首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The phosphorylation of the intermediate filament protein vimentin was examined under in vitro conditions. Cell cytosol and Triton-insoluble cytoskeleton preparations from nonmitotic and mitotically selected mouse L-929 cells exhibited vimentin kinase activity that is apparently cAMP and Ca2+ independent. The level of vimentin kinase activity was greater in preparations from mitotically selected cells than nonmitotic cells. Addition of Ca2+ to mitotic cytosol decreased net vimentin phosphorylation. Dephosphorylation experiments indicated that there is phosphatase activity in these preparations which is stimulated by addition of Ca2+. Fractionation of cytosol from nonmitotic cells on DEAE-Sephacel and phosphocellulose revealed a single major vimentin kinase activity (peak I). Fractionation of cytosol from mitotically selected cells yielded a similar activity (peak I) and an additional vimentin kinase activity (peak II) that was not found in nonmitotic preparations. Based on substrate specificity and lack of inhibition to characteristic inhibitors, the semipurified peak I and II vimentin kinase activities appear to be cAMP-independent enzymes that are distinct from casein kinases I and II. Phosphopeptide mapping studies indicated that both peak I and peak II vimentin kinases phosphorylate tryptic peptides in the NH2-terminal region of vimentin that are phosphorylated in intact cells. Electron microscopic examination of reconstituted vimentin filaments phosphorylated with both semipurified kinases indicated that phosphorylation induced filament disassembly. These experiments indicate that the increased phosphorylation of vimentin during mitosis may be catalyzed by a discrete cAMP-independent protein kinase. In addition, preparations from mitotic cells exhibited a Ca2+-stimulated phosphatase activity, suggesting that Ca2+ may play a regulatory role in vimentin dephosphorylation during mitosis.  相似文献   

3.
Protein-protein interactions are thought to modulate the efficiency and specificity of Ca(2+)/calmodulin (CaM)-dependent protein kinase II (CaMKII) signaling in specific subcellular compartments. Here we show that the F-actin-binding protein α-actinin targets CaMKIIα to F-actin in cells by binding to the CaMKII regulatory domain, mimicking CaM. The interaction with α-actinin is blocked by CaMKII autophosphorylation at Thr-306, but not by autophosphorylation at Thr-305, whereas autophosphorylation at either site blocks Ca(2+)/CaM binding. The binding of α-actinin to CaMKII is Ca(2+)-independent and activates the phosphorylation of a subset of substrates in vitro. In intact cells, α-actinin selectively stabilizes CaMKII association with GluN2B-containing glutamate receptors and enhances phosphorylation of Ser-1303 in GluN2B, but inhibits CaMKII phosphorylation of Ser-831 in glutamate receptor GluA1 subunits by competing for activation by Ca(2+)/CaM. These data show that Ca(2+)-independent binding of α-actinin to CaMKII differentially modulates the phosphorylation of physiological targets that play key roles in long-term synaptic plasticity.  相似文献   

4.
5.
The N-terminal modules of cardiac myosin-binding protein C (cMyBP-C) play a regulatory role in mediating interactions between myosin and actin during heart muscle contraction. The so-called "motif," located between the second and third immunoglobulin modules of the cardiac isoform, is believed to modulate contractility via an "on-off" phosphorylation-dependent tether to myosin ΔS2. Here we report a novel Ca(2+)-dependent interaction between the motif and calmodulin (CaM) based on the results of a combined fluorescence, NMR, and light and x-ray scattering study. We show that constructs of cMyBP-C containing the motif bind to Ca(2+)/CaM with a moderate affinity (K(D) ~10 μm), which is similar to the affinity previously determined for myosin ΔS2. However, unlike the interaction with myosin ΔS2, the Ca(2+)/CaM interaction is unaffected by substitution with a triphosphorylated motif mimic. Further, Ca(2+)/CaM interacts with the highly conserved residues (Glu(319)-Lys(341)) toward the C-terminal end of the motif. Consistent with the Ca(2+) dependence, the binding of CaM to the motif is mediated via the hydrophobic clefts within the N- and C-lobes that are known to become more exposed upon Ca(2+) binding. Overall, Ca(2+)/CaM engages with the motif in an extended clamp configuration as opposed to the collapsed binding mode often observed in other CaM-protein interactions. Our results suggest that CaM may act as a structural conduit that links cMyBP-C with Ca(2+) signaling pathways to help coordinate phosphorylation events and synchronize the multiple interactions between cMyBP-C, myosin, and actin during the heart muscle contraction.  相似文献   

6.
Ca(2+)/calmodulin (Ca(2+)/CaM) and the betagamma subunits of heterotrimeric G-proteins (Gbetagamma) have recently been shown to interact in a mutually exclusive fashion with the intracellular C terminus of the presynaptic metabotropic glutamate receptor 7 (mGluR 7). Here, we further characterized the core CaM and Gbetagamma binding sequences. In contrast to a previous report, we find that the CaM binding motif localized in the N-terminal region of the cytoplasmic tail domain of mGluR 7 is conserved in the related group III mGluRs 4A and 8 and allows these receptors to also bind Ca(2+)/CaM. Mutational analysis of the Ca(2+)/CaM binding motif is consistent with group III receptors containing a conventional CaM binding site formed by an amphipathic alpha-helix. Substitutions adjacent to the core CaM target sequence selectively prevent Gbetagamma binding, suggesting that the CaM-dependent regulation of signal transduction involves determinants that overlap with but are different from those mediating Gbetagamma recruitment. In addition, we present evidence that Gbetagamma uses distinct nonoverlapping interfaces for interaction with the mGluR 7 C-terminal tail and the effector enzyme adenylyl cyclase II, respectively. Although Gbetagamma-mediated signaling is abolished in receptors lacking the core CaM binding sequence, alpha subunit activation, as assayed by agonist-dependent GTPgammaS binding, was not affected. This suggests that Ca(2+)/CaM may alter the mode of group III mGluR signaling from mono- (alpha) to bidirectional (alpha and betagamma) activation of downstream effector cascades.  相似文献   

7.
Chin D  Means AR 《Biochemistry》2002,41(47):14001-14009
A mechanism that relates calmodulin (CaM) binding to enzyme activation remains to be established within the context of full-length calmodulin kinase IIalpha (CaM KIIalpha). Previous studies using peptides and/or truncated enzymes have shown that L299 of CaM KIIalpha represents an "anchor" for Ca(2+)/CaM binding and that F293 is required for autoinhibition. We have substituted each of these residues with a W in full-length CaM KIIalpha and measured the W fluorescence to evaluate the location of these side chains in the absence and presence of Ca(2+)/CaM. Fluorescence emission of the L299W mutant indicates that L299 is solvent accessible in the absence of Ca(2+)/CaM but becomes internalized in the presence of Ca(2+)/CaM. On the other hand, examination of F293W indicates that Ca(2+)/CaM binding promotes enzyme activation by transferring F293 from an internal location in the inactive enzyme to a more solvent accessible position in the active enzyme. In addition, F293 interacts with Ca(2+)/CaM as a consequence of autophosphorylation at T286, thus providing a mechanism for CaM trapping. Whereas in the absence of autophosphorylation the exposure of F293 is reversed by dissociation of CaM leading to enzyme autoinhibition, after autophosphorylation of T286, F293 is retained in an exposed position due to dissociation of CaM, consistent with the retention of autonomous activity. Proline mutants were introduced at positions between T286 and F293 to explore the basis of CaM-independent, autonomous activity. The observation that an L290P mutant displayed a high level of activity independent of Ca(2+)/CaM or phosphorylation of T286 indicates that a change in the conformation of the polypeptide main chain at L290 might contribute to the mechanism for generating autophosphorylation-dependent autonomous activity.  相似文献   

8.
9.
Roles of three domains of Tetrahymena eEF1A in bundling F-actin   总被引:1,自引:0,他引:1  
The conventional role of eukaryotic elongation factor 1A (eEF1A) is to transport aminoacyl tRNA to the A site of ribosomes during the peptide elongation phase of protein synthesis. eEF1A also is involved in regulating the dynamics of microtubules and actin filaments in cytoplasm. In Tetrahymena, eEF1A forms homodimers and bundles F-actin. Ca(2+)/calmodulin (CaM) causes reversion of the eEF1A dimer to the monomer, which loosens F-actin bundling, and then Ca(2+)/CaM/eEF1A monomer complexes dissociate from F-actin. eEF1A consists of three domains in all eukaryotic species, but the individual roles of the Tetrahymena eEF1A domains in bundling F-actin are unknown. In this study, we investigated the interaction of each domain with F-actin, recombinant Tetrahymena CaM, and eEF1A itself in vitro, using three glutathione-S-transferase-domain fusion proteins (GST-dm1, -2, and -3). We found that only GST-dm3 bound to F-actin and influences dimer formation, but that all three domains bound to Tetrahymena CaM in a Ca(2+)-dependent manner. The critical Ca(2+) concentration for binding among three domains of eEF1A and CaM were < or =100 nM for domain 1, 100 nM to 1 microM for domain 3, and >1 microM for domain 2, whereas stimulation of and subsequent Ca(2+) influx through Ca(2+) channels raise the cellular Ca(2+) concentration from the basal level of approximately 100 nM to approximately 10 microM, suggesting that domain 3 has a pivotal role in Ca(2+)/CaM regulation of eEF1A.  相似文献   

10.
11.
Myosin II regulatory light chain (RLC) phosphorylation by Ca(2+)/calmodulin (CaM)-dependent myosin light chain kinase (MLCK) is implicated in many cellular actin cytoskeletal functions. We examined MLCK activation quantitatively with a fluorescent biosensor MLCK where Ca(2+)-dependent increases in kinase activity were coincident with decreases in fluorescence resonance energy transfer (FRET) in vitro. In cells stably transfected with CaM sensor MLCK, increasing [Ca(2+)](i) increased MLCK activation and RLC phosphorylation coincidently. There was no evidence for CaM binding but not activating MLCK at low [Ca(2+)](i). At saturating [Ca(2+)](i) MLCK was not fully activated probably due to limited availability of cellular Ca(2+)/CaM.  相似文献   

12.
Calcium influx drives two opposing voltage-activated calcium channel (Ca(V)) self-modulatory processes: calcium-dependent inactivation (CDI) and calcium-dependent facilitation (CDF). Specific Ca(2+)/calmodulin (Ca(2+)/CaM) lobes produce CDI and CDF through interactions with the Ca(V)alpha(1) subunit IQ domain. Curiously, Ca(2+)/CaM lobe modulation polarity appears inverted between Ca(V)1s and Ca(V)2s. Here, we present crystal structures of Ca(V)2.1, Ca(V)2.2, and Ca(V)2.3 Ca(2+)/CaM-IQ domain complexes. All display binding orientations opposite to Ca(V)1.2 with a physical reversal of the CaM lobe positions relative to the IQ alpha-helix. Titration calorimetry reveals lobe competition for a high-affinity site common to Ca(V)1 and Ca(V)2 IQ domains that is occupied by the CDI lobe in the structures. Electrophysiological experiments demonstrate that the N-terminal Ca(V)2 Ca(2+)/C-lobe anchors affect CDF. Together, the data unveil the remarkable structural plasticity at the heart of Ca(V) feedback modulation and indicate that Ca(V)1 and Ca(V)2 IQ domains bear a dedicated CDF site that exchanges Ca(2+)/CaM lobe occupants.  相似文献   

13.
Cyclic nucleotide-gated (CNG) ion channels mediate cellular responses to sensory stimuli. In vertebrate photoreceptors, CNG channels respond to the light-induced decrease in cGMP by closing an ion-conducting pore that is permeable to cations, including Ca(2+) ions. Rod CNG channels are directly inhibited by Ca(2+)-calmodulin (Ca(2+)/CaM), but the physiological role of this modulation is unknown. Native rod CNG channels comprise three CNGA1 subunits and one CNGB1 subunit. The single CNGB1 subunit confers several key properties on heteromeric channels, including Ca(2+)/CaM-dependent modulation. The molecular basis for Ca(2+)/CaM inhibition of rod CNG channels has been proposed to involve the binding of Ca(2+)/CaM to a site in the NH(2)-terminal region of the CNGB1 subunit, which disrupts an interaction between the NH(2)-terminal region of CNGB1 and the COOH-terminal region of CNGA1. Here, we test this mechanism for Ca(2+)/CaM-dependent inhibition of CNGA1/CNGB1 channels by simultaneously monitoring protein interactions with fluorescence spectroscopy and channel function with patch-clamp recording. Our results show that Ca(2+)/CaM binds directly to CNG channels, and that binding is the rate-limiting step for channel inhibition. Further, we show that the NH(2)- and COOH-terminal regions of CNGB1 and CNGA1 subunits, respectively, are in close proximity, and that Ca(2+)/CaM binding causes a relative rearrangement or separation of these regions. This motion occurs with the same time course as channel inhibition, consistent with the notion that rearrangement of the NH(2)- and COOH-terminal regions underlies Ca(2+)/CaM-dependent inhibition.  相似文献   

14.
The neuronal and endothelial nitric-oxide synthases (nNOS and eNOS) differ from inducible NOS in their dependence on the intracellular Ca(2+) concentration. Both nNOS and eNOS are activated by the reversible binding of calmodulin (CaM) in the presence of Ca(2+), whereas inducible NOS binds CaM irreversibly. One major divergence in the close sequence similarity between the NOS isoforms is a 40-50-amino acid insert in the middle of the FMN-binding domains of nNOS and eNOS. It has previously been proposed that this insert forms an autoinhibitory domain designed to destabilize CaM binding and increase its Ca(2+) dependence. To examine the importance of the insert we constructed two deletion mutants designed to remove the bulk of it from nNOS. Both mutants (Delta40 and Delta42) retained maximal NO synthesis activity at lower concentrations of free Ca(2+) than the wild type enzyme. They were also found to retain 30% of their activity in the absence of Ca(2+)/CaM, indicating that the insert plays an important role in disabling the enzyme when the physiological Ca(2+) concentration is low. Reduction of nNOS heme by NADPH under rigorous anaerobic conditions was found to occur in the wild type enzyme only in the presence of Ca(2+)/CaM. However, reduction of heme in the Delta40 mutant occurred spontaneously on addition of NADPH in the absence of Ca(2+)/CaM. This suggests that the insert regulates activity by inhibiting electron transfer from FMN to heme in the absence of Ca(2+)/CaM and by destabilizing CaM binding at low Ca(2+) concentrations, consistent with its role as an autoinhibitory domain.  相似文献   

15.
The neuronal NO synthase (nNOS) flavin domain, which has similar redox properties to those of NADPH-cytochrome P450 reductase (P450R), contains binding sites for calmodulin, FAD, FMN, and NADPH. The aim of this study is to elucidate the mechanism of activation of the flavin domain by calcium/calmodulin (Ca(2+)/CaM). In this study, we used the recombinant nNOS flavin domains, which include or delete the calmodulin (CaM)-binding site. The air-stable semiquinone of the nNOS flavin domains showed similar redox properties to the corresponding FAD-FMNH(&z.ccirf;) of P450R. In the absence or presence of Ca(2+)/CaM, the rates of reduction of an FAD-FMN pair by NADPH have been investigated at different wavelengths, 457, 504 and 590 nm by using a stopped-flow technique and a rapid scan spectrophotometry. The reduction of the oxidized enzyme (FAD-FMN) by NADPH proceeds by both one-electron equivalent and two-electron equivalent mechanisms, and the formation of semiquinone (increase of absorbance at 590 nm) was significantly increased in the presence of Ca(2+)/CaM. The air-stable semiquinone form of the enzyme was also rapidly reduced by NADPH. The results suggest that an intramolecular one-electron transfer between the two flavins is activated by the binding of Ca(2+)/CaM. The F(1)H(2), which is the fully reduced form of the air-stable semiquinone, can donate one electron to the electron acceptor, cytochrome c. The proposed mechanism of activation by Ca(2+)/CaM complex is discussed on the basis of that provided by P450R.  相似文献   

16.
Although the 3D structure of the Ca(2+)-bound CaM (Ca(2+)/CaM) complex with the antagonist, N-(6-aminohexyl)-5-chloro-1-naphthalenesulphonamide (W-7), has been resolved, the dynamic changes in Ca(2+)/CaM structure upon interaction with W-7 are still unknown. We investigated time- and temperature-dependent dynamic changes in Ca(2+)/CaM interaction with W-7 in physiological conditions using one- and two-dimensional Fourier-transformed infrared spectroscopy (2D-IR). We observed changes in the α-helix secondary structure of Ca(2+)/CaM when complexed with W-7 at a molar ratio of 1:2, but not at higher molar ratios (between 1:2 and 1:5). Kinetic studies revealed that, during the initial 125s at 25°C, Ca(2+)/CaM underwent formation of secondary coil and turn structures upon binding to W-7. Variations in temperature that induced significant changes in the structure of the Ca(2+)/CaM complex failed to do so when Ca(2+)/CaM was complexed with W-7. We concluded that W-7 induced stepwise conformational changes in Ca(2+)/CaM that resulted in a rigidification of the complex and its inability to interact with target proteins and/or polypeptides.  相似文献   

17.
Airas JM  Betz H  El Far O 《FEBS letters》2001,494(1-2):60-63
Group III metabotropic glutamate receptors (mGluRs) serve as presynaptic receptors that mediate feedback inhibition of glutamate release via a Ca(2+)/calmodulin (CaM)-dependent mechanism. In vitro phosphorylation of mGluR7A by protein kinase C (PKC) prevents its interaction with Ca(2+)/CaM. In addition, activation of PKC leads to an inhibition of mGluR signaling. Here, we demonstrate that disrupting CaM binding to mGluR7A by PKC in vitro is due to phosphorylation of a highly conserved serine residue, S862. We propose charge neutralization of the CaM binding consensus sequence resulting from phosphorylation to constitute a general mechanism for the regulation of presynaptic mGluR signaling.  相似文献   

18.
Two major control systems regulate early stages of mitosis: activation of Cdk1 and anaphase control through assembly and disassembly of the mitotic spindle. In parallel to cell cycle progression, centrosomal duplication is regulated through proteins including Nek2. Recent studies suggest that centrosome-localized Chk1 forestalls premature activation of centrosomal Cdc25b and Cdk1 for mitotic entry, whereas Chk2 binds centrosomes and arrests mitosis only after activation by ATM and ATR in response to DNA damage. Here, we show that Chk2 centrosomal binding does not require DNA damage, but varies according to cell cycle progression. These and other data suggest a model in which binding of Chk2 to the centrosome at multiple cell cycle junctures controls co-localization of Chk2 with other cell cycle and centrosomal regulators.  相似文献   

19.
It has been postulated that a segment (residues 594-645) inserted in the FMN subdomain of human endothelial nitric-oxide synthase (eNOS) plays a crucial role in controlling Ca(2+)-dependent CaM binding for eNOS activity. To investigate its functions, we expressed human eNOS in a baculovirus system with deletion of a 45-residue segment from this region (residues 594-606 and 614-645, designated as Delta45eNOS), and characterized the purified mutant enzyme. In contrast with wild-type eNOS, Delta45eNOS exhibited characteristics resembling inducible NOS (iNOS). It contained an endogenously bound CaM, which was essential in folding and stabilizing this mutant enzyme, and retained 60% of L-citrulline formation in 5 mM EGTA. We also produced four N-terminally truncated reductase domains with or without the 45-residue segment, and either including or excluding the CaM-binding sequence. Basal cytochrome c reductase activity of reductase domains without the 45-residue segment was up to 20 fold greater than that of corresponding insert-containing domains, and higher than CaM-stimulated activity of the wild-type enzyme. A series of mutants with smaller fragment deletion in this region such as Delta594-604, Delta605-612, Delta613-625, Delta626-634, Delta632-639, and Delta640-645 mutants were further characterized. The crude lysate of mutants Delta613-625 and Delta632-639 did not show activity in the presence of Ca(2+)/CaM, while other four mutants had activity comparable to that of WTeNOS. The purified Delta594-604 and Delta605-612 proteins had a 3-5-fold higher affinity for Ca(2+)/CaM, but their L-citrulline forming activity was still 80% dependent upon the addition of Ca(2+)/CaM. Both mutants exhibited a low level of the cytochrome c and ferricyanide reductase activities, which either did not respond to (Delta594-604) or slightly enhanced by (Delta605-612) the exogenous CaM. In contrast, activities of Delta626-634 and Delta640-645 like those of WTeNOS were largely Ca(2+)/CaM-dependent. Thus, our findings indicate that the N-terminal half of the 594-645 segment containing residues 594-612 plays a significant role in regulating Ca(2+)/CaM binding.  相似文献   

20.
Calmodulin (CaM) regulation of Ca(2+) channels is central to Ca(2+) signaling. Ca(V)1 versus Ca(V)2 classes of these channels exhibit divergent forms of regulation, potentially relating to customized CaM/IQ interactions among different channels. Here we report the crystal structures for the Ca(2+)/CaM IQ domains of both Ca(V)2.1 and Ca(V)2.3 channels. These highly similar structures emphasize that major CaM contacts with the IQ domain extend well upstream of traditional consensus residues. Surprisingly, upstream mutations strongly diminished Ca(V)2.1 regulation, whereas downstream perturbations had limited effects. Furthermore, our Ca(V)2 structures closely resemble published Ca(2+)/CaM-Ca(V)1.2 IQ structures, arguing against Ca(V)1/2 regulatory differences based solely on contrasting CaM/IQ conformations. Instead, alanine scanning of the Ca(V)2.1 IQ domain, combined with structure-based molecular simulation of corresponding CaM/IQ binding energy perturbations, suggests that the C lobe of CaM partially dislodges from the IQ element during channel regulation, allowing exposed IQ residues to trigger regulation via isoform-specific interactions with alternative channel regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号