首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
53BP1 is phosphorylated by the protein kinase ATM upon DNA damage. Even though several ATM phosphorylation sites in 53BP1 have been reported, those sites have little functional implications in the DNA damage response. Here, we show that ATM phosphorylates the S1219 residue of 53BP1 in vitro and that the residue is phosphorylated in cells exposed to ionizing radiation (IR). Transfection with siRNA targeting ATM abolished IR-induced phosphorylation at this residue, supporting the theory that this process is mediated by the kinase. To determine the functional relevance of this phosphorylation event, a U2OS cell line expressing S1219A mutant 53BP1 was established. IR-induced foci formation of MDC1 and γH2AX, DNA damage signaling molecules, was reduced in this cell line, implying that S1219 phosphorylation is required for recruitment of these molecules to DNA damage sites. Furthermore, overexpression of the mutant protein impeded IR-induced G2 arrest. In conclusion, we have shown that S1219 phosphorylation by ATM is required for proper execution of DNA damage response.  相似文献   

2.
All types of DNA damage cause a local alteration and relaxation of chromatin structure. Sensing and reacting to this initial chromatin alteration is a necessary trigger for any type of DNA damage response (DDR). In this context, chromatin kinases are likely candidates to participate in detection and reaction to a locally altered chromatin as a consequence of DNA damage and, thus, initiate the appropriate cellular response. In this work, we demonstrate that VRK1 is a nucleosomal chromatin kinase and that its depletion causes loss of histones H3 and H4 acetylation, which are required for chromatin relaxation, both in basal conditions and after DNA damage, independently of ATM. Moreover, VRK1 directly and stably interacts with histones H2AX and H3 in basal conditions. In response to DNA damage induced by ionizing radiation, histone H2AX is phosphorylated in Ser139 by VRK1. The phosphorylation of H2AX and the formation of γH2AX foci induced by ionizing radiation (IR), are prevented by VRK1 depletion and are rescued by kinase-active, but not kinase-dead, VRK1. In conclusion, we found that VRK1 is a novel chromatin component that reacts to its alterations and participates very early in DDR, functioning by itself or in cooperation with ATM.  相似文献   

3.
The DNA damage surveillance network orchestrates cellular responses to DNA damage through the recruitment of DNA damage-signaling molecules to DNA damage sites and the concomitant activation of protein phosphorylation cascades controlled by the ATM (ataxia-telangiectasia-mutated) and ATR (ATM-Rad3-related) kinases. Activation of ATM/ATR triggers cell cycle checkpoint activation and adaptive responses to DNA damage. Recent studies suggest that protein ubiquitylation or degradation plays an important role in the DNA damage response. In this study, we examined the potential role of the proteasome in checkpoint activation and ATM/ATR signaling in response to UV light-induced DNA damage. HeLa cells treated with the proteasome inhibitor MG-132 showed delayed phosphorylation of ATM substrates in response to UV light. UV light-induced phosphorylation of 53BP1, as well as its recruitment to DNA damage foci, was strongly suppressed by proteasome inhibition, whereas the recruitment of upstream regulators of 53BP1, including MDC1 and H2AX, was unaffected. The ubiquitin-protein isopeptide ligase RNF8 was critical for 53BP1 focus targeting and phosphorylation in ionizing radiation-damaged cells, whereas UV light-induced 53BP1 phosphorylation and targeting exhibited partial dependence on RNF8 and the ubiquitin-conjugating enzyme UBC13. Suppression of RNF8 or UBC13 also led to subtle defects in UV light-induced G2/M checkpoint activation. These findings are consistent with a model in which RNF8 ubiquitylation pathways are essential for 53BP1 regulation in response to ionizing radiation, whereas RNF8-independent pathways contribute to 53BP1 targeting and phosphorylation in response to UV light and potentially other forms of DNA replication stress.  相似文献   

4.
5.
The cellular DNA damage response (DDR) machinery that maintains genomic integrity and prevents severe pathologies, including cancer, is orchestrated by signaling through protein modifications. Protein ubiquitylation regulates repair of DNA double-strand breaks (DSBs), toxic lesions caused by various metabolic as well as environmental insults such as ionizing radiation (IR). Whereas several components of the DSB-evoked ubiquitylation cascade have been identified, including RNF168 and BRCA1 ubiquitin ligases, whose genetic defects predispose to a syndrome mimicking ataxia-telangiectasia and cancer, respectively, the identity of the apical E1 enzyme involved in DDR has not been established. Here, we identify ubiquitin-activating enzyme UBA1 as the E1 enzyme required for responses to IR and replication stress in human cells. We show that siRNA-mediated knockdown of UBA1, but not of another UBA family member UBA6, impaired formation of both ubiquitin conjugates at the sites of DNA damage and IR-induced foci (IRIF) by the downstream components of the DSB response pathway, 53BP1 and BRCA1. Furthermore, chemical inhibition of UBA1 prevented IRIF formation and severely impaired DSB repair and formation of 53BP1 bodies in G1, a marker of response to replication stress. In contrast, the upstream steps of DSB response, such as phosphorylation of histone H2AX and recruitment of MDC1, remained unaffected by UBA1 depletion. Overall, our data establish UBA1 as the apical enzyme critical for ubiquitylation-dependent signaling of both DSBs and replication stress in human cells, with implications for maintenance of genomic integrity, disease pathogenesis and cancer treatment.  相似文献   

6.
DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1   总被引:1,自引:0,他引:1  
Activation of the ataxia telangiectasia mutated (ATM) kinase triggers diverse cellular responses to ionizing radiation (IR), including the initiation of cell cycle checkpoints. Histone H2AX, p53 binding-protein 1 (53BP1) and Chk2 are targets of ATM-mediated phosphorylation, but little is known about their roles in signalling the presence of DNA damage. Here, we show that mice lacking either H2AX or 53BP1, but not Chk2, manifest a G2-M checkpoint defect close to that observed in ATM(-/-) cells after exposure to low, but not high, doses of IR. Moreover, H2AX regulates the ability of 53BP1 to efficiently accumulate into IR-induced foci. We propose that at threshold levels of DNA damage, H2AX-mediated concentration of 53BP1 at double-strand breaks is essential for the amplification of signals that might otherwise be insufficient to prevent entry of damaged cells into mitosis.  相似文献   

7.
53BP1 is a human BRCT protein that was originally identified as a p53-interacting protein by the Saccharomyces cerevisiae two-hybrid screen. Although the carboxyl-terminal BRCT domain shows similarity to Crb2, a DNA damage checkpoint protein in fission yeast, there is no evidence so far that implicates 53BP1 in the checkpoint. We have identified a Xenopus homologue of 53BP1 (XL53BP1). XL53BP1 is associated with chromatin and, in some cells, localized to a few large foci under normal conditions. Gamma-ray irradiation induces increased numbers of the nuclear foci in a dose-dependent manner. The damage-induced 53BP1 foci appear rapidly (in 30 min) after irradiation, and de novo protein synthesis is not required for this response. In human cells, 53BP1 foci colocalize with Mrel1 foci at later stages of the postirradiation period. XL53BP1 is hyperphosphorylated after X-ray irradiation, and inhibitors of ATM-related kinases delay the relocalization and reduce the phosphorylation of XL53BP1 in response to X-irradiation. In AT cells, which lack ATM kinase, the irradiation-induced responses of 53BP1 are similarly affected. These results suggest a role for 53BP1 in the DNA damage response and/or checkpoint control which may involve signaling of damage to p53.  相似文献   

8.
53BP1 is a mediator of DNA damage response (DDR) and a tumor suppressor whose accumulation on damaged chromatin promotes DNA repair and enhances DDR signaling. Using foci formation of 53BP1 as a readout in two human cell lines, we performed an siRNA-based functional high-content microscopy screen for modulators of cellular response to ionizing radiation (IR). Here, we provide the complete results of this screen as an information resource, and validate and functionally characterize one of the identified 'hits': a nuclear pore component NUP153 as a novel factor specifically required for 53BP1 nuclear import. Using a range of cell and molecular biology approaches including live-cell imaging, we show that knockdown of NUP153 prevents 53BP1, but not several other DDR factors, from entering the nuclei in the newly forming daughter cells. This translates into decreased IR-induced 53BP1 focus formation, delayed DNA repair and impaired cell survival after IR. In addition, NUP153 depletion exacerbates DNA damage caused by replication stress. Finally, we show that the C-terminal part of NUP153 is required for effective 53BP1 nuclear import, and that 53BP1 is imported to the nucleus through the NUP153-importin-β interplay. Our data define the structure-function relationships within this emerging 53BP1-NUP153/importin-β pathway and implicate this mechanism in the maintenance of genome integrity.  相似文献   

9.
10.
11.
12.
DNA damage response (DDR) is vital for genomic stability, and its deficiency is linked to tumorigenesis. Extensive studies in interphase (G(1)-S-G(2)) mammalian cells have revealed the mechanisms of DDR in great detail; however, how mitotic cells respond to DNA damage remains less defined. We report here that a full DDR is suppressed in mitotic mammalian cells until telophase/cytokinesis. Although early DDR markers such as the phosphorylations of ataxia telangiectasia mutated (ATM) and histone H2A.x (H2AX) can be readily detected, the ionizing radiation-induced foci (IRIF) formation of late DDR markers such as breast cancer type 1 susceptibility protein (BRCA1) and p53-binding protein 1 (53BP1) are absent until the telophase/cytokinesis stage. We further showed that the IR-induced ubiquitination cascade around DNA damage sites did not occur in mitotic cells, which explains, at least in part, why BRCA1 and 53BP1 cannot be recruited to the damaged sites. These observations indicate that DDR is suppressed in mitotic cells after the step of γH2AX formation. Not surprisingly, we found that the absence of a full DDR in mitotic cells was associated with the high cyclin-dependent kinase 1 (CDK1) activities. More 53BP1 IRIF could be detected when the irradiated mitotic cells were treated with a CDK1 inhibitor. Further, the activation of CDK5 in interphase cells impedes the formation of 53BP1 IRIF. Together, these results suggest that the DDR is suppressed by the high CDK1 activity in mitotic mammalian cells.  相似文献   

13.
14.
The 53BP1 tumour suppressor, an important regulator of genome stability, is phosphorylated in response to ionising radiation (IR) by the ATM protein kinase, itself an important regulator of cellular responses to DNA damage. The only known sites of phosphorylation in 53BP1 are Ser25 and/or Ser29 but 53BP1 lacking these residues is still phosphorylated after DNA damage. In this study, we use mass spectrometry-based together with bioinformatic analysis to identify novel DNA damage-regulated sites of 53BP1 phosphorylation. Several new sites were identified that conform to the consensus Ser/Thr-Gln motif phosphorylated by ATM and related kinases. Phospho-specific antibodies were raised, and were used to demonstrate ATM-dependent phosphorylation of these residues in 53BP1 after exposure of cells to IR. Surprisingly, 53BP1 was also phosphorylated on these residues after exposure of cells to UV light. In this case, 53BP1 phosphorylation did not require ATM but required ATR instead. These data reveal that 53BP1 is phosphorylated on multiple residues in response to different types of DNA damage, and that 53BP1 is regulated by ATR in response to UV-induced DNA damage.  相似文献   

15.
53BP1 is a p53 binding protein of unknown function that binds to the central DNA-binding domain of p53. It relocates to the sites of DNA strand breaks in response to DNA damage and is a putative substrate of the ataxia telangiectasia-mutated (ATM) kinase. To study the biological role of 53BP1, we disrupted the 53BP1 gene in the mouse. We show that, similar to ATM(-/-) mice, 53BP1-deficient mice were growth retarded, immune deficient, radiation sensitive, and cancer prone. 53BP1(-/-) cells show a slight S-phase checkpoint defect and prolonged G(2)/M arrest after treatment with ionizing radiation. Moreover, 53BP1(-/-) cells feature a defective DNA damage response with impaired Chk2 activation. These data indicate that 53BP1 acts downstream of ATM and upstream of Chk2 in the DNA damage response pathway and is involved in tumor suppression.  相似文献   

16.
17.
The rapid ubiquitination of chromatin surrounding DNA double-stranded breaks (DSB) drives the formation of large structures called ionizing radiation-induced foci (IRIF), comprising many DNA damage response (DDR) proteins. This process is regulated by RNF8 and RNF168 ubiquitin ligases and is thought to be necessary for DNA repair and activation of signaling pathways involved in regulating cell cycle checkpoints. Here we demonstrate that it is possible to interfere with ubiquitin-dependent recruitment of DDR factors by expressing proteins containing ubiquitin binding domains (UBDs) that bind to lysine 63-linked polyubiquitin chains. Expression of the E3 ubiquitin ligase RAD18 prevented chromatin spreading of 53BP1 at DSBs, and this phenomenon was dependent upon the integrity of the RAD18 UBD. An isolated RAD18 UBD interfered with 53BP1 chromatin spreading, as well as other important DDR mediators, including RAP80 and the BRCA1 tumor suppressor protein, consistent with the model that the RAD18 UBD is blocking access of proteins to ubiquitinated chromatin. Using the RAD18 UBD as a tool to impede localization of 53BP1 and BRCA1 to repair foci, we found that DDR signaling, DNA DSB repair, and radiosensitivity were unaffected. We did find that activated ATM (S1981P) and phosphorylated SMC1 (a specific target of ATM) were not detectable in DNA repair foci, in addition to upregulated homologous recombination repair, revealing 2 DDR responses that are dependent upon chromatin spreading of certain DDR factors at DSBs. These data demonstrate that select UBDs containing targeting motifs may be useful probes in determining the biological significance of protein–ubiquitin interactions.  相似文献   

18.
In response to genotoxic stress, cells protect their genome integrity by activation of a conserved DNA damage response (DDR) pathway that coordinates DNA repair and progression through the cell cycle. Extensive modification of the chromatin flanking the DNA lesion by ATM kinase and RNF8/RNF168 ubiquitin ligases enables recruitment of various repair factors. Among them BRCA1 and 53BP1 are required for homologous recombination and non-homologous end joining, respectively. Whereas mechanisms of DDR are relatively well understood in interphase cells, comparatively less is known about organization of DDR during mitosis. Although ATM can be activated in mitotic cells, 53BP1 is not recruited to the chromatin until cells exit mitosis. Here we report mitotic phosphorylation of 53BP1 by Plk1 and Cdk1 that impairs the ability of 53BP1 to bind the ubiquitinated H2A and to properly localize to the sites of DNA damage. Phosphorylation of 53BP1 at S1618 occurs at kinetochores and in cytosol and is restricted to mitotic cells. Interaction between 53BP1 and Plk1 depends on the activity of Cdk1. We propose that activity of Cdk1 and Plk1 allows spatiotemporally controlled suppression of 53BP1 function during mitosis.  相似文献   

19.
In response to genotoxic stress, cells protect their genome integrity by activation of a conserved DNA damage response (DDR) pathway that coordinates DNA repair and progression through the cell cycle. Extensive modification of the chromatin flanking the DNA lesion by ATM kinase and RNF8/RNF168 ubiquitin ligases enables recruitment of various repair factors. Among them BRCA1 and 53BP1 are required for homologous recombination and non-homologous end joining, respectively. Whereas mechanisms of DDR are relatively well understood in interphase cells, comparatively less is known about organization of DDR during mitosis. Although ATM can be activated in mitotic cells, 53BP1 is not recruited to the chromatin until cells exit mitosis. Here we report mitotic phosphorylation of 53BP1 by Plk1 and Cdk1 that impairs the ability of 53BP1 to bind the ubiquitinated H2A and to properly localize to the sites of DNA damage. Phosphorylation of 53BP1 at S1618 occurs at kinetochores and in cytosol and is restricted to mitotic cells. Interaction between 53BP1 and Plk1 depends on the activity of Cdk1. We propose that activity of Cdk1 and Plk1 allows spatiotemporally controlled suppression of 53BP1 function during mitosis.  相似文献   

20.
Several DNA damage checkpoint factors form nuclear foci in response to ionizing radiation (IR). Although the number of the initial foci decreases concomitantly with DNA double-strand break repair, some fraction of foci persists. To date, the physiological role of the persistent foci has been poorly understood. Here we examined foci of Ser1981-phosphorylated ATM in normal human diploid cells exposed to 1Gy of X-rays. While the initial foci size was approximately 0.6microm, the one or two of persistent focus (foci) grew, whose diameter reached 1.6microm or more in diameter at 24h after IR. All of the grown persistent foci of phosphorylated ATM colocalized with the persistent foci of Ser139-phosphorylated histone H2AX, MDC1, 53BP1, and NBS1, which also grew similarly. When G0-synchronized normal human cells were released immediately after 1Gy of X-rays and incubated for 24h, the grown large phosphorylated ATM foci (> or =1.6microm) were rarely (av. 0.9%) observed in S phase cells, while smaller foci (<1.6microm) were frequently (av. 45.9%) found. We observed significant phosphorylation of p53 at Ser15 in cells with a single grown phosphorylated ATM focus. Furthermore, persistent inhibition of foci growth of phosphorylated ATM by an ATM inhibitor, KU55933, completely abrogated p53 phosphorylation. Defective growth of the persistent IR-induced foci was observed in primary fibroblasts derived from ataxia-telangiectasia (AT) and Nijmegen breakage syndrome (NBS) patients, which were abnormal in IR-induced G1 checkpoint. These results indicate that the growth of the persistent foci of the DNA damage checkpoint factors plays a pivotal role in G1 arrest, which amplifies G1 checkpoint signals sufficiently for phosphorylating p53 in cells with a limited number of remaining foci.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号