首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent evidence supports a role of Toll-like receptor (TLR) signaling in the development of atherosclerotic lesions. It was confirmed that the presence of functional TLR4 promotes a proinflammatory phenotype and proliferation of vascular smooth muscle cells (VSMCs). Here we tested whether designed TLR4 small interfering RNAs (TLR4 siRNAs) is capable of inducing TLR4 deficient and simultaneously regulating the expression of matrix metalloproteinase-9 (MMP-9) in human aortic smooth muscle cells (HASMCs). Human aortic smooth muscle cells were obtained from Cascade Biologics (Portland, USA). The siRNAs used in this study were chemically synthesized by Ambion, diluted in RNase free water at concentration of 2 μg/ml. The TLR4 siRNAs were complexed with LipofectamineTM2000 in transfection buffer. After 30 min incubation at room temperature, the complexes were added to the cells. Subsequent to 5 h incubation, cells were treated with 10 ng/ml LPS for 24 h. RT–PCR analysis was used to detect mRNA expression of GAPDH, TLR4 and MMP-9; Western blot analysis was used to examine GAPDH, TLR4 and MMP-9 protein expression. It was shown that all three designed TLR4 siRNAs inhibited the expression of TLR4 in HASMCs as compared to nontargeting siRNA. Notably, TLR4 siRNA-1 exhibited the strongest inhibition effect. Transfection of HASMCs with TLR4 siRNA-1 resulted in down-regulation of LPS-induced expression of MMP-9. It was concluded that TLR4 siRNA-transfected HASMCs were capable for regulating the expression of MMP-9, providing support for the rational design of siRNAs as atherosclerotic therapy.  相似文献   

2.
Prolactin (PRL) activated protein kinase C (PKC) in a dose dependent manner in rat aortic smooth muscle. Aortic strips incubated with sub-nanomolar concentrations of ovine PRL for 25 min. at 37 degrees C showed a significant stimulation of PKC activity in both cytosolic and particulate fractions. This activation could be blocked using either anti-PRL antibodies or 1-(5- isoquinolinesulfonyl)-2-methylpiperazine (H-7), a PKC inhibitor. The results further support the role of PKC in the signal transduction pathway for PRL action and suggest that this activation may be involved in vascular smooth muscle function.  相似文献   

3.
Treatment of rat thoracic aortic smooth muscle cells (A-10) with sodium fluoride (NaF) resulted in inhibition of β-adrenergic agonist—and forskolin-induced cAMP and ANF-induced cGMP accumulation and stimulation of diacylglycerol (DAG) accumulation. The concentration of NaF and treatment times required to mediate these inhibitory effects were similar to those observed for stimulation of DAG accumulation. Treatment of the cells with NaF also resulted in a loss of [3H]phorbol dibutyrate (PDBu) binding in the cytosolic portion of the cells. In addition, pre-treatment of the cells with NaF resulted in an increase in the adenylate cyclase activity. Pertussis toxin (PT) pre-treatment of the cells did not significantly affect NaF-mediated effects. Pre-treatment of the cells with protein kinase C (PKC) inhibitor staurosporin partially reversed NaF-mediated inhibition of cyclic nucleotides accumulation. These data suggest that inhibition of the formation of agonist-induced cyclic nucleotides by NaF may be due to the formation of DAG and cAMP which lead to the activation of PKC and cAMP-PK, resulting in phosphorylation of key regulatory protein(s) in the cyclic nucleotides pathway.  相似文献   

4.
The objective of the present study was to determine whether dehydroepiandrosterone (DHEA) modifies growth factor-induced mitogen-activated protein kinase (MAPK) activation, based on our previous study demonstrating that DHEA attenuates fetal calf serum-induced proliferation in human male aortic smooth muscle cells (human male aortic SMCs). Human male aortic SMCs were used for this study. Platelet-derived growth factor-BB (PDGF-BB), epidermal growth factor (EGF), and basic fibroblast growth factor (bFGF), but not insulin-like growth factor-1 (IGF-1), stimulated MAPK activity. Only MAPK activation induced by PDGF-BB was reduced by pretreatment with DHEA, although DHEA did not affect the MAPK activation induced by EGF or bFGF. The basal and PDGF-stimulated MAPK activity were decreased by two types of cyclic AMP (cAMP) elevating agents and increased by cAMP-dependent protein kinase (PKA) inhibitor in human male aortic SMCs, suggesting that cAMP regulates MAPK negatively. The intracellular cAMP was increased by PDGF-BB. The increase of cAMP by PDGF-BB was augmented by pretreatment with DHEA, although DHEA alone did not affect cAMP. Neither EGF nor bFGF affected cAMP with and without DHEA pretreatment. Secretion of PGE2 induced by PDGF was augmented by pretreatment with DHEA. Stimulatory effects of DHEA on the production of PGE2 and cAMP were partially canceled by aromatase inhibitor and completely canceled by indomethacin or selective inhibitor of cyclooxygenase-2. These results suggest that DHEA inhibited MAPK activation induced by PDGF-BB via PGE2 overproduction and subsequent cAMP-dependent pathway in human male aortic SMCs.  相似文献   

5.
In rabbit aortic smooth muscle cells (SMC), protein kinase C-activating 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibited the whole blood serum (WBS)-induced DNA synthesis. The inhibitory action of TPA was mimicked by another protein kinase C-activating phorbol ester, phorbol-12,13-dibutyrate (PDBu), but not by 4 alpha-phorbol-12,13- didecanoate known to be inactive for this enzyme. Prolonged treatment of the cells with PDBu caused the down-regulation of protein kinase C. In these cells, WBS still induced DNA synthesis but the inhibitory action of TPA was abolished. DNA synthesis started at 18 h and reached a maximal level 24 h after the addition of WBS. TPA inhibited the WBS-induced DNA synthesis even when added 12 h after the addition of WBS. These results suggest that protein kinase C has an antiproliferative action in rabbit aortic SMC and that this action is attributed to the inhibition of the progression from the late G1 into S phase of the cell cycle. TPA also inhibited the phospholipase C-mediated hydrolysis of phosphoinositides which was induced by WBS within several minutes, but the relevance of this effect on the antiproliferative action of TPA is uncertain.  相似文献   

6.
Cerebral amyloid angiopathy (CAA) is a major pathological feature of Alzheimer's disease and related disorders. Human cerebrovascular smooth muscle (HCSM) cells, which are intimately associated with CAA, have been used as an in vitro model system to investigate pathologic interactions with amyloid beta protein (A beta). Previously we have shown that pathogenic forms of A beta induce several pathologic responses in HCSM cells including fibril assembly at the cell surface, increase in the levels of A beta precursor, and apoptotic cell death. Here we show that pathogenic A beta stimulates the expression and activation of matrix metalloproteinase-2 (MMP-2). Furthermore, we demonstrate that the increase in MMP-2 activation is largely caused by increased expression of membrane type-1 (MT1)-MMP expression, the primary MMP-2 activator. Finally, treatment with MMP-2 inhibitors resulted in increased HCSM cell viability in the presence of pathogenic A beta. Our findings suggest that increased expression and activation of MMP-2 may contribute to HCSM cell death in response to pathogenic A beta. In addition, these activities may also contribute to loss of vessel wall integrity in CAA resulting in hemorrhagic stroke. Therefore, further understanding into the role of MMPs in HCSM cell degeneration may facilitate designing therapeutic strategies to treat CAA found in AD and related disorders.  相似文献   

7.
Cultured smooth muscle cells (SMC) undergo induction of smooth muscle (SM) alpha actin at confluency. Since confluent cells exhibit contact inhibition of growth, this finding suggests that induction of SM alpha actin may be associated with cell cycle withdrawal. This issue was further examined in the present study using fluorescence-activated cell sorting of SMC undergoing induction at confluency and by examination of the effects of FBS and platelet-derived growth factor (PDGF) on SM alpha actin expression in postconfluent SMC cultures that had already undergone induction. Cell sorting was based on DNA content or differential incorporation of bromodeoxyuridine (Budr). The fractional synthesis of SM alpha actin in confluent cells was increased two- to threefold compared with subconfluent log phase cells, but no differences were observed between confluent cycling (Budr+) and noncycling (Budr-) cells. In cultures not exposed to Budr, confluent cycling S + G2 cells exhibited similar induction. These data indicate that cell cycle withdrawal is not a prerequisite for the induction of SM alpha actin synthesis in SMC at confluency. Growth stimulation of postconfluent cultures with either FBS or PDGF resulted in marked repression of SM alpha actin synthesis but the level of repression was not directly related to entry into S phase in that PDGF was a more potent repressor of SM alpha actin synthesis than was FBS despite a lesser mitogenic effect. This differential effect of FBS versus PDGF did not appear to be due to transforming growth factor-beta present in FBS since addition of transforming growth factor-beta had no effect on PDGF-induced repression. Likewise, FBS (0.1-10.0%) failed to inhibit PDGF-induced repression. Taken together these data demonstrate that factors other than replicative frequency govern differentiation of cultured SMC and suggest that an important function of potent growth factors such as PDGF may be the repression of muscle-specific characteristics.  相似文献   

8.
Ascorbate supplementation of cultured fetal calf aortic smooth muscle cells leads to increased deposition of extracellular matrix proteins and stimulation of cellular protein synthesis (E. Schwartz et al., J cell biol 92 (1983) 462) [7]. In the present study, we have investigated this phenomenon at the level of gene expression. Cells were grown for three weeks on tissue culture plastic with or without ascorbate (50 micrograms/ml). When compared to controls, cells grown in presence of ascorbate had twice as much poly(A+) RNA per microgram of total RNA, and ascorbate led to a 50% increase in [35S]methionine incorporation when the total RNA was translated in the reticulocyte lysate system. SDS-PAGE revealed no change in the protein pattern under the two conditions. "Northern" hybridization revealed a two- to fivefold increase in the sequence content of beta-actin, alpha-tubulin and type I pro alpha 1-collagen in total RNA of ascorbate-supplemented cells, but no difference was observed in the mRNA sequence content for the three specific proteins when equal amounts of poly(A+) RNA from ascorbate and control cells were hybridized with the three cloned cDNAs. To evaluate the effect of an exogenous matrix, cells were also plated on collagen gels. RNA isolated from cells grown on collagen without added ascorbate exhibited translational activity and mRNA sequence content similar to cells grown with ascorbate on tissue culture plastic. In contrast, no differences from controls were found in cells grown for one week in the presence of ascorbate, at which time no significant deposition of collagen occurs in the extracellular matrix. These results suggest that the stimulation in protein synthesis in fetal calf smooth muscle cells supplemented with ascorbate is associated with an increase in the proportion of poly(A+) RNA in the total RNA pool, and that the production of an endogenous collagen-rich matrix in the presence of ascorbate may be the basis for these pretranslational changes.  相似文献   

9.
Summary The ganglioside composition of calf aortic smooth muscle cells, cultured in the presence and absence of ascorbate, was analyzed. Previous work has shown that ascorbate supplementation leads to the formation of an extracellular matrix consisting primarily of collagen and that this matrix influences the biosynthetic capabilities of the cell. Cell cultures were supplemented with ascorbate for 3 wk and labeled with [14C]glucosamine for 3 d before harvesting. Ascorbate supplementation resulted in increased ganglioside sialic acid levels and a change in chromatographic profile involving both absolute and relative increases in GD1a. The latter, along with polysialo species, showed increased incorporation of [14C]glucosamine. These findings are interpreted in relation to the proposed role of gangliosides as mediators in the interaction of various cells with extracellular matrix. This work was supported by grants 1-P01-AG05554 and 2-R01-NS-04834 from the Public Health Service, Washington, DC, as well as a Presidential Junior Faculty Development Award (JAS) from the Purchase College Foundation.  相似文献   

10.
Summary Elastin accumulation in the extracellular matrix of cultured rat aortic smooth muscle cells was monitored as a function of age. The effect of the animal donor age and time in culture in single or consecutive passages on the cells’ ability to accumulate total protein as well as elastin was evaluated. Smooth muscle cells were obtained from animals ranging in age from 2 d to 36 mo. Protein accumulation by the cells based on DNA content was similar regardless of which of the above aging parameters was examined. Although there were significant amounts of elastin present in the extracellular matrix of those cells originating from the younger animals (2 d and 6 wk old), little or none was detected in cell cultures derived from the oldest animals. A soluble elastin-like fraction which was isolated from the cultures of the 2-d-old rats seemed to be lacking in the cultures of cells from the 36-mo-old animals. This observation may, in part, explain the absence of insoluble elastin in the matrix of some cultures obtained from older animals. The data strongly suggest that the age of the donor animal from which the cells originate has the greatest influence on in vitro elastin accumulation. This study was supported by National Institutes of Health Grants HL 19717 and HL 13262.  相似文献   

11.
Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are involved in tissue remodeling processes. TIMP-1 is the main native inhibitor of MMPs and it contributes to the development of tissue fibrosis. It is known that ANG II plays a fundamental role in vascular remodeling. In this study, we investigated whether ANG II modulates TIMP-1 expression in rat aortic smooth muscle cells. In vitro, ANG II induces TIMP-1 mRNA expression in a dose-dependent manner. The maximal increase in TIMP-1 expression was present after 3 h of ANG II stimulation. The ANG II increase in TIMP-1 expression was mediated by the ANG type 1 receptors because it was blocked by losartan. The increase in TIMP-1 expression was present after the first ANG II treatment, whereas repeated treatments (3 and 5 times) did not modify TIMP-1 expression. In vivo, exogenous ANG II was administered to Sprague-Dawley rats (200 ng. kg(-1). min(-1) sc) for 6 and 25 days. Control rats received physiological saline. After treatment, systolic blood pressure was significantly higher (P < 0.01), whereas plasma renin activity was suppressed (P < 0.01), in ANG II-treated rats. ANG II increased TIMP-1 expression in the aorta of ANG II-treated rats both at the mRNA (P < 0.05) and protein levels as evaluated by Western blotting (P < 0.05) and/or immunohistochemistry. Neither histological modifications at the vascular wall nor differences in collagen content in the tunica media were present in both the ANG II- and saline-treated groups. Our data demonstrate that ANG II increases TIMP-1 expression in rat aortic smooth muscle cells. In vivo, both short- and long-term chronic ANG II treatments increase TIMP-1 expression in the rat aorta. TIMP-1 induction by ANG II in aortic smooth muscle cells occurs in the absence of histological changes at the vascular wall.  相似文献   

12.

Background

The elastolytic enzyme matrix metalloproteinase (MMP)-12 has been implicated in the development of airway inflammation and remodeling. We investigated whether human airway smooth muscle cells could express and secrete MMP-12, thereby participating in the pathogenesis of airway inflammatory diseases.

Methods

Laser capture microdissection was used to collect smooth muscle cells from human bronchial biopsy sections. MMP-12 mRNA expression was analysed by quantitative real-time RT-PCR. MMP-12 protein expression and secretion from cultured primary airway smooth muscle cells was further analysed by Western blot. MMP-12 protein localization in bronchial tissue sections was detected by immunohistochemistry. MMP-12 activity was determined by zymography. The TransAM AP-1 family kit was used to measure c-Jun activation and nuclear binding. Analysis of variance was used to determine statistical significance.

Results

We provide evidence that MMP-12 mRNA and protein are expressed by in-situ human airway smooth muscle cells obtained from bronchial biopsies of normal volunteers, and of patients with asthma, COPD and chronic cough. The pro-inflammatory cytokine, interleukin (IL)-1β, induced a >100-fold increase in MMP-12 gene expression and a >10-fold enhancement in MMP-12 activity of primary airway smooth muscle cell cultures. Selective inhibitors of extracellular signal-regulated kinase, c-Jun N-terminal kinase and phosphatidylinositol 3-kinase reduced the activity of IL-1β on MMP-12, indicating a role for these kinases in IL-1β-induced induction and release of MMP-12. IL-1β-induced MMP-12 activity and gene expression was down-regulated by the corticosteroid dexamethasone but up-regulated by the inflammatory cytokine tumour necrosis factor (TNF)-α through enhancing activator protein-1 activation by IL-1β. Transforming growth factor-β had no significant effect on MMP-12 induction.

Conclusion

Our findings indicate that human airway smooth muscle cells express and secrete MMP-12 that is up-regulated by IL-1β and TNF-α. Bronchial smooth muscle cells may be an important source of elastolytic activity, thereby participating in remodeling in airway diseases such as COPD and chronic asthma.  相似文献   

13.
Guo RW  Yang LX  Wang H  Liu B  Wang L 《Regulatory peptides》2008,147(1-3):37-44
Angiotensin II (AngII) is widely recognized as a critical regulator of the development of atherosclerosis. Matrix metalloproteinases (MMPs) are thought to participate in plaque destabilization through degradation of the extracellular matrix. In the present study, we investigated the potential mechanism of AngII-induced MMP-9 expression in vascular smooth muscle cells (VSMC). AngII upregulated the expression of MMP-9 significantly in VSMC obtained from rat aorta. RNAi-mediated knockdown of p65 and losartan, an inhibitor of AngII receptors subtype-1 (AT1), could abolish AngII-induced MMP-9 expression. In addition, AngII induced the NF-κB binding activity via AT1 and AT2 receptors in VSMC, and AngII-induced activation of NF-κB is not associated with significant downregulation of IκB. In summary, this study demonstrates that AngII stimulates NF-κB nuclear translocation in VSMC via AT1 and AT2. AngII increases the expression of MMP-9 in VSMC, and AT1 and NF-κB pathways have an important role in this response.  相似文献   

14.
We examined the effects of Rho kinase on contraction and intracellular Ca2+ concentration ([Ca2+](i)) in guinea pig trachealis by measuring isometric force and the fura 2 signal [340- to 380-nm fluorescence ratio (F340/F380)]. A Rho kinase inhibitor, Y-27632 (1-1,000 microM), inhibited methacholine (MCh)-induced contraction, with a reduction in F340/F380 in a concentration-dependent manner. The values of EC(50) for contraction and F340/F380 induced by 1 microM MCh with Y-27632 were 27.3 +/- 5.1 and 524.1 +/- 31.0 microM, respectively. With 0.1 microM MCh, the values for these parameters were decreased to 1.0 +/- 0.1 and 98.2 +/- 6.2 microM, respectively. Tension-F340/F380 curves for MCh indicated that Y-27632 caused an ~50% inhibition of MCh-induced contraction, without a reduction in F340/F380. These effects of Y-27632 were not inhibited by a protein kinase C inhibitor, GF-109203X. Our results indicate that inhibition of Rho kinase attenuates both Ca2+ sensitization and [Ca2+](i).  相似文献   

15.
Smooth muscle caldesmon was phosphorylated in vitro by sea star p44mpk up to 2.0 mol of phosphate/mol of protein at both Ser and Thr residues. The phosphorylation sites were contained mainly in the COOH-terminal 10-kDa cyanogen bromide fragment which houses the binding sites for calmodulin, tropomyosin, and F-actin. Tryptic peptide maps of 32P-labeled caldesmon by p44mpk and p34cdc2 showed that while both enzymes recognized similar sites of phosphorylation, they have different preferred sites. Phosphorylation of caldesmon attenuated slightly its interaction with actin and had no effect on its binding to calmodulin and tropomyosin. Smooth muscle cell extracts from chicken gizzard and rat aorta contained 42- and 44-kDa proteins, respectively, which were cross-reactive with an antibody to sea star p44mpk. Immunoprecipitates from gizzard and aorta cell extracts, generated with the p44mpk antibody, possessed kinase activities toward myelin basic protein as well as caldesmon. These results suggest that MAP kinase may have functions in the differentiated smooth muscle cells distinct from those involved in the cell cycle.  相似文献   

16.
17.

Background

The delicate balance of the extracellular matrix (ECM) determines the stiffness of the vascular wall, and adventitial fibroblasts are involved in ECM formation by synthesizing and degrading matrix proteins. In the present study, we examined the effect of the bioactive peptide adrenomedullin (AM) on activity and expression of matrix metalloproteinases (MMPs) in cultured aortic adventitial fibroblasts.

Methods and results

In cultured adventitial fibroblasts isolated from aorta of adult Wistar rats, 10−6 mol/L angiotensin II (Ang II) significantly (p < 0.05) down-regulated MMP-2 activity as determined by in vitro gelatin zymography. In contrast, 10−7 mol/L synthetic rat AM significantly (p < 0.05) stimulated zymographic MMP-2 activity by 23%, increasing intracellular cAMP, and AM abolished the action of Ang II, augmenting the MMP-2 activity. Similarly, Ang II down-regulated MMP-2 protein expression assessed by Western blotting, whereas AM increased it. Furthermore, 8-bromo-cAMP, an analogue of cAMP, mimicked the effect of AM, and H-89, an inhibitor for protein kinase A (PKA), significantly decreased the basal and AM-induced MMP-2 activity.

Conclusion

This study provides a new insight into the biological action of AM and its intracellular signaling system of cAMP/PKA stimulating the matrix degrading enzyme MMP-2, suggesting an important role for this molecule in modulating ECM deposition in the adventitial layer.  相似文献   

18.
NO and cGMP have antigrowth and anti-inflammatory effects on the vessel wall in response to injury. It is well established that after vascular injury proinflammatory cytokines are involved in vascular wall remodeling. The purpose of this study was to ascertain the signaling mechanisms involved in cGMP-dependent protein kinase (PKG) suppression by inflammatory cytokines in primary bovine aortic vascular smooth muscle cells (VSMC). Interleukin (IL)-I, tumor necrosis factor (TNF)-, and LPS decreased the mRNA and protein levels of PKG in VSMC. IL-I, TNF-, and LPS increased inducible nitric oxide synthase (iNOS) expression and cGMP production. Treatment of cells with selective inhibitors of iNOS or soluble guanylate cyclase (sGC) reversed the downregulation of PKG expression induced by cytokines and LPS. The NO donor (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium-1,2-diolate (DETA NONOate) and 3-(5-hydroxymethyl-2-furyl)-1-benzylindazole (YC-1), a NO-independent sGC activator, decreased PKG mRNA and protein expression in bovine aortic VSMC. Cyclic nucleotide analogs [8-(4-chlorophenylthio)guanosine 3',5'-cyclic monophosphate (CPT-cGMP) and 8-(4-chlorophenylthio)adenosine 3,5'-cyclic monophosphate (CPT-cAMP)] also suppressed PKG mRNA and protein expression. However, CPT-cAMP was more effective than CPT-cGMP in decreasing PKG mRNA levels. Selective inhibition of PKA with the Rp isomer of 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphorothioate (Rp-8p-CPT cAMPS) prevented the downregulation of PKG by LPS. In contrast, the Rp isomer of 8-(4-chlorophenylthio)guanosine 3,5'-cyclic monophosphorothioate (Rp-8p-CPT cGMPS; inhibitor of PKG) had no effect on LPS-induced inhibition of PKG mRNA and protein expression. These studies suggest that cross-activation of PKA in response to iNOS expression by inflammatory mediators downregulates PKG expression in bovine aortic VSMC. vascular injury; nitric oxide; inflammation  相似文献   

19.
In response to vascular injury, smooth muscle cells migrate from the media into the intima, where they contribute to the development of neointimal lesions. Increased matrix metalloproteinase (MMP) expression contributes to the migratory response of smooth muscle cells by releasing them from their surrounding extracellular matrix. MMPs may also participate in the remodeling of extracellular matrix in vascular lesions that could lead to plaque weakening and subsequent rupture. Neurotrophins and their receptors, the Trk family of receptor tyrosine kinases, are expressed in neointimal lesions, where they induce smooth muscle cell migration. We now report that nerve growth factor (NGF)-induced activation of the TrkA receptor tyrosine kinase induces MMP-9 expression in both primary cultured rat aortic smooth muscle cells and in a smooth muscle cell line genetically manipulated to express TrkA. The response to NGF was specific for MMP-9 expression, as the expression of MMP-2, MMP-3, or the tissue inhibitor of metalloproteinase-2 was not changed. Activation of the Shc/mitogen-activated protein kinase pathway mediates the induction of MMP-9 in response to NGF, as this response is abrogated in cells expressing a mutant TrkA receptor that does not bind Shc and by pretreatment of cells with the MEK-1 inhibitor, U0126. Thus, these results indicate that the neurotrophin/Trk receptor system, by virtue of its potent chemotactic activity for smooth muscle cells and its ability to induce MMP-9 expression, is a critical mediator in the remodeling that occurs in the vascular wall in response to injury.  相似文献   

20.
Inducible nitric oxide synthase (iNOS) in vascular smooth muscle cells (VSMCs) is upregulated in arterial injury and plays a role in regulating VSMC proliferation and restenosis. Inflammatory cytokines [e.g., interleukin-1beta (IL-1beta)] released during vascular injury induce iNOS. Small GTP-binding proteins of the Ras superfamily play a major role in IL-1beta-dependent signaling pathways. In this study, we examined the role of Rho GTPases in regulating iNOS expression in VSMCs. Treatment of VSMCs with mevastatin, which inhibits isoprenylation of Rho and other small GTP-binding proteins, produced significantly higher amounts of IL-1beta-evoked NO and iNOS protein compared with control. Similarly, bacterial toxins [Toxin B from Clostridium difficile and C3 ADP-ribosyl transferase (C3) toxin from Clostridium botulinium] that specifically inactivate Rho proteins increased NOS products (NO and citrulline) and iNOS expression. Toxin B increased the activity of iNOS promoter-reporter construct in VSMCs. Both toxins enhanced IL-1beta-stimulated iNOS expression and NO production. These data demonstrate for the first time that inhibition of Rho induces iNOS and suggest a role for Rho protein in IL-1beta-stimulated NO production in VSMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号