首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
This study describes the biochemical properties of the rat hepatic microsomal NADPH-specific short-chain enoyl CoA reductase and NAD(P)H-dependent long-chain enoyl CoA reductase. Of the substrates tested, crotonyl CoA and trans-2-hexenoyl CoA are reduced by the short-chain reductase only in the presence of NADPH. The trans-2-octenoyl CoA and trans-2-decenoyl CoA appear to undergo reduction to octanoate and decanoate, respectively, catalyzed by both enzymes; 64% conversion of the C8:1 is catalyzed by the short-chain reductase, while 36% conversion is catalyzed by the long-chain enzyme. For the C10:1 substrate, 45% is converted by the short-chain reductase, while 55% is reduced by the long-chain reductase. trans-2-Hexadecenoyl CoA is a substrate for the long-chain enoyl CoA reductase only. Reduction of C4 and C6 enoyl CoA's was unaffected by bovine serum albumin (BSA), whereas BSA markedly stimulated the conversion of C10 and C16 enoyl CoA's to their respective saturated product. Reduction rates as a function of microsomal protein concentration, incubation time, pH, and cofactors are reported including the apparent Km and Vmax for substrates and cofactors. In general, the apparent Km's for the substrates ranged from 19 to 125 microM. The apparent Vmax for the short-chain enoyl CoA reductase was greatest with trans-2-hexenoyl CoA, having a turnover of 65 nmol/min/mg microsomal protein, while the apparent Vmax for the long-chain enzyme was greatest with trans-2-hexadecenoyl CoA, having a turnover of 55 nmol/min/mg microsomal protein. With respect to electron input, NADPH-cytochrome P-450 reductase, either alone, mixed with phospholipid, or incorporated into phospholipid vesicles, possessed no enoyl CoA reductase activity. Cytochrome c did not affect the NADPH-dependent conversion of the trans-2-enoyl CoA. In addition, anti-NADPH-cytochrome P-450 reductase IgG did not inhibit the reduction of trans-2-hexadecenoyl CoA in hepatic microsomes. Finally, the NADPH-specific short-chain and NAD(P)H-dependent long-chain enoyl CoA reductases were solubilized and completely separated from NADPH-cytochrome P-450 reductase by employing DE-52 column chromatography. These studies demonstrate the noninvolvement of NADPH-cytochrome P-450 reductase in either the short-chain (13) or long-chain enoyl CoA reductase system. Thus, the role of NADPH-cytochrome P-450 reductase in the microsomal elongation of fatty acids appears to be at the level of the first reduction step.  相似文献   

2.
Evidence for the existence of a previously unknown rat hepatic microsomal reductase, short chain trans-2-enoyl-CoA reductase (SC reductase) is presented. This reductase has a specific requirement for NADPH, is unable to utilize NADH, and catalyzes the conversion of crotonyl-CoA and trans-2-hexenoyl-CoA to butyric acid and hexenoic acid at a rate of 5 and 65 nmol per min per mg of microsomal protein, respectively. Highly purified NADPH cytochrome P-450 reductase incorporated into liposomes prepared from dilauroyl phosphatidylcholine in the presence or absence of cytochrome P-450 possesses no SC reductase activity. These liposomal preparations did, however, catalyze mixed function oxidations of benzphetamine and testosterone. Rabbit antibody to rat liver NADPH cytochrome P-450 reductase had little to no effect on the conversion of crotonyl-CoA and trans-2-hexenoyl-CoA, suggesting that the SC reductase accepts reducing equivalents directly from NADPH. When acetoacetyl-CoA was incubated with hepatic microsomes and either NADH or NADPH, no formation of butyrate was detected; however, when both cofactors were present, a rate of formation of 3 nmol of butyrate was determined per min per mg of microsomal protein. These results suggest the presence of a previously unknown short chain beta-ketoreductase which catalyzes the reduction of short chain beta-keto acids, only in the presence of NADH. Our results also indicate that the electrons from NADH to the beta-ketoreductase bypass cytochrome b5. The physiological significance is discussed in terms of lipogenesis and ketone body utilization by the liver.  相似文献   

3.
An enzyme preparation (IIIB) isolated from liver microsomes of untreated male rats was found to contain two activities--short-chain trans-2-enoyl-CoA hydratase and beta-ketoacyl-CoA reductase. The hydratase was purified more than 1000-fold, while the reductase activity was purified over 600-fold. Employing sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, a single band with a molecular weight of 76,000 was observed. Although attempts to separate these two activities have failed, it remains to be established whether the final preparation contains a single enzyme with two activities or two separate enzymes. The hydratase was most active toward crotonyl-CoA, followed by trans-2-hexenoyl-CoA (6:1) and -octenoyl-CoA (8:1); the enzyme was essentially inactive toward substrates containing more than eight carbon atoms. The Vmax for crotonyl-CoA was 2117 mumol/min/mg protein, while the Km was 59 microM. Using acetoacetyl-CoA as substrate, the Vmax for the beta-ketoacyl-CoA reductase was over 60 mumol/min/mg protein and the Km was 37 microM; the Vmax for beta-ketopalmitoyl-CoA was only 15% of that observed with acetoacetyl-CoA, although the Km was 6 microM. During the course of purification, a second short-chain hydratase was discovered (fraction IVA); unlike IIIB, this fraction catalyzed the hydration of 4:1, 6:1, and 8:1 at similar rates. The partially purified preparation yielded maximal activity with 8:1 CoA (apparent Vmax 35 mumol/min/mg), followed by 6:1 CoA, 4:1 CoA, and 10:1 CoA; longer chain CoA's were relatively poor substrates, with trans-2-hexadecenoyl CoA about 0.1 as active as 8:1 CoA. On SDS-gels, fraction IVA contained four bands, all of which were below 60,000 Mr. Proteases, such as trypsin, chymotrypsin, and subtilisin, were found to completely inactivate both enzyme fractions.  相似文献   

4.
Immunocytochemical localization of delta 3, delta 2-enoyl-CoA isomerase (isomerase) was investigated in rat liver. Livers of di-(2-ethylhexyl)phthalate (DEHP)-treated or untreated rats were perfusion-fixed and embedded in Epon or Lowicryl K4M. By light microscopy, reaction deposits for the enzyme were present in the cytoplasmic granules of hepatocytes and interlobular bile duct epithelium. Weak staining was noted in sinus-lining cells. After administration of DEHP, the granular staining of the hepatocytes was markedly enhanced, whereas the staining reaction of the sinus-lining cells decreased. The isomerase staining pattern was quite similar to that of long-chain acyl-CoA dehydrogenase (a mitochondrial marker), but different from that of catalase (a peroxisomal marker). Under electron microscopy, gold particles for isomerase were seen to be confined mainly to mitochondria of the hepatocytes, the bile duct epithelial cells and sinus-lining cells. Peroxisomes were weakly labeled. After DEHP administration, the peroxisomes were markedly induced, but the mitochondria were not. Quantitative analysis showed that the induction of the peroxisomal isomerase was only 2-fold whereas the mitochondrial isomerase was enhanced about 5-fold, 40 times as high as the peroxisomal enzyme. The results show that the mitochondria are the main intracellular site for isomerase and the peroxisomes a minor site. The mitochondrial isomerase of the rat liver is markedly induced by peroxisome proliferators, DEHP and clofibrate.  相似文献   

5.
The administration of di-(2-ethylhexyl)phthalate (DEHP)3 to male Sprague-Dawley rats resulted in more than a threefold increase in activity of acetyl CoA-dependent hepatic mitochondrial fatty acid elongation. Peroxisomes obtained either from control or DEHP-treated rats were not capable of elongating any of the fatty acyl CoAs tested. Furthermore, the peroxisomes possessed no trans-2-enoyl CoA reductase activity. Therefore, the elongation activity in the 7500g fraction from both control and DEHP-fed animals can be attributed totally to the mitochondria. Maximal incorporation of acetyl CoA occurred in the presence of both NADH and NADPH, and octanoyl CoA (8:0) and decanoyl CoA (10:0) were found to be optimal primers for fatty acid elongation in both control and DEHP-treated animals. The apparent Km for 8:0 CoA was 17 microM in both animal groups while the Vmax was increased from 4.5 to 12.5 nmol/min/mg following treatment. The apparent Km for 10:0 CoA was 10 microM in both control and DEHP-treated groups while the apparent Vmax increased from 2.5 to 10 nmol/min/mg; palmitoyl-CoA (16:0) was a very poor primer for chain elongation. Although the acetyl CoA-dependent fatty acid elongation was stimulated by DEHP treatment, the mitochondrial trans-2-enoyl CoA reductase activity was unaffected. The mitochondrial total elongation activity following DEHP-treatment using 8:0 CoA as primer was about two times higher than enoyl CoA reductase activity using trans-2-decenoyl CoA (10:1). This was the result of accumulation of intermediates, which were identified as trans-2-10:1 (35%), beta-hydroxy 10:0 (25%), unidentified (15%), and elongated saturated product 10:0 (24%). Elongation by one acetate unit was found in both the control and DEHP-treated animals. The results are discussed in terms of physiological significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号