with KasA will provide an important foundation for the rational development of high affinity KasA inhibitors based on the thiolactone skeleton.  相似文献   

15.
A kinetic comparison of the hydrolase and transferase activities of two bacterial phospholipase D (PLD) enzymes with little sequence homology provides insights into mechanistic differences and also the more general role of Ca(2+) in modulating PLD reactions. Although the two PLDs exhibit similar substrate specificity (phosphatidylcholine preferred), sensitivity to substrate aggregation or Ca(2+), and pH optima are quite distinct. Streptomyces sp. PMF PLD, a member of the PLD superfamily, generates both hydrolase and transferase products in parallel, consistent with a mechanism that proceeds through a covalent phosphatidylhistidyl intermediate where the rate-limiting step is formation of the covalent intermediate. For Streptomyces chromofuscus PLD, the two reactions exhibit different pH profiles, a result consistent with a mechanism likely to involve direct attack of water or an alcohol on the phosphorus. Ca(2+), not required for monomer or micelle hydrolysis, can activate both PLDs for hydrolysis of PC unilamellar vesicles. In the case of Streptomyces sp. PMF PLD, Ca(2+) relieves product inhibition by interactions with the phosphatidic acid (PA). A similar rate enhancement could occur with other HxKx(4)D-motif PLDs as well. For S. chromofuscus PLD, Ca(2+) is absolutely critical for binding of the enzyme to PC vesicles and for PA activation. That the Ca(2+)-PA activation involves a discreet site on the protein is suggested by the observation that the identity of the C-terminal residue in S. chromofuscus PLD can modulate the extent of product activation.  相似文献   

16.
Polysialic acids are bioactive carbohydrates found in eukaryotes and some bacterial pathogens. The bacterial polysialyltransferases (PSTs), which catalyze the synthesis of polysialic acid capsules, have previously been identified in select strains of Escherichia coli and Neisseria meningitidis and are classified in the Carbohydrate-Active enZYmes Database as glycosyltransferase family GT-38. In this study using DNA sequence analysis and functional characterization we have identified a novel polysialyltransferase from the bovine/ovine pathogen Mannheimia haemolytica A2 (PSTMh). The enzyme was expressed in recombinant form as a soluble maltose-binding-protein fusion in parallel with the related PSTs from E. coli K1 and N. meningitidis group B in order to perform a side-by-side comparison. Biochemical properties including solubility, acceptor preference, reaction pH optima, thermostability, kinetics, and product chain length for the enzymes were compared using a synthetic fluorescent acceptor molecule. PSTMh exhibited biochemical properties that make it an attractive candidate for chemi-enzymatic synthesis applications of polysialic acid. The activity of PSTMh was examined on a model glycoprotein and the surface of a neuroprogenitor cell line where the results supported its development for use in applications to therapeutic protein modification and cell surface glycan remodelling to enable cell migration at implantation sites to promote wound healing. The three PSTs examined here demonstrated different properties that would each be useful to therapeutic applications.  相似文献   

17.
The sugar moieties of many glycosylated small molecule natural products are essential for their biological activity. Glycosyltransferases (GTs) are enzymes responsible for installing these sugar moieties on a variety of biomolecules. Many GTs active on natural products are inherently substrate promiscuous and thus serve as useful tools in manipulating natural product glycosylation to generate new combinations of sugar units (glycones) and scaffold molecules (aglycones) in a process called glycodiversification. It is important to have an effective screening tool to detect the activity of promiscuous enzymes and their resulting glycoside products. Toward this aim, we developed a strategy for screening natural product GTs in a high-throughput fashion enabled by rapid isolation and detection of chromophoric or fluorescent glycosylated natural products. This involves a solvent extraction step to isolate the resulting polar glycoside product from the unreacted aglycone acceptor substrate and the detection of the formed glycoside by the innate absorbance or fluorescence of the aglycone moiety. Using our approach, we screened a collection of natural product GTs against a panel of precursors to therapeutically important molecules. Three GTs showed previously unreported promiscuity toward anthraquinones resulting in novel ε-rhodomycinone glycosides. Considering the pharmaceutical value of clinically used anthraquinone glycosides that are biosynthesized from an ε-rhodomycinone precursor, and the significance that the sugar moiety has on the biological activity of these drugs, our results are of particular importance toward the glycodiversification of therapeutics in this class. The GTs identified and the novel compounds they produce show promise toward new biocatalytic tools and therapeutics.  相似文献   

18.
Cyclodextrin glycosyltransferase (CGTase) enzymes from various bacteria catalyze the formation of cyclodextrins from starch. The Bacillus stearothermophilus maltogenic alpha-amylase (G2-amylase is structurally very similar to CGTases, but converts starch into maltose. Comparison of the three-dimensional structures revealed two large differences in the substrate binding clefts. (i) The loop forming acceptor subsite +3 had a different conformation, providing the G2-amylase with more space at acceptor subsite +3, and (ii) the G2-amylase contained a five-residue amino acid insertion that hampers substrate binding at the donor subsites -3/-4 (Biochemistry, 38 (1999) 8385). In an attempt to change CGTase into an enzyme with the reaction and product specificity of the G2-amylase, which is used in the bakery industry, these differences were introduced into Thermoanerobacterium thermosulfurigenes CGTase. The loop forming acceptor subsite +3 was exchanged, which strongly reduced the cyclization activity, however, the product specificity was hardly altered. The five-residue insertion at the donor subsites drastically decreased the cyclization activity of CGTase to the extent that hydrolysis had become the main activity of enzyme. Moreover, this mutant produces linear products of variable sizes with a preference for maltose and had a strongly increased exo-specificity. Thus, CGTase can be changed into a starch hydrolase with a high exo-specificity by hampering substrate binding at the remote donor substrate binding subsites.  相似文献   

19.
An experiment was conducted in a saturated sand column with three bacterial strains that have different growth characteristics on toluene, Pseudomonas putida F1 which degrades toluene only under aerobic conditions, Thauera aromatica T1 which degrades toluene only under denitrifying conditions, and Ralstonia pickettii PKO1 has a facultative nature and can perform nitrate-enhanced biodegradation of toluene under hypoxic conditions (DO <2 mg/L). Steady-state concentration profiles showed that oxygen and nitrate appeared to be utilized simultaneously, regardless of the dissolved oxygen concentration and the results from fluorescent in-situ hybridization (FISH) indicated that PKO1 maintained stable cells numbers throughout the column, even when the pore water oxygen concentration was high. Since PKO1's growth rate under aerobic condition is much lower than that of F1, except under hypoxic conditions, these observations were not anticipated. Therefore these observations require a mechanistic explanation that can account for localized low oxygen concentrations under aerobic conditions. To simulate the observed dynamics, a multispecies biofilm model was implemented. This model formulation assumes the formation of a thin biofilm that is composed of the three bacterial strains. The individual strains grow in response to the substrate and electron acceptor flux from bulk fluid into the biofilm. The model was implemented such that internal changes in bacterial composition and substrate concentration can be simulated over time and space. The model simulations from oxic to denitrifying conditions compared well to the experimental profiles of the chemical species and the bacterial strains, indicating the importance of accounting for the biological activity of individual strains in biofilms that span different redox conditions.  相似文献   

20.
Bovine thymus poly(ADP-ribose) polymerase with a purity of 99% on a SDS-poly-acrylamide gel electrophoresis was able to initiate poly(ADP-ribose) synthesis without adding any exogenous acceptor protein to the reaction system. Analyses of the early reaction product synthesized without exogenous acceptor protein revealed that the product was oligo(ADP-ribose) with a mean chain length of 2.6 and was bound tightly to the enzyme protein. When the radioactive early reaction product was chased by incubating further with cold NAD+, ADP-ribose unit was found to be added to the terminal AMP-residue of the oligo(ADP-ribose) attached to the enzyme. The stability of the early reaction product in high concentration of salt, strong acid, sodium dodecyl sulfate, and urea strongly suggests a covalent nature of the binding of oligo(ADP-ribose) to the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号