共查询到20条相似文献,搜索用时 15 毫秒
1.
NH Patel 《Development (Cambridge, England)》2012,139(15):2637-2638
2.
Hemichordates are a deuterostome phylum, the sister group to echinoderms, and closely related to chordates. They have thus been used to gain insights into the origins of deuterostome and chordate body plans. Developmental studies of this group have a long and distinguished history. Recent improvements in animal husbandry, functional tool development and genomic resources have resulted in novel developmental data from several species in this group. In this Primer, we introduce representative hemichordate species with contrasting modes of development and summarize recent findings that are beginning to yield important insights into deuterostome developmental mechanisms. 相似文献
3.
There is growing interest in the use of cnidarians (corals, sea anemones, jellyfish and hydroids) to investigate the evolution of key aspects of animal development, such as the formation of the third germ layer (mesoderm), the nervous system and the generation of bilaterality. The recent sequencing of the Nematostella and Hydra genomes, and the establishment of methods for manipulating gene expression, have inspired new research efforts using cnidarians. Here, we present the main features of cnidarian models and their advantages for research, and summarize key recent findings using these models that have informed our understanding of the evolution of the developmental processes underlying metazoan body plan formation. 相似文献
4.
The phylogenetic position of amphioxus, together with its relatively simple and evolutionarily conserved morphology and genome structure, has led to its use as a model for studies of vertebrate evolution. In particular, the recent development of technical approaches, as well as access to the complete amphioxus genome sequence, has provided the community with tools with which to study the invertebrate-chordate to vertebrate transition. Here, we present this animal model, discussing its life cycle, the model species studied and the experimental techniques that it is amenable to. We also summarize the major findings made using amphioxus that have informed us about the evolution of vertebrate traits. 相似文献
5.
DE Ferrier 《Development (Cambridge, England)》2012,139(15):2643-2653
Annelids (the segmented worms) have a long history in studies of animal developmental biology, particularly with regards to their cleavage patterns during early development and their neurobiology. With the relatively recent reorganisation of the phylogeny of the animal kingdom, and the distinction of the super-phyla Ecdysozoa and Lophotrochozoa, an extra stimulus for studying this phylum has arisen. As one of the major phyla within Lophotrochozoa, Annelida are playing an important role in deducing the developmental biology of the last common ancestor of the protostomes and deuterostomes, an animal from which >98% of all described animal species evolved. 相似文献
6.
McClay DR 《Development (Cambridge, England)》2011,138(13):2639-2648
Embryos of the echinoderms, especially those of sea urchins and sea stars, have been studied as model organisms for over 100 years. The simplicity of their early development, and the ease of experimentally perturbing this development, provides an excellent platform for mechanistic studies of cell specification and morphogenesis. As a result, echinoderms have contributed significantly to our understanding of many developmental mechanisms, including those that govern the structure and design of gene regulatory networks, those that direct cell lineage specification, and those that regulate the dynamic morphogenetic events that shape the early embryo. 相似文献
7.
The moss Physcomitrella patens has recently emerged as a powerful genetically tractable model plant system. As a member of the bryophytes, P. patens provides a unique opportunity to study the evolution of a myriad of plant traits, such as polarized cell growth, gametophyte-to-sporophyte transitions, and sperm-to-pollen transition. The availability of a complete genome sequence, together with the ability to perform gene targeting efficiently in P. patens has spurred a flurry of elegant reverse genetic studies in this plant model that address a variety of key questions in plant developmental biology. 相似文献
8.
Schaap P 《Development (Cambridge, England)》2011,138(3):387-396
Dictyostelium discoideum belongs to a group of multicellular life forms that can also exist for long periods as single cells. This ability to shift between uni- and multicellularity makes the group ideal for studying the genetic changes that occurred at the crossroads between uni- and multicellular life. In this Primer, I discuss the mechanisms that control multicellular development in Dictyostelium discoideum and reconstruct how some of these mechanisms evolved from a stress response in the unicellular ancestor. 相似文献
9.
Lemaire P 《Development (Cambridge, England)》2011,138(11):2143-2152
The tunicates, or urochordates, constitute a large group of marine animals whose recent common ancestry with vertebrates is reflected in the tadpole-like larvae of most tunicates. Their diversity and key phylogenetic position are enhanced, from a research viewpoint, by anatomically simple and transparent embryos, compact rapidly evolving genomes, and the availability of powerful experimental and computational tools with which to study these organisms. Tunicates are thus a powerful system for exploring chordate evolution and how extreme variation in genome sequence and gene regulatory network architecture is compatible with the preservation of an ancestral chordate body plan. 相似文献
10.
Spiders belong to the chelicerates, which is an arthropod group that branches basally from myriapods, crustaceans and insects. Spiders are thus useful models with which to investigate whether aspects of development are ancestral or derived with respect to the arthropod common ancestor. Moreover, they serve as an important reference point for comparison with the development of other metazoans. Therefore, studies of spider development have made a major contribution to advancing our understanding of the evolution of development. Much of this knowledge has come from studies of the common house spider, Parasteatoda tepidariorum. Here, we describe how the growing number of experimental tools and resources available to study Parasteatoda development have provided novel insights into the evolution of developmental regulation and have furthered our understanding of metazoan body plan evolution. 相似文献
11.
Reciprocal questions often frame studies of the evolution of developmental mechanisms. How can species share similar developmental genetic toolkits but still generate diverse life forms? Conversely, how can similar forms develop from different toolkits? Genomics bridges the gap between evolutionary and developmental biology, and can help answer these evo-devo questions in several ways. First, it informs us about historical relationships, thus orienting the direction of evolutionary diversification. Second, genomics lists all toolkit components, thereby revealing contraction and expansion of the genome and suggesting mechanisms for evolution of both developmental functions and genome architecture. Finally, comparative genomics helps us to identify conserved non-coding elements and their relationship to genome architecture and development. 相似文献
12.
Shigeru Kuratani 《Development, growth & differentiation》2008,50(S1):S189-S194
Because they lack some gnathostome-specific traits, cyclostomes have often been regarded as representing an intermediate state linking non-vertebrate chordates and gnathostomes. To understand the evolutionary origins of the jaw and paired fins, lamprey embryos and larvae have been used as comparative models. The lack of the jaw–neck region is a conspicuous feature specific to cyclostomes; however, the absence of these features has been largely neglected both in evolutionary developmental studies and in the field of classical comparative embryology. This review seeks to develop a possible evolutionary scenario of the vertebrate neck muscles by taking the cucullaris (trapezius) muscle as the focus. By combining the comparative embryology of lampreys and gnathostomes, and considering the molecular-level developmental mechanism of skeletal muscle differentiation, this review argues that the establishment of the vertebrate neck deserves to be called an evolutionary novelty based on the remodeling of mesenchymal components between the cranium and the shoulder girdle, which involves both mesodermal and neural crest cell lineages. 相似文献
13.
14.
Morange M 《Developmental biology》2011,(1):13-16
The rise of evolutionary developmental biology was not the progressive isolation and characterization of developmental genes and gene networks. Many obstacles had to be overcome: the idea that all genes were more or less involved in development; the evidence that developmental processes in insects had nothing in common with those of vertebrates.Different lines of research converged toward the creation of evolutionary developmental biology, giving this field of research its present heterogeneity. This does not prevent all those working in the field from sharing the conviction that a precise characterization of evolutionary variations is required to fully understand the evolutionary process.Some evolutionary developmental biologists directly challenge the Modern Synthesis. I propose some ways to reconcile these apparently opposed visions of evolution. The turbulence seen in evolutionary developmental biology reflects the present entry of history into biology. 相似文献
15.
Shigeru Kuratani PhD 《Theorie in den Biowissenschaften》2003,122(2-3):230-251
Summary The question of vertebrate head segmentation has become one of the central issues in Evolutionary Developmental Biology. Beginning
as a theory based in comparative anatomy, a segmental theory of the head has been adopted and further developed by comparative
embryologists. With the use of molecular and cellular biology, and in particular analyses of the Hox gene complex, the question has been addressed at new levels, but it remains unresolved. In this review, vertebrate head segmentation
is reevaluated, by introducing findings from experimental embryology and evolutionary biology. Developmental biology has shown
that pattern is generated through hierarchically organized and causally linked series of events. The question of head segmentation
can be viewed as a question of generative constraint, that is whether segmentation in the head is imposed by underlying segmental
patterns, as it is in the trunk. In this respect, amphioxus appears to be segmented along the entire anteroposterior axis,
with myotomes and peripheral nerves repeating with the same rhythm (somitomerism). Similarly, in the vertebrate trunk, the
segmental patterns shared by myotomes, peripheral nerves and vertebrae are derived from the somites. However, in the head
of vertebrates there is no such mesodermal pattern, although neuromerism and branchiomerism do indicate the presence of constraints
derived from rhombomeres and pharyngeal pouches, respectively. These data fit better the concept of dual metamerism of the
vertebrate body proposed by Romer (1972), than the traditional head cavity-based segmental model by Goodrich (1930). 相似文献
16.
17.
Sansom RS Gabbott SE Purnell MA 《Proceedings. Biological sciences / The Royal Society》2011,278(1709):1150-1157
The timing and sequence of events underlying the origin and early evolution of vertebrates remains poorly understood. The palaeontological evidence should shed light on these issues, but difficulties in interpretation of the non-biomineralized fossil record make this problematic. Here we present an experimental analysis of decay of vertebrate characters based on the extant jawless vertebrates (Lampetra and Myxine). This provides a framework for the interpretation of the anatomy of soft-bodied fossil vertebrates and putative cyclostomes, and a context for reading the fossil record of non-biomineralized vertebrate characters. Decay results in transformation and non-random loss of characters. In both lamprey and hagfish, different types of cartilage decay at different rates, resulting in taphonomic bias towards loss of 'soft' cartilages containing vertebrate-specific Col2α1 extracellular matrix proteins; phylogenetically informative soft-tissue characters decay before more plesiomorphic characters. As such, synapomorphic decay bias, previously recognized in early chordates, is more pervasive, and needs to be taken into account when interpreting the anatomy of any non-biomineralized fossil vertebrate, such as Haikouichthys, Mayomyzon and Hardistiella. 相似文献
18.
The germinal epithelium of male vertebrates consists of Sertoli cells and spermatogenic cells. Intercellular junctions formed by Sertoli cells assume critical roles in the normal functions of this epithelium. While Sertoli cell junctions have been well characterized in mammals, similar junctions in nonmammalian vertebrates have received little attention. We examined the intercellular junctions found within the germinal epithelium of the hagfish (Eptatretus stouti) and lamprey (Lampetra tridentatus). Ultrastructurally, Sertoli cells were seen to form filament-associated junctions in both species. Adjacent Sertoli cells formed microfilament-related junctions near their apices. Filaments of these junctions were arranged in loose networks and were not associated with cisterns of endoplasmic reticulum. In fixed, frozen sections of hagfish testis, similar areas labeled with rhodamine phalloidin, indicating the filament type is actin. In the lamprey, desmosomes were observed immediately below the microfilament-related junctions. In appearance and location, the Sertoli cell junctions observed in these species resembled those of the typical junctional complex of other epithelial cell types. No junctions were observed between Sertoli cells and elongating spermatids. In the hagfish, but not the lamprey, an additional zone of microfilaments occurred near the base of Sertoli cells in areas of association with the basal lamina. Our observations are consistent with the proposal that the unique forms of intercellular attachment found in the testes of higher vertebrates evolved from a typical epithelial form of intercellular junction. 相似文献
19.
20.
Gilbert SF 《Ontogenez》2004,35(6):425-438
The production of phenotype is regulated by differential gene expression. However, the regulators of gene expression need not all reside within the embryo. Environmental factors, such as temperature, photoperiod, diet, population density, or the presence of predators, can produce specific phenotypes, presumably by altering gene-expression patterns. The field of ecological developmental biology seeks to look at development in the real world of predators, competitors, and changing seasons. Ecological concerns had played a major role in the formation of experimental embryology, and they are returning as the need for knowledge about the effects of environmental change on embryos and larvae becomes crucial. This essay reviews some of the areas of ecological developmental biology, concentrating on new studies of amphibia and Homo. 相似文献