首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Over the last 30 years, many studies have indicated that glycosphingolipids (GSLs) expressed on the cell surface may act as binding sites for microorganisms. Based on their physicochemical characteristics, GSLs form membrane microdomains with cholesterol, sphingomyelin, glycosylphosphatidylinositol (GPI)-anchored proteins, and various signaling molecules, and GSL-enriched domains have been shown to be involved in these defense responses. Among the GSLs, lactosylceramide (LacCer, CDw17) can bind to various microorganisms. LacCer is expressed at high levels on the plasma membrane of human neutrophils, and forms membrane microdomains associated with the Src family tyrosine kinase Lyn. LacCer-enriched membrane microdomains mediate superoxide generation, chemotaxis, and non-opsonic phagocytosis. Therefore, LacCer-enriched membrane microdomains are thought to function as pattern recognition receptors (PRRs) to recognize pathogen-associated molecular patterns (PAMPs) expressed on microorganisms. In contrast, several pathogens have developed infection mechanisms using membrane microdomains. In addition, some pathogens have the ability to avoid degradation by escaping from the vacuolar compartment or preventing phagosome maturation, utilizing membrane microdomains, such as LacCer-enriched domains, of host cells. The detailed molecular mechanisms of these membrane microdomain-associated host-pathogen interactions remain to be elucidated.  相似文献   

2.
Glycosphingolipids, a family of heterogeneous lipids with biophysical properties conserved from fungi to mammals, are key components of cellular membranes. Because of their tightly packed backbone, they have the ability to associate with other sphingolipids and cholesterol to form microdomains called lipid rafts, with which a variety of proteins associate. These microdomains are thought to originate in the Golgi apparatus, where most sphingolipids are synthesized, and are enriched at the plasma membrane. They are involved in an increasing number of processes, including sorting of proteins by allowing selectivity in intracellular membrane transport. Apart from being involved in recognition and signaling on the cell surface, glycosphingolipids may fulfill unexpected roles on the cytosolic surface of cellular membranes.  相似文献   

3.
Analysis of membrane lipids of Histoplasma capsulatum showed that ~40% of fungal ergosterol is present in membrane microdomain fractions resistant to treatment with non-ionic detergent at 4°C. Specific proteins were also enriched in these fractions, particularly Pma1p a yeast microdomain protein marker (a plasma membrane proton ATPase), a 30kDa laminin-binding protein, and a 50kDa protein recognized by anti-α5-integrin antibody. To better understand the role of ergosterol-dependent microdomains in fungal biology and pathogenicity, H. capsulatum yeast forms were treated with a sterol chelator, methyl-beta-cyclodextrin (mβCD). Removal of ergosterol by mβCD incubation led to disorganization of ergosterol-enriched microdomains containing Pma1p and the 30kDa protein, resulting in displacement of these proteins from detergent-insoluble to -soluble fractions in sucrose density gradient ultracentrifugation. mβCD treatment did not displace/remove the 50kDa α5-integrin-like protein nor had effect on the organization of glycosphingolipids present in the detergent-resistant fractions. Ergosterol-enriched membrane microdomains were also shown to be important for infectivity of alveolar macrophages; after treatment of yeasts with mβCD, macrophage infectivity was reduced by 45%. These findings suggest the existence of two populations of detergent-resistant membrane microdomains in H. capsulatum yeast forms: (i) ergosterol-independent microdomains rich in integrin-like proteins and glycosphingolipids, possibly involved in signal transduction; (ii) ergosterol-enriched microdomains containing Pma1p and the 30kDa laminin-binding protein; ergosterol and/or the 30kDa protein may be involved in macrophage infectivity.  相似文献   

4.
Lipid rafts are the lateral assemblies of cholesterol, sphingomyelin, glycosphingolipids, and specific proteins within the cell plasma membrane. These microdomains are involved in a number of important cellular processes including membrane rearrangement, protein internalization, signal transduction, and the entry of viruses into a cell. Some of the lipid rafts are stabilized by special microdomain-forming proteins such as caveolins, SPFH domain-containing superfamily, tetraspanins, galectins, which maintain the integrity of rafts and regulate many resident proteins, thereby participating in nearly all life processes of cells. However, such classes of microdomain-forming proteins are still considered separately from each other. In this review we have tried to perform a complex analysis of microdomain-forming proteins in cell regulation by the example of EGFR receptors, integrins, and matrix metalloproteinases.  相似文献   

5.
The central aspect of epithelial cells is their polarized structure, characterized by two distinct domains of the plasma membrane, the apical and the basolateral membrane. Apical protein sorting requires various signals and different intracellular routes to the cell surface. The first apical targeting motif identified is the membrane anchoring of a polypeptide by glycosyl-phosphatidyl-inositol (GPI). A second group of apical signals involves N- and O-glycans, which are exposed to the luminal side of the sorting organelle. Sucrase-isomaltase (SI) and lactase-phlorizin hydrolase (LPH), which use separate transport platforms for trafficking, are two model proteins for the study of apical protein sorting. In contrast to LPH, SI associates with sphingolipid/cholesterol-enriched membrane microdomains or "lipid rafts". After exit form the trans-Golgi network (TGN), the two proteins travel in distinct vesicle populations, SAVs (SI-associated vesicles) and LAVs (LPH-associated vesicles) . Here, we report the identification of the lectin galectin-3 delivering non-raft-dependent glycoproteins in the lumen of LAVs in a carbohydrate-dependent manner. Depletion of galectin-3 from MDCK cells results in missorting of non-raft-dependent apical membrane proteins to the basolateral cell pole. This suggests a direct role of galectin-3 in apical sorting as a sorting receptor.  相似文献   

6.
Glycan changes: cancer metastasis and anti-cancer vaccines   总被引:1,自引:0,他引:1  
Li M  Song L  Qin X 《Journal of biosciences》2010,35(4):665-673
Complex carbohydrates, which are major components of the cell membrane, perform important functions in cell-cell and cell-extracellular matrix interactions, as well as in signal transduction. They comprise three kinds of biomolecules: glycoproteins, proteoglycans and glycosphingolipids. Recent studies have also shown that glycan changes in malignant cells take a variety of forms and mediate key pathophysiological events during the various stages of tumour progression. Glycosylation changes are universal hallmarks of malignant transformation and tumour progression in human cancer, which take place on the whole cells or some specific molecules. Accordingly, those changes make them prominent candidates for cancer biomarkers in the meantime. This review mainly focuses on the correlation between glycosylation and the metastasis potential of tumour cells from comprehensive aspects to further address the vital roles of glycans in oncogenesising. Moreover, utilizing these glycosylation changes to ward off tumour metastasis by means of anti-adhesion approach or devising anti-cancer vaccine is one of promising targets of future study.  相似文献   

7.
Among bacterial species demonstrated to have protein O-glycosylation systems, that of Bacteroides fragilis and related species is unique in that extracytoplasmic proteins are glycosylated at serine or threonine residues within the specific three-amino acid motif D(S/T)(A/I/L/M/T/V). This feature allows for computational analysis of the proteome to identify candidate glycoproteins. With the criteria of a signal peptidase I or II cleavage site or a predicted transmembrane-spanning region and the presence of at least one glycosylation motif, we identified 1021 candidate glycoproteins of B. fragilis. In addition to the eight glycoproteins identified previously, we confirmed that another 12 candidate glycoproteins are in fact glycosylated. These included four glycoproteins that are predicted to localize to the inner membrane, a compartment not previously shown to include glycosylated proteins. In addition, we show that four proteins involved in cell division and chromosomal segregation, two of which are encoded by candidate essential genes, are glycosylated. To date, we have not identified any extracytoplasmic proteins containing a glycosylation motif that are not glycosylated. Therefore, based on the list of 1021 candidate glycoproteins, it is likely that hundreds of proteins, comprising more than half of the extracytoplasmic proteins of B. fragilis, are glycosylated. Site-directed mutagenesis of several glycoproteins demonstrated that all are glycosylated at the identified glycosylation motif. By engineering glycosylation motifs into a naturally unglycosylated protein, we are able to bring about site-specific glycosylation at the engineered sites, suggesting that this glycosylation system may have applications for glycoengineering.  相似文献   

8.
In many cell types, glycosylphosphatidylinositol (GPI)-anchored proteins are sequestered in detergent-resistant membrane rafts. These are plasma membrane microdomains enriched in glycosphingolipids and cholesterol and are suggested to be platforms for cell signaling. Concomitant with the synthesis of myelin glycosphingolipids, maturing oligodendrocytes progressively associate GPI-anchored proteins, including the adhesion molecules NCAM 120 and F3, in rafts. Here we show that these microdomains include Fyn and Lyn kinases. Both kinases are maximally active in myelin prepared from young animals, correlating with early stages of myelination. In the rafts, Fyn kinase is tightly associated with NCAM 120 and F3. In contrast, in oligodendrocyte progenitor cells lacking rafts or in raft-free membrane domains of more mature cells, F3 does not associate with Fyn. The addition of anti-F3 antibodies to oligodendrocytes results in stimulation of Fyn kinase specifically in rafts. Compartmentation of oligodendrocyte GPI-anchored proteins in rafts is thus a prerequisite for association with Fyn, permitting kinase activation. Interaction of oligodendrocyte F3 with axonal ligands such as L1 and ensuing kinase activation may play a crucial role in initiating myelination.  相似文献   

9.
From the time of their synthesis in the rough endoplasmic reticulum until they are secreted, packaged in lysosomes, or appear as membrane components at the cell surface, the polypeptide chains of N- and O-linked glycoproteins remain associated with intracellular membranes that are components of the secretory pathway. The various co-translational and post-translational modifications of the carbohydrate moieties of glycoproteins have been shown to occur within morphologically and functionally distinct regions of this complex membrane system. However, the sugar nucleotides, which serve as precursors to the oligosaccharide moieties of these glycoproteins, are synthesized almost exclusively in the cytoplasm. These findings raise a number of questions about the mechanisms involved in the transmembrane assembly of membrane and secretory glycoproteins. In this paper these questions are reviewed and recent studies directed towards providing answers to them are summarized. In addition, information related to the possible role of dolichyl phosphate in regulating the glycosylation of proteins is presented.  相似文献   

10.
Glycosylation is a common posttranslational modification of proteins and lipids of the secretory pathway that generates binding sites for galactose-specific lectins or galectins. Branching of Asn-linked (N-)glycans by the N-acetylglucosaminyltransferases (Mgat genes) increases affinity for galectins. Both tissue-specific expression of the enzymes and the metabolic supply of sugar-nucleotides to the ER and Golgi regulate glycan distribution while protein sequences specify NXS/T site multiplicity, providing metabolic and genetic contributions to galectin-glycoprotein interactions. Galectins cross-link glycoproteins forming dynamic microdomains or lattices that regulate various mediators of cell adhesion, migration, proliferation, survival and differentiation. There are a similar number of galactose-specific galectins in C. elegans and humans, but expression of higher-affinity branched N-glycans are a more recent feature of vertebrate evolution. Galectins might be considered a reading code for repetition of the minimal units of binding [Gal(NAc)β1-3/4GlcNAc] and NXS/T site multiplicity in proteins. The rapidly evolving and structurally complex Golgi modifications to surface receptors are interpreted through affinity for the lattice, which regulates receptor levels as a function of the cellular environment, and thereby the probability of various cell fates. Many important questions remain concerning the regulation of the galectins, the glycan ligands and lattice interaction with other membrane domains and endocytic pathways.  相似文献   

11.
Eukaryotic cells plasma membranes are organized into microdomains of specialized function such as lipid rafts and caveolae, with a specific lipid composition highly enriched in cholesterol and glycosphingolipids. In addition to their role in regulating signal transduction, multiple functions have been proposed, such as anchorage of receptors, trafficking of cholesterol, and regulation of permeability. However, an extensive understanding of their protein composition in human heart, both in failing and non-failing conditions, is not yet available. Membrane microdomains were isolated from left ventricular tissue of both failing (n = 15) and non-failing (n = 15) human hearts. Protein composition and differential protein expression was explored by comparing series of 2-D maps and subsequent identification by LC-MS/MS analysis. Data indicated that heart membrane microdomains are enriched in chaperones, cytoskeletal-associated proteins, enzymes and protein involved in signal transduction pathway. In addition, differential protein expression profile revealed that 30 proteins were specifically up- or down-regulated in human heart failure membrane microdomains. This study resulted in the identification of human heart membrane microdomain protein composition, which was not previously available. Moreover, it allowed the identification of multiple proteins whose expression is altered in heart failure, thus opening new perspectives to determine which role they may play in this disease.  相似文献   

12.
Glycosphingolipids from human erythrocytes mediate CD4-dependent fusion with cells expressing human immunodeficiency virus type 1 (HIV-1) envelope glycoproteins. To identify the glycosphingolipid(s) which participates in the fusion process, we have analyzed the interaction of HIV-1 gp120 (X4 and R5X4 isolates) with reconstituted membrane microdomains of human erythrocyte glycosphingolipids. We identified globotriaosylceramide (Gb3) and ganglioside GM3 as the main glycosphingolipids recognized by gp120. In the presence of CD4, Gb3 interacted preferentially with the X4 gp120, whereas GM3 interacted exclusively with the R5X4 gp120. These data suggest that glycosphingolipid microdomains are required in CD4-dependent fusion and that Gb3 and/or GM3 may function as alternative entry cofactors for selected HIV-1 isolates.  相似文献   

13.
Dissecting glycoprotein biosynthesis by the use of specific inhibitors   总被引:7,自引:0,他引:7  
W McDowell  R T Schwarz 《Biochimie》1988,70(11):1535-1549
It is possible to interfere with different steps in the dolichol pathway of protein glycosylation and in the processing of asparagine-linked oligosaccharides. Thus some clues about the role of protein-bound carbohydrate can be obtained by comparing the biochemical fates and functions of glycosylated proteins with their non-glycosylated counterparts, or with proteins exhibiting differences in the type of oligosaccharide side chains. Cells infected with enveloped viruses are good systems for studying both aspects of protein glycosylation, since they contain a limited number of different glycoproteins, often with well-defined functions. Tunicamycin, an antibiotic, as well as several sugar analogues have been found to act as inhibitors of protein glycosylation by virtue of their anti-viral properties. They interfere with various steps in the dolichol pathway resulting in a lack of functional lipid-linked oligosaccharide precursors. Compounds that interfere with oligosaccharide trimming represent a second generation of inhibitors of glycosylation. They are glycosidase inhibitors that interfere with the processing glucosidases and mannosidases and, as a result, the conversion of high-mannose into complex-type oligosaccharides is blocked. Depending upon the compound used, glycoproteins contain glucosylated-high-mannose, high-mannose or hybrid oligosaccharide structures instead of complex ones. The biological consequences of the alterations caused by the inhibitors are manifold: increased susceptibility to proteases, improper protein processing and misfolding of polypeptide chains, loss of biological activity and alteration of the site of virus-budding, to name but a few.  相似文献   

14.
Glycosylation is a widespread post-translational modification found in glycoproteins. Glycans play key roles in protein folding, quality control in the endoplasmic reticulum (ER) and protein trafficking within cells. However, it remains unclear whether all positions of protein glycosylation are involved in glycan functions, or if specific positions have individual roles. Here we demonstrate the integral involvement of a specific N-glycan from amongst the three glycans present on inducible costimulator (ICOS), a T-cell costimulatory molecule, in proper protein folding and intracellular trafficking to the cell surface membrane. We found that glycosylation-defective mutant proteins lacking N-glycan at amino-acid position 89 (N89), but not proteins lacking either N23 or N110, were retained within the cell and were not detected on the cell surface membrane. Additional evidence suggested that N89 glycosylation was indirectly involved in ICOS ligand binding. These data suggest that amongst the three putative ICOS glycosylation sites, N89 is required for proper ICOS protein folding in the ER, intracellular trafficking and ligand binding activity. This study represents a substantial contribution to the current mechanistic understanding of the necessity and potential functions of a specific N-glycan among the multiple glycans of glycoproteins.  相似文献   

15.
Lipid rafts are microdomains of the plasma membrane which are enriched in glycosphingolipids and specific proteins. The reported interactions of several raft-associated proteins (such as, e.g., F3) with tenascin C and tenascin R prompted us to consider that these oligomeric multidomain glycoproteins of the extracellular matrix (ECM) could associate with rafts. Here, we show punctate immunocytochemical distributions of tenascin C (TN-C) and tenascin R (TN-R) at the membrane surface of neural cells resembling the pattern reported for raft-associated proteins. Moreover, cholesterol depletion with methyl-beta-cyclodextrin reduced the punctate surface staining of TN-C. Consistently, TN-C was associated with lipid rafts of neonatal mouse brain according to sucrose density gradient centrifugation experiments. Furthermore, TN-R was also found in rafts prepared from myelin of adult mice. Thus, brain-derived tenascins are able to associate with lipid rafts.  相似文献   

16.
Mi W  Jia W  Zheng Z  Wang J  Cai Y  Ying W  Qian X 《Glycoconjugate journal》2012,29(5-6):411-424
Cell surface glycoproteins are one of the most frequently observed phenomena correlated with malignant growth. Hepatocellular carcinoma (HCC) is one of the most malignant tumors in the world. The majority of hepatocellular carcinoma cell surface proteins are modified by glycosylation in the process of tumor invasion and metastasis. Therefore, characterization of cell surface glycoproteins can provide important information for diagnosis and treatment of liver cancer, and also represent a promising source of potential diagnostic biomarkers and therapeutic targets for hepatocellular carcinoma. However, cell surface glycoproteins of HCC have been seldom identified by proteomics approaches because of their hydrophobic nature, poor solubility, and low abundance. The recently developed cell surface-capturing (CSC) technique was an approach specifically targeted at membrane glycoproteins involving the affinity capture of membrane glycoproteins using glycan biotinylation labeling on intact cell surfaces. To characterize the cell surface glycoproteome and probe the mechanism of tumor invasion and metastasis of HCC, we have modified and evaluated the cell surface-capturing strategy, and applied it for surface glycoproteomic analysis of hepatocellular carcinoma cells. In total, 119 glycosylation sites on 116 unique glycopeptides were identified, corresponding to 79 different protein species. Of these, 65 (54.6?%) new predicted glycosylation sites were identified that had not previously been determined experimentally. Among the identified glycoproteins, 82?% were classified as membrane proteins by a database search, 68?% had transmembrane domains (TMDs), and 24?% were predicted to contain 2-13 TMDs. Moreover, a total of 26 CD antigens with 50 glycopeptides were detected in the membrane glycoproteins of hepatocellular carcinoma cells, comprising 43?% of the total glycopeptides identified. Many of these identified glycoproteins are associated with cancer such as CD44, CD147 and EGFR. This is a systematic characterization of cell surface glycoproteins of HCC. The membrane glycoproteins identified in this study provide very useful information for probing the mechanism of liver cancer invasion and metastasis.  相似文献   

17.
As the altered glycosylation expressions of cell surface proteins are associated with many diseases, glycoproteomics approach has been widely applied to characterization of surface glycosylation alteration. In general, the abundances of proteolytic glycopeptides derived from corresponding glycoproteins can be measured to determine the abundances of glycoproteins. However, this quantification strategy cannot distinguish whether the changes are results from changes of protein abundance or changes in glycosite occupancy. For the accurate and specific quantification of the cell surface glycosylation profile, we proposed a modified cell surface‐capturing strategy where the glycopeptides were submitted to LC‐MS/MS analysis directly for identification of glycoproteins and the non‐glycopeptides were isotopically labelled for quantification of glycoproteins. This strategy was applied to comparatively analyze cell surface glycoproteins of two human cell lines, i.e. Chang Liver and HepG2 cells. Totally 341 glycoproteins were identified with 82.4% specificity for cell membrane proteins and 33 glycoproteins were quantified with significant expression change between the two cell lines. The differential expressions of two selected proteins (EMMPRIN and BCAM) were validated by Western blotting. This method enables specific and accurate analysis of the cell surface glycoproteins and may have broad application in the field of biomarker and drug target discovery.  相似文献   

18.
C Lipardi  L Nitsch  C Zurzolo 《Biochimie》1999,81(4):347-353
The process leading to thyroid hormone synthesis is vectorial and depends upon the polarized organization of the thyrocytes into the follicular unit. Thyrocyte membrane proteins are delivered to two distinct domains of the plasma membrane using apical (AP) and basolateral (BL) sorting signals. A recent hypothesis for AP sorting proposes that apically destined proteins cluster with glycosphingolipids (GSLs) and cholesterol, into microdomains (or rafts) of the Golgi membrane from which AP vesicles originate. In MDCK cells the human neurotrophin receptor, p75hNTR, is delivered to the AP surface through a sorting signal, rich in O-glycosylated sugars, identified in its ectodomain. We have investigated whether this signal is functional in the thyroid-derived FRT cell line and whether p75hNTR clusters into lipid rafts to be sorted to the AP membrane. We found that p75hNTR is apically delivered via a direct pathway and does not associate with rafts during its transport to the surface of FRT cells. Therefore, although the same signal could be recognized by different cell types thyroid cells may possess a tissue-specific sorting machinery.  相似文献   

19.
"Lipid rafts" enriched in glycosphingolipids (GSL), GPI-anchored proteins, and cholesterol have been proposed as functional microdomains in cell membranes. However, evidence supporting their existence has been indirect and controversial. In the past year, two studies used fluorescence resonance energy transfer (FRET) microscopy to probe for the presence of lipid rafts; rafts here would be defined as membrane domains containing clustered GPI-anchored proteins at the cell surface. The results of these studies, each based on a single protein, gave conflicting views of rafts. To address the source of this discrepancy, we have now used FRET to study three different GPI-anchored proteins and a GSL endogenous to several different cell types. FRET was detected between molecules of the GSL GM1 labeled with cholera toxin B-subunit and between antibody-labeled GPI-anchored proteins, showing these raft markers are in submicrometer proximity in the plasma membrane. However, in most cases FRET correlated with the surface density of the lipid raft marker, a result inconsistent with significant clustering in microdomains. We conclude that in the plasma membrane, lipid rafts either exist only as transiently stabilized structures or, if stable, comprise at most a minor fraction of the cell surface.  相似文献   

20.
Lipids as modulators of membrane fusion mediated by viral fusion proteins   总被引:1,自引:0,他引:1  
Enveloped viruses infect host cells by fusion of viral and target membranes. This fusion event is triggered by specific glycoproteins in the viral envelope. Fusion glycoproteins belong to either class I, class II or the newly described third class, depending upon their arrangement at the surface of the virion, their tri-dimensional structure and the location within the protein of a short stretch of hydrophobic amino acids called the fusion peptide, which is able to induce the initial lipid destabilization at the onset of fusion. Viral fusion occurs either with the plasma membrane for pH-independent viruses, or with the endosomal membranes for pH-dependent viruses. Although, viral fusion proteins are parted in three classes and the subcellular localization of fusion might vary, these proteins have to act, in common, on lipid assemblies. Lipids contribute to fusion through their physical, mechanical and/or chemical properties. Lipids can thus play a role as chemically defined entities, or through their preferential partitioning into membrane microdomains called "rafts", or by modulating the curvature of the membranes involved in the fusion process. The purpose of this review is to make a state of the art on recent findings on the contribution of cholesterol, sphingolipids and glycolipids in cell entry and membrane fusion of a number of viral families, whose members bear either class I or class II fusion proteins, or fusion proteins of the recently discovered third class.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号