首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary AMycobacterium sp., which was previously isolated from oil-contaminated estuarine sediments, mineralized the polycyclic aromatic hydrocarbon fluoranthene. When supplemented with an alternative carbon source, the organism was able to mineralize up to 78% of the added [3-14C]fluoranthene to14CO2 after 5 days of incubation, with relatively little accumulation of intermediate metabolites. The distribution of the C-14 label was monitored throughout the mineralization process. TheMycobacterium degraded in excess of 95% fluoranthene within a 24 hour period following an initial 6–12h lag phase. At that point approximately 53% of the radioactivity was located in the ethyl acetate extractable fraction, 31.8% in CO2, and 14.7% in the aqueous phase. Incubation of theMycobacterium sp. with soil and river water, in the presence of fluoranthene, enhanced mineralization of fluoranthene by 92.7% over the indigenous biota. These results, in conjunction with previously reported studies, suggest the potential application of thisMycobacterium sp. for the bioremediation of polycyclic aromatic hydrocarbon contaminated wastes in the environment.  相似文献   

2.
Lignin biodegradation in a variety of natural materials was examined using specifically labeled synthetic 14C-lignins. Natural materials included soils, sediments, silage, steer bedding, and rumen contents. Both aerobic and anaerobic incubations were used. No 14C-labeled lignin biodegradation to labeled gaseous products under anaerobic conditions was observed. Aerobic 14C-labeled lignin mineralization varied with respect to type of natural material used, site, soil type and horizon, and temperature. The greatest observed degradation occurred in a soil from Yellowstone National Park and amounted to over 42% conversion of total radioactivity to 14CO2 during 78 days of incubation. Amounts of 14C-labeled lignin mineralization in Wisconsin soils and sediments were significantly correlated with organic carbon, organic nitrogen, nitrate nitrogen, exchangeable calcium, and exchangeable potassium.  相似文献   

3.
The polycyclic aromatic hydrocarbon phenanthrene was mineralized in two stages by soil, estuarine water, and sediment microbial populations. At high concentrations, phenanthrene was degraded, with the concomitant production of biomass and accumulation of Folin-Ciocalteau-reactive aromatic intermediates. Subsequent consumption of these intermediates resulted in a secondary increase in biomass. Analysis of intermediates by high-performance liquid chromatography, thin-layer chromatography, and UV absorption spectrometry showed 1-hydroxy-2-naphthoic acid (1H2NA) to be the predominant product. A less pronounced two-stage mineralization pattern was also observed by monitoring 14CO2 production from low concentrations (0.5 mg liter−1) of radiolabeled phenanthrene. Here, mineralization of 14C-labeled 1H2NA could explain the incremental 14CO2 produced during the later part of the incubations. Accumulation of 1H2NA by isolates obtained from enrichments was dependent on the initial phenanthrene concentration. The production of metabolites during polycyclic aromatic hydrocarbon biodegradation is discussed with regard to its possible adaptive significance and its methodological implications.  相似文献   

4.
Methanogenesis, sulfate reduction, and rates of carbon mineralization were determined for samples derived at different depths from four cores drilled at the Savannah River Plant, Aiken South Carolina. Three‐gram subsamples of the sediments were dispensed to 10‐mL serum bottles under 5% H2/95% N2 and amended with 0.5 mL degassed distilled water with or without the following solutes: formate plus acetate, bicarbonate, lactate, and radiolabeled sulfate, glucose, and Índole. After incubating 1 to 5 days, the sediments were assayed for methane, H2, 35S, and I4CO2. No methanogenesis was detected at any depth in any core and sulfate was rarely reduced. Evolution of 14CO2 from glucose and indole was detected in sediments as deep as 262 and 259 m, respectively. At some depths the 14CO2 evolution rate was comparable to that of surface soils; however, at other depths no 14CO2 evolution could be detected. Injection of sterile air into anaerobic incubations increased rates of carbon mineralization at all depths that had demonstrated anaerobic activity and stimulated mineralization activity in sediments that were inactive anaerobically, suggesting a predominance of aerobic metabolism. Increasing the concentration of added glucose and indole often increased the resulting rates of 14CO2 evolved from these substrates. Our data indicate that both aerobic and anaerobic microorganisms are present and metabolically active in samples from deep subsurface environments.  相似文献   

5.
Demethylation of monomethylmercury in freshwater and estuarine sediments and in bacterial cultures was investigated with 14CH3HgI. Under anaerobiosis, results with inhibitors indicated partial involvement of both sulfate reducers and methanogens, the former dominating estuarine sediments, while both were active in freshwaters. Aerobes were the most significant demethylators in estuarine sediments, but were unimportant in freshwater sediments. Products of anaerobic demethylation were mainly 14CO2 as well as lesser amounts of 14CH4. Acetogenic activity resulted in fixation of some 14CO2 produced from 14CH3HgI into acetate. Aerobic demethylation in estuarine sediments produced only 14CH4, while aerobic demethylation in freshwater sediments produced small amounts of both 14CH4 and 14CO2. Two species of Desulfovibrio produced only traces of 14CH4 from 14CH3HgI, while a culture of a methylotrophic methanogen formed traces of 14CO2 and 14CH4 when grown on trimethylamine in the presence of the 14CH3HgI. These results indicate that both aerobes and anaerobes demethylate mercury in sediments, but that either group may dominate in a particular sediment type. Aerobic demethylation in the estuarine sediments appeared to proceed by the previously characterized organomercurial-lyase pathway, because methane was the sole product. However, aerobic demethylation in freshwater sediments as well as anaerobic demethylation in all sediments studied produced primarily carbon dioxide. This indicates the presence of an oxidative pathway, possibly one in which methylmercury serves as an analog of one-carbon substrates.  相似文献   

6.
The need for aeration of microcosms duringmineralization of 14C-labeled compounds in highoxygen demand environments was assessed using activecompost-soil mixtures as the model system. Rapidmineralization of 14C-hexadecane occurred incontinuously aerated microcosms while nomineralization occurred in unaerated microcosms. Dailyflushing with air also yielded no mineralization.Mineralization of 14C-glucose was much lessdependent on aeration. The alkaline solution volumeand number of CO2 traps required for continuousaeration were calculated and tested experimentally.  相似文献   

7.
The fate of lignin in water and sediment of the Garonne river (France) and of a pond in its floodplain was examined using specifically labeled [14C-lignin] lignocelluloses. No significant differences appeared in the mineralization rate of alder, poplar or willow [14C-lignin] in running water samples. Conversion of total radioactivity to 14CO2 ranged between 18.7% and 24.4% after 120 days of incubation. Degree of 14C-labeled lignin mineralization in standing water and sediments was clearly lower, especially in submerged sediments, and was correlated with oxygen supply. After 60 days of incubation 3.3% to 7.9% of the 14C-labeled lignin was recovered in water samples as dissolved organic carbon originating from microbial metabolism. In water extracts from sediment the percentage of dissolved organic 14C was only 0.4% to 1.3% of the applied activity. In the humic fraction extracted from sediments it did not exceed 4.4% which was much lower than in soils. No significant difference appeared between river and pond conditions for humic substances formation.  相似文献   

8.
Anaerobic granules developed for the treatment of pentachlorophenol (PCP) completely minearilized14C-labeled PCP to14CH4 and14CO2. Release of chloride ions from PCP was performed by live cells in the granules under anaerobic conditions. No chloride ions were released under aerobic conditions or by autoclaved cells. Addition of sulfate enhanced the initial chloride release rate and accelerated the process of mineralization of14C-labeled PCP. Addition of molybdate (10 mM) inhibited the chloride release rate and severely inhibited PCP mineralization. This suggests involvement of sulfate-reducing bacteria in PCP dechlorination and mineralization. Addition of 2-bromoethane sulfonate slightly decreased the chloride release rate and completely stopped production of14CH4 and14CO2 from [14C]PCP. 2,4,6-trichlorophenol was observed as an intermediate during PCP dechlorination. On the basis of experimental results, dechlorination of 2,4,6-trichlorophanol by the granules was conducted through 2,4-dichlorophenol, 4-chlorophenol or 2-chlorophenol to phenol at pH 7.0–7.2.  相似文献   

9.
Mycobacterium sp. 7E1B1W and seven other mycobacterial strains known to degrade hydrocarbons were investigated to determine their ability to metabolize the piperazine ring, a substructure found in many drugs. Cultures were grown at 30°C in tryptic soy broth and dosed with 3.1 mM N-phenylpiperazine hydrochloride; samples were removed at intervals and extracted with ethyl acetate. Two metabolites were purified from each of the extracts by high-performance liquid chromatography; they were identified by mass spectrometry and 1H nuclear magnetic resonance spectroscopy as N-(2-anilinoethyl)acetamide and N-acetyl-N′-phenylpiperazine. The results show that mycobacteria have the ability to acetylate piperazine rings and cleave carbon-nitrogen bonds.  相似文献   

10.
Ground water beneath the U.S. Department of Energy (USDOE) Pantex Plant is contaminated with the high explosive RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). The authors evaluated biodegradation as a remedial option by measuring RDX mineralization in Pantex aquifer microcosms spiked with 14C-labeled RDX (75 g soil, 15 ml of 5 mg RDX/L). Under anaerobic conditions and constant temperature (16°C), cumulative 14CO2 production ranged between 52% and 70% after 49 days, with nutrient-amended (C, N, P) microcosms yielding the greatest mineralization (70%). The authors also evaluated biodegradation as a secondary treatment for removing RDX degradates following oxidation by permanganate (KMnO4) or reduction by dithionite-reduced aquifer solids (i.e., redox barriers). Under this coupled abiotic/biotic scenario, we found that although unconsumed permanganate initially inhibited biodegradation, > 48% of the initial 14C-RDX was recovered as 14CO2 within 77 days. Following exposure to dithionite-reduced solids, RDX transformation products were also readily mineralized (> 47% in 98 days). When we seeded Pantex aquifer material into Ottawa Sand that had no prior exposure to RDX, mineralization increased 100%, indicating that the Pantex aquifer may have an adapted microbial community that could be exploited for remediation purposes. These results indicate that biodegradation effectively transformed and mineralized RDX in Pantex aquifer microcosms. Additionally, biodegradation may be an excellent secondary treatment for RDX degradates produced from in situ treatment with permanganate or redox barriers.  相似文献   

11.
Production of 14CO2 from [1,2-14C] dichloroethene (DCE) or [1,2-14C] vinyl chloride (VC) was quantified in aquifer and stream-bed sediment microcosms to evaluate the potential for microbial mineralization as a pathway for DCE and VC biodegradation under aerobic, Fe(III)-reducing, SO4-reducing, and methanogenic conditions. Mineralization of [1,2-14C] DCE and [1,2-14C] VC to 14CO2 decreased under increasingly reducing conditions, but significant mineralization was observed for both sediments even under anaerobic conditions. VC mineralization decreased in the order of aerobic > Fe(III)-reducing > SO4-reducing > methanogenic conditions. For both sediments, VC mineralization was greater than DCE mineralization under all electron-accepting conditions examined. For both sediments, DCE mineralization was at least two times greater under aerobic conditions than under anaerobic conditions. Although significant microbial mineralization of DCE was observed under anaerobic conditions, recovery of 14CO2 did not differ substantially between anaerobic treatments.  相似文献   

12.
A bacterial isolate identified as Xanthomonas sp. proved to be ligninolytic due to its ability to degrade 14C-labeled dehydropolymers of coniferyl alcohol (DHP) and [14C]lignocellulose complexes from corn plants (Zea mays). Several parameters of ligninolysis were evaluated and it was shown that resting cells degrade DHP as sole carbon source. Enhancement of DHP degradation in the presence of ferulic acid or water-soluble fractions of DHP or of dioxane lignin from wheat was demonstrated. It is shown that a dissociation of DHP takes place during incubation in the absence of the bacteria which is reflected in a shift of DHP to lower molecular weight fractions. Bacterial degradation of [14C] DHP results in the release of 14CO2 and in the incorporation of the 14C-label into the biomass of the bacteria, as shown by chemical and biological methods.Abbreviations Bq Becquerel, measure for radioactivity according to SI nomenclature - DHP dehydropolymers of coniferyl alcohol - DMF dimethylformamide - DMSO dimethyl sulfoxide - HPLC high performance liquid chromatography - TCA trichloroacetic acid - THF tetrahydrofuran  相似文献   

13.
The endosymbiotic Chlorella sp. from Paramecium bursaria excretes maltose both in the light and in the dark. Experiments on photosynthetic 14CO2 fixation and 14CO2 pulse-chase experiments show that maltose is synthesized in the light directly from compounds of the Calvin cycle, whereas in the dark it results from starch degradation.  相似文献   

14.
Radioactivity from [1-14C]riboflavin was incorporated into the 5,6-dimethylbenzimidazole moiety of Vitamin B12 in the aerobes Bacillus megaterium, Nocardia rugosa and Streptomyces sp. as well as in the aerotolerant anaerobe Propionibacterium freudenreichii, but not in the anaerobe Eubacterium limosum.As recently published for E. limosum, also in the anaerobe Clostridium barkeri radioactivity from [1-14C]glycine and [2-14C]glycine was found in the 5,6-dimethylbenzimidazole moiety, but not in the corrin moiety. The addition of l-[methyl-14C]methionine to C. barkeri led to the labeling of the corrin moiety and the 5,6-dimethylbenzimidazole moiety, showing that the seven extra methyl groups in the corrin ring as well as the two methyl groups of the base part originate from this precursor.In Clostridium thermoaceticum, forming the vitamin B12 analog 5-methoxybenzimidazolylcobamide, [1-14C]glycine and [2-14C]glycine were also incorporated into the 5-methoxybenzimidazole moiety, but not into the corrin ring.In E. limosum l-[U-14C]glutamate led to the labeling of the corrin ring of vitamin B12, but not of its base moiety.There results together with data from the literature indicate that a common biosynthetic pathway might exist for the corrinoid biosynthesis in aerobic microorganisms, and in those aerotolerant anaerobes like the Propionibacteria, which form the 5,6-dimethylbenzimidazole moiety of vitamin B12 only under aerobic conditions. They also show that this pathway differs from the pathway found in anaerobic bacteria.  相似文献   

15.
Recombinant Mycobacterium sp. strain MR65 carrying dszABCD genes was used for desulfurization of 10-methylbenzo[b]naphtho[2,1-d]thiophene (10-methyl BNT) in the hexadecane phase. The specific activity was 25% of that of dibenzothiophene (DBT). One of two major metabolites of 10-methyl BNT produced by strain MR65 was identified as 1-methoxy-2-(3-methylphenyl)naphthalene by 1H and 13C NMR. The other major metabolite and two minor metabolites were determined as 1-hydroxy-2-(3-methylphenyl)naphthalene, 2-(2-methoxy-3-methylphenyl)naphthalene and 2-(2-hydroxy-3-methylphenyl)naphthalene, respectively, by HPLC and GC-MS. The production ratio of the two desulfurization metabolite isomers was 0.99:0.01, calculated on the basis of peak GC areas. These results indicated that the C-S bond adjacent to the naphthalene skeleton was selectively cleaved to form the two major compounds.  相似文献   

16.
Summary The measurement of lipid phosphate is proposed as an indicator of microbial biomass in marine and estuarine sediments. This relatively simple assay can be performed on fresh, frozen or frozen-lyophilized sediment samples with chloroform methanol extraction and subsequent phosphate determination. The sedimentary lipid phosphate recovery correlates with the extractible ATP and the rate of DNA synthesis. Pulse-chase experiments show active metabolism of the sedimentary phospholipids. The recovery of added 14C-labeled bacterial lipids from sediments is quantitative. Replicate analyses from a single sediment sample gave a standard deviation of 11%. The lipid extract can be fractionated by relatively simple procedures and the plasmalogen, diacyl phospholipid, phosphonolipid and non-hydrolyzable phospholipid content determined. The relative fatty acid composition can be readily determined by gas-liquid chromatography.The lipid composition can be used to define the microbial community structure. For example, the absence of polyenoic fatty acids indicates minimal contamination with benthic micro-eukaryotes. Therefore the high content of plasmalogen phospholipids in these sediments suggests that the anaerobic prokaryotic Clostridia are found in the aerobic sedimentary horizon. This would require anaerobic microhabitats in the aerated zones.  相似文献   

17.
The aerobic polyaromatic hydrocarbon (PAH) degrading microbial communities of two petroleum-impacted Spartina-dominated salt marshes in the New York/New Jersey Harbor were examined using a combination of microbiological, molecular and chemical techniques. Microbial isolation studies resulted in the identification of 48 aromatic hydrocarbon-degrading bacterial strains from both vegetated and non-vegetated marsh sediments. The majority of the isolates were from the genera Paenibacillus and Pseudomonas. Radiotracer studies using 14C-phenanthrene and 14C-pyrene were used to measure the PAH-mineralization activity in salt marsh sediments. The results suggested a trend towards increased PAH mineralization in vegetated sediments relative to non-vegetated sediments. This trend was supported by the enumeration of PAH-degrading bacteria in non-vegetated and vegetated sediment using a Most Probable Numbers (MPN) technique, which demonstrated that PAH-degrading bacteria existed in non-vegetated and vegetated sediments at levels ranging from 102 to 105 cells/g sediment respectively. No difference between microbial communities present in vegetated versus non-vegetated sediments was found using terminal restriction fragment length polymorphism (of the 16S rRNA gene) or phospholipid fatty acid analysis. These studies provide information on the specific members and activity of the PAH-degrading aerobic bacterial communities present in Spartina-dominated salt marshes in the New York/New Jersey Harbor estuary.  相似文献   

18.
The number and diversity of culturable microorganisms involved in sulfur oxidation and sulfate reduction were investigated in the oxidized sediments of gold mine tailings, Kuznetsk Basin, Russia. The sediments had a low pH (2.4–2.8), high SO 4 2? content (up to 22 g/l), and high concentrations of dissolved metals. The arsenic content was as high as 1.9 g/l. Bacterial phylogeny in microcosms was investigated by amplification of 16S rRNA gene fragments with subsequent denaturing gradient gel electrophoresis (DGGE). Spore-forming bacteria Desulfosporosinus were the only bacteria revealed for which the capacity for dissimilatory sulfate reduction is known. Strain Desulfosporosinus sp. DB was obtained in pure culture, and it was phylogenetically remote from other cultured and uncultured members of the genus. No sulfate-reducing members of the Deltaproteobacteria were detected. The Firmicutes members were the most numerous phylotypes in the microcosms, including a separate cluster with the similarity to Pelotomaculum not exceeding 94%. Acidithiobacillus ferrooxidans and A. caldus were found in anaerobic and microaerophilic microcosms. The number of sulfate reducers did not exceed 9.5 × 102 cells/ml.  相似文献   

19.
J. S. Pate  P. Lindblad  C. A. Atkins 《Planta》1988,176(4):461-471
Freshly detached coralloid roots of several cycad species were found to bleed spontaneously from xylem, permitting identification of products of nitrogen transfer from symbiotic organ to host. Structural features relevant to the export of fixed N were described for Macrozamia riedlei (Fisch. ex Gaud.) Gardn. the principal species studied. Citrulline (Cit), glutamine (Gln) and glutamic acid (Glu), the latter usually in a lesser amount, were the principal translocated solutes in Macrozamia (5 spp.), Encephalartos (4 spp.) and Lepidozamia (1 sp.), while Gln and a smaller amount of Glu, but no Cit were present in xylem sap of Bowenia (1 sp.),and Cycas (2 spp.). Time-course studies of 15N enrichment of the different tissue zones and the xylem sap of 15N2-pulse-fed coralloid roots of M. riedlei showed earlier 15N incorporation into Gln than into Cit, and a subsequent net decline in the 15N of Gln of the coralloid-root tissues, whereas Cit labeling continued to increase in inner cortex and stele and in the xylem sap. Hydrolysis of the 15N-labeled Cit and Gln consistently demonstrated much more intense labeling of the respective carbamyl and amide groups than of the other N-atoms. Coralloid roots of M. riedlei pulse-fed 14CO2 in darkness showed 14C labeling of aspartic acid (Asp) and Cit in all tissue zones and of Cit of xylem bleeding sap. Lateral roots and uninfected apogeotropic roots of M. riedlei and M. moorei also incorporated 14CO2 into Cit. The 14C of Cit was restricted to the carbamyl-C. Comparable 15N2 and CO2-feeding studies on corallid roots of Cycas revoluta showed Gln to be the dominant product of N2 fixation, with Asp and alanine as other major 14C-labeled amino compounds, but a total absence of Cit in labeled or unlabeled form.Abbreviations Ala alanine - Asp aspartic acid - Cit citrulline - Gln glutamine - Glu glutamic acid - Orn ornithine  相似文献   

20.
A Mycobacterium sp. isolated from oil-contaminated sediments was previously shown to mineralize 55% of the added naphthalene to carbon dioxide after 7 days of incubation. In this paper, we report the initial steps of the degradation of naphthalene by a Mycobacterium sp. as determined by isolation of metabolites and incorporation of oxygen from 18O2 into the metabolites. The results indicate that naphthalene is initially converted to cis- and trans-1,2-dihydroxy-1,2-dihydronaphthalene by dioxygenase and monooxygenase catalyzed reactions, respectively. The ratio of the cis to trans-naphthalene dihydrodiol isomers was approximately 25:1. Thin layer and high pressure liquid chromatographic and mass spectrometric techniques indicated that besides the cis- and trans-1,2-dihydroxy-1,2-dihydronaphthalene, minor amounts of ring cleavage products salicylate and catechol were also formed. Thus the formation of both cis and trans-naphthalene dihydrodiols by the Mycobacterium sp. is unique. The down-stream reactions to ring cleavage products proceed through analogous dioxygenase reactions previously reported for the bacterial degradation of naphthalene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号