首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the effects of -opioid receptor stimulation onintracellular Ca2+ concentration([Ca2+]i)homeostasis during extracellular acidosis, we determined the effects of-opioid receptor stimulation on[Ca2+]iresponses during extracellular acidosis in isolated single ratventricular myocytes, by a spectrofluorometric method. U-50488H (10-30 µM), a selective -opioid receptor agonist, dosedependently decreased the electrically induced[Ca2+]itransient, which results from the influx ofCa2+ and the subsequentmobilization of Ca2+ from thesarcoplasmic reticulum (SR). U-50488H (30 µM) also increased theresting[Ca2+]iand inhibited the[Ca2+]itransient induced by caffeine, which mobilizesCa2+ from the SR, indicating thatthe effects of the -opioid receptor agonist involved mobilization ofCa2+ from its intracellular poolinto the cytoplasm. The Ca2+responses to 30 µM U-50488H were abolished by 5 µMnor-binaltorphimine, a selective -opioid receptorantagonist, indicating that the event was mediated by the -opioidreceptor. The effects of the agonist on[Ca2+]iand the electrically induced[Ca2+]itransient were significantly attenuated when the extracellular pH(pHe) was loweredto 6.8, which itself reduced intracellular pH(pHi) and increased[Ca2+]i.The inhibitory effects of U-50488H were restored during extracellular acidosis in the presence of 10 µM ethylisopropyl amiloride, a potentNa+/H+exchange blocker, or 0.2 mM Ni2+,a putativeNa+/Ca2+exchange blocker. The observations indicate that acidosismay antagonize the effects of -opioid receptor stimulation viaNa+/H+andNa+/Ca2+exchanges. When glucose at 50 mM, known to activate theNa+/H+exchange, was added, both the resting[Ca2+]iand pHi increased. Interestingly,the effects of U-50488H on [Ca2+]iand the electrically induced[Ca2+]itransient during superfusion with glucose were significantly attenuated; this mimicked the responses during extracellular acidosis. When a high-Ca2+ (3 mM) solutionwas superfused, the resting[Ca2+]iincreased; the increase was abolished by 0.2 mMNi2+, but thepHi remained unchanged. Like theresponses to superfusion with high-concentration glucose andextracellular acidosis, the responses of the[Ca2+]iand electrically induced[Ca2+]itransients to 30 µM U-50488H were also significantly attenuated. Results from the present study demonstrated for the first time thatextracellular acidosis antagonizes the effects of -opioid receptorstimulation on the mobilization ofCa2+ from SR. Activation of bothNa+/H+andNa+/Ca2+exchanges, leading to an elevation of[Ca2+]i,may be responsible for the antagonistic action of extracellular acidosis against -opioid receptor stimulation.

  相似文献   

2.
In the presentstudy, we examined the ability of adenosine 3',5'-cyclicmonophosphate (cAMP) to reduce elevated levels of cytosolicCa2+ concentration([Ca2+]i)in pancreatic -cells.[Ca2+]iand reduced pyridine nucleotide, NAD(P)H, were measured in rat single-cells by fura 2 and autofluorescence microfluorometry. Sustained[Ca2+]ielevation, induced by high KCl (25 mM) at a basal glucose concentration (2.8 mM), was substantially reduced by cAMP-increasing agents, dibutyryl cAMP (DBcAMP, 5 mM), an adenylyl cyclase activatorforskolin (10 µM), and an incretin glucagon-likepeptide-1-(7-36) amide (109 M), as well as byglucose (16.7 mM). The[Ca2+]i-reducingeffects of cAMP were greater at elevated glucose (8.3-16.7 mM)than at basal glucose (2.8 mM). An inhibitor of protein kinase A (PKA),H-89, counteracted[Ca2+]i-reducingeffects of cAMP but not those of glucose. Okadaic acid, a phosphataseinhibitor, at 10-100 nM also reduced sustained [Ca2+]ielevation in a concentration-dependent manner. Glucose, but not DBcAMP,increased NAD(P)H in -cells.[Ca2+]i-reducingeffects of cAMP were inhibited by 0.3 µM thapsigargin, an inhibitorof the endoplasmic reticulum (ER)Ca2+ pump. In contrast,[Ca2+]i-reducingeffects of cAMP were not altered by ryanodine, an ERCa2+-release inhibitor,Na+-free conditions, or diazoxide,an ATP-sensitive K+ channelopener. In conclusion, the cAMP-PKA pathway reduces[Ca2+]ielevation by sequestering Ca2+ inthapsigargin-sensitive stores. This process does not involve, but ispotentiated by, activation of -cell metabolism. Together with theknown[Ca2+]i-increasingaction of cAMP, our results reveal dual regulation of -cell[Ca2+]iby the cAMP-signaling pathway and by a physiological incretin.

  相似文献   

3.
The subcellular spatial and temporal organization ofagonist-induced Ca2+ signals wasinvestigated in single cultured vascular endothelial cells.Extracellular application of ATP initiated a rapid increase ofintracellular Ca2+ concentration([Ca2+]i)in peripheral cytoplasmic processes from where activation propagated asa[Ca2+]iwave toward the central regions of the cell. The average propagation velocity of the[Ca2+]iwave in the peripheral processes was 20-60 µm/s, whereas in thecentral region the wave propagated at <10 µm/s. The time course ofthe recovery of[Ca2+]idepended on the cell geometry. In the peripheral processes (i.e.,regions with a high surface-to-volume ratio)[Ca2+]ideclined monotonically, whereas in the central region[Ca2+]idecreased in an oscillatory fashion. Propagating[Ca2+]iwaves were preceded by small, highly localized[Ca2+]itransients originating from 1- to 3-µm-wide regions. The average amplitude of these elementary events ofCa2+ release was 23 nM, and theunderlying flux of Ca2+ amountedto ~1-2 × 1018mol/s or ~0.3 pA, consistent with aCa2+ flux through a single orsmall number of endoplasmic reticulum Ca2+-release channels.

  相似文献   

4.
The role of Na+/Ca2+ exchange inregulating intracellular Ca2+ concentration([Ca2+]i) in isolated smooth muscle cellsfrom the guinea pig urinary bladder was investigated. Incrementalreduction of extracellular Na+ concentration resulted in agraded rise of [Ca2+]i; 50-100 µMstrophanthidin also increased [Ca2+]i. Asmall outward current accompanied the rise of[Ca2+]i in low-Na+ solutions(17.1 ± 1.8 pA in 29.4 mM Na+). The quantity ofCa2+ influx through the exchanger was estimated from thecharge carried by the outward current and was ~30 times that which isnecessary to account for the rise of [Ca2+]i,after correction was made for intracellular Ca2+ buffering.Ca2+ influx through the exchanger was able to loadintracellular Ca2+ stores. It is concluded that the levelof resting [Ca2+]i is not determined by theexchanger, and under resting conditions (membrane potential 50 to60 mV), there is little net flux through the exchanger. However, asmall rise of intracellular Na+ concentration would besufficient to generate significant net Ca2+ influx.

  相似文献   

5.
The purpose ofthe present study was to determine whether cyclic ADP-ribose (cADPR)acts as a second messenger forCa2+ release through ryanodinereceptor (RyR) channels in tracheal smooth muscle (TSM). Freshlydissociated porcine TSM cells were permeabilized with -escin, andreal-time confocal microscopy was used to examine changes inintracellular Ca2+ concentration([Ca2+]i).cADPR (10 nM-10 µM) induced a dose-dependent increase in [Ca2+]i,which was blocked by the cADPR receptor antagonist 8-amino-cADPR (20 µM) and by the RyR blockers ruthenium red (10 µM) and ryanodine (10 µM), but not by the inositol 1,4,5-trisphosphate receptor blockerheparin (0.5 mg/ml). During steady-state[Ca2+]ioscillations induced by acetylcholine (ACh), addition of 100 nM and 1 µM cADPR increased oscillation frequency and decreased peak-to-troughamplitude. ACh-induced[Ca2+]ioscillations were blocked by 8-amino-cADPR; however, 8-amino-cADPR didnot block the[Ca2+]iresponse to a subsequent exposure to caffeine. These results indicatethat cADPR acts as a second messenger forCa2+ release through RyR channelsin TSM cells and may be necessary for initiating ACh-induced[Ca2+]ioscillations.

  相似文献   

6.
Evidence suggests that 1) ischemia-reperfusion injury is due largely to cytosolic Ca2+ accumulation resulting from functional coupling of Na+/Ca2+ exchange (NCE) with stimulated Na+/H+ exchange (NHE1) and 2) 17-estradiol (E2) stimulates release of NO, which inhibits NHE1. Thus we tested the hypothesis that acute E2 limits myocardial Na+ and therefore Ca2+ accumulation, thereby limiting ischemia-reperfusion injury. NMR was used to measure cytosolic pH (pHi), Na+ (Na), and calcium concentration ([Ca2+]i) in Krebs-Henseleit (KH)-perfused hearts from ovariectomized rats (OVX). Left ventricular developed pressure (LVDP) and lactate dehydrogenase (LDH) release were also measured. Control ischemia-reperfusion was 20 min of baseline perfusion, 40 min of global ischemia, and 40 min of reperfusion. The E2 protocol was identical, except that 1 nM E2 was included in the perfusate before ischemia and during reperfusion. E2 significantly limited the changes in pHi, Na and [Ca2+]i during ischemia (P < 0.05). In control OVX vs. OVX+E2, pHi fell from 6.93 ± 0.03 to 5.98 ± 0.04 vs. 6.96 ± 0.04 to 6.68 ± 0.07; Na rose from 25 ± 6 to 109 ± 14 meq/kg dry wt vs. 25 ± 1 to 76 ± 3; [Ca2+]i changed from 365 ± 69 to 1,248 ± 180 nM vs. 293 ± 66 to 202 ± 64 nM. E2 also improved recovery of LVDP and diminished release of LDH during reperfusion. Effects of E2 were diminished by 1 µM N-nitro-L-arginine methyl ester. Thus the data are consistent with the hypothesis. However, E2 limitation of increases in [Ca2+]i is greater than can be accounted for by the thermodynamic effect of reduced Na accumulation on NCE. myocardial ischemia; Na+/H+ exchange; Na+/Ca2+ exchange; nuclear magnetic resonance; ischemic biology; ion channels/membrane transport; transplantation  相似文献   

7.
Parathyroid hormone (PTH), an 84-amino acid polypeptide, is a major systemic regulator of calcium homeostasis that activates PTH/PTHrP receptors (PTH1Rs) on target cells. Carboxyl fragments of PTH (CPTH), secreted by the parathyroids or generated by PTH proteolysis in the liver, circulate in blood at concentrations much higher than intact PTH-(1–84) but cannot activate PTH1Rs. Receptors specific for CPTH fragments (CPTHRs), distinct from PTH1Rs, are expressed by bone cells, especially osteocytes. Activation of CPTHRs was previously reported to modify intracellular calcium within chondrocytes. To further investigate the mechanism of action of CPTHRs in osteocytes, cytosolic free calcium concentration ([Ca2+]i) was measured in the PTH1R-null osteocytic cell line OC59, which expresses abundant CPTHRs but no PTH1Rs. [Ca2+]i was assessed by single-cell ratiometric microfluorimetry in fura-2-loaded OC59 cells. A rapid and transient increase in [Ca2+]i was observed in OC59 cells in response to the CPTH fragment hPTH-(53–84) (250 nM). No [Ca2+]i signal was observed in COS-7 cells, in which CPTHR binding also cannot be detected. Neither hPTH-(1–34) nor a mutant CPTH analog, [Ala55–57]hPTH-(53–84), that does not to bind to CPTHRs, increased [Ca2+]i in OC59 cells. The [Ca2+]i response to hPTH-(53–84) required the presence of extracellular calcium and was blocked by inhibitors of voltage-dependent calcium channels (VDCCs), including nifedipine (100 nM), -agatoxin IVA (10 nM), and -conotoxin GVIA (100 nM). We conclude that activation of CPTHRs in OC59 osteocytic cells leads to a rapid increase in influx of extracellular calcium, most likely through the opening of VDCCs. calcium influx; osteocytes  相似文献   

8.
The ability to image calciumsignals at subcellular levels within the intact depolarizing heartcould provide valuable information toward a more integratedunderstanding of cardiac function. Accordingly, a system combiningtwo-photon excitation with laser-scanning microscopy was developed tomonitor electrically evoked [Ca2+]itransients in individual cardiomyocytes within noncontracting Langendorff-perfused mouse hearts. [Ca2+]itransients were recorded at depths 100 µm from the epicardial surface with the fluorescent indicators rhod-2 or fura-2 in the presence of the excitation-contraction uncoupler cytochalasin D. Evoked[Ca2+]i transients were highly synchronizedamong neighboring cardiomyocytes. At 1 Hz, the times from 90 to 50%(t90-50%) and from 50 to 10%(t50-10%) of the peak[Ca2+]i were (means ± SE) 73 ± 4 and 126 ± 10 ms, respectively, and at 2 Hz, 62 ± 3 and94 ± 6 ms (n = 19, P < 0.05 vs.1 Hz) in rhod-2-loaded cardiomyocytes.[Ca2+]i decay was markedly slower infura-2-loaded hearts (t90-50% at 1 Hz,128 ± 9 ms and at 2 Hz, 88 ± 5 ms;t50-10% at 1 Hz, 214 ± 18 ms and at2 Hz, 163 ± 7 ms; n = 19, P < 0.05 vs. rhod-2). Fura-2-induced deceleration of[Ca2+]i decline resulted from increasedcytosolic Ca2+ buffering, because the kinetics of rhod-2decay resembled those obtained with fura-2 after incorporation of theCa2+ chelator BAPTA. Propagating calcium waves and[Ca2+]i amplitude alternans were readilydetected in paced hearts. This approach should be of general utility tomonitor the consequences of genetic and/or functional heterogeneity incellular calcium signaling within whole mouse hearts at tissue depthsthat have been inaccessible to single-photon imaging.

  相似文献   

9.
The myoplasmic free Ca2+concentration([Ca2+]i)was measured in intact single fibers from mouse skeletal muscle withthe fluorescent Ca2+ indicatorindo 1. Some fibers were perfused in a solution in which theconcentration of Na+ was reducedfrom 145.4 to 0.4 mM (low-Na+solution) in an attempt to activate reverse-modeNa+/Ca2+exchange (Ca2+ entry in exchangefor Na+ leaving the cell). Undernormal resting conditions, application oflow-Na+ solution only increased[Ca2+]iby 5.8 ± 1.8 nM from a mean resting[Ca2+]iof 42 nM. In other fibers,[Ca2+]iwas elevated by stimulating sarcoplasmic reticulum (SR)Ca2+ release with caffeine (10 mM)and by inhibiting SR Ca2+ uptakewith2,5-di(tert-butyl)-1,4-benzohydroquinone(TBQ; 0.5 µM) in an attempt to activate forward-modeNa+/Ca2+exchange (Ca2+ removal from thecell in exchange for Na+ influx).These two agents caused a large increase in[Ca2+]i,which then declined to a plateau level approximately twice the baseline[Ca2+]iover 20 min. If the cell was allowed to recover between exposures tocaffeine and TBQ in a solution in whichCa2+ had been removed, theincrease in[Ca2+]iduring the second exposure was very low, suggesting thatCa2+ had left the cell during theinitial exposure. Application of caffeine and TBQ to a preparation inlow-Na+ solution produced a large,sustained increase in[Ca2+]iof ~1 µM. However, when cells were exposed to caffeine and TBQ in alow-Na+ solution in whichCa2+ had been removed, a sustainedincrease in[Ca2+]iwas not observed, although[Ca2+]iremained higher and declined slower than in normalNa+ solution. This suggests thatforward-modeNa+/Ca2+exchange contributed to the fall of[Ca2+]iin normal Na+ solution, but whenextracellular Na+ was low, aprolonged elevation of[Ca2+]icould activate reverse-modeNa+/Ca2+exchange. The results provide evidence that skeletal muscle fibers possess aNa+/Ca2+exchange mechanism that becomes active in its forward mode when [Ca2+]iis increased to levels similar to that obtained during contraction.

  相似文献   

10.
Regulation of arterial tone by smooth muscle myosin type II   总被引:1,自引:0,他引:1  
Theinitiation of contractile force in arterial smooth muscle (SM) isbelieved to be regulated by the intracellular Ca2+concentration and SM myosin type II phosphorylation. We tested thehypothesis that SM myosin type II operates as a molecular motor proteinin electromechanical, but not in protein kinase C (PKC)-induced,contraction of small resistance-sized cerebral arteries. We utilized aSM type II myosin heavy chain (MHC) knockout mouse model and measuredarterial wall Ca2+ concentration([Ca2+]i) and the diameter of pressurizedcerebral arteries (30-100 µm) by means of digital fluorescencevideo imaging. Intravasal pressure elevation caused a graded[Ca2+]i increase and constricted cerebralarteries of neonatal wild-type mice by 20-30%. In contrast,intravasal pressure elevation caused a graded increase of[Ca2+]i without constriction in (/)MHC-deficient arteries. KCl (60 mM) induced a further[Ca2+]i increase but failed to inducevasoconstriction of (/) MHC-deficient cerebral arteries. Activationof PKC by phorbol ester (phorbol 12-myristate 13-acetate, 100 nM)induced a strong, sustained constriction of (/) MHC-deficientcerebral arteries without changing [Ca2+]i.These results demonstrate a major role for SM type II myosin in thedevelopment of myogenic tone and Ca2+-dependentconstriction of resistance-sized cerebral arteries. In contrast, thesustained contractile response did not depend on myosin andintracellular Ca2+ but instead depended on PKC. We suggestthat SM myosin type II operates as a molecular motor protein in thedevelopment of myogenic tone but not in pharmacomechanical coupling byPKC in cerebral arteries. Thus PKC-dependent phosphorylation ofcytoskeletal proteins may be responsible for sustained contraction invascular SM.

  相似文献   

11.
Voltage dependence of Ca2+ sparks in intact cerebral arteries   总被引:4,自引:0,他引:4  
Ca2+ sparks have beenpreviously described in isolated smooth muscle cells. Here we presentthe first measurements of local Ca2+ transients("Ca2+ sparks") in an intactsmooth muscle preparation. Ca2+sparks appear to result from the opening of ryanodine-sensitive Ca2+ release (RyR) channels in thesarcoplasmic reticulum (SR). Intracellular Ca2+ concentration([Ca2+]i)was measured in intact cerebral arteries (40-150 µm in diameter) from rats, using the fluorescentCa2+ indicator fluo 3 and a laserscanning confocal microscope. Membrane potential depolarization byelevation of external K+ from 6 to30 mM increased Ca2+ sparkfrequency (4.3-fold) and amplitude (~2-fold) as well as globalarterial wall[Ca2+]i(~1.7-fold). The half time of decay (~50 ms) was not affected bymembrane potential depolarization. Ryanodine (10 µM), which inhibitsRyR channels and Ca2+ sparks inisolated cells, and thapsigargin (100 nM), which indirectly inhibitsRyR channels by blocking the SRCa2+-ATPase, completely inhibitedCa2+ sparks in intact cerebralarteries. Diltiazem, an inhibitor of voltage-dependentCa2+ channels, lowered global[Ca2+]iand Ca2+ spark frequency andamplitude in intact cerebral arteries in a concentration-dependentmanner. The frequency of Ca2+sparks (<1s1 · cell1),even under conditions of steady depolarization, was too low tocontribute significant amounts ofCa2+ to globalCa2+ in intact arteries. Theseresults provide direct evidence that Ca2+ sparks exist in quiescentsmooth muscle cells in intact arteries and that changes of membranepotential that would simulate physiological changes modulate bothCa2+ spark frequency and amplitudein arterial smooth muscle.

  相似文献   

12.
The rat dorsal root ganglion (DRG) Ca2+-sensing receptor (CaR) was stably expressed in-frame as an enhanced green fluorescent protein (EGFP) fusion protein in human embryonic kidney (HEK)293 cells, and is functionally linked to changes in intracellular Ca2+ concentration ([Ca2+]i). RT-PCR analysis indicated the presence of the message for the DRG CaR cDNA. Western blot analysis of membrane proteins showed a doublet of 168–175 and 185 kDa, consistent with immature and mature forms of the CaR.EGFP fusion protein, respectively. Increasing extracellular [Ca2+] ([Ca2+]e) from 0.5 to 1 mM resulted in increases in [Ca2+]i levels, which were blocked by 30 µM 2-aminoethyldiphenyl borate. [Ca2+]e-response studies indicate a Ca2+ sensitivity with an EC50 of 1.75 ± 0.10 mM. NPS R-467 and Gd3+ activated the CaR. When [Ca2+]e was successively raised from 0.25 to 4 mM, peak [Ca2+]i, attained with 0.5 mM, was reduced by 50%. Similar reductions were observed with repeated applications of 10 mM Ca2+, 1 and 10 µM NPS R-467, or 50 and 100 µM Gd3+, indicating desensitization of the response. Furthermore, Ca2+ mobilization increased phosphorylated protein kinase C (PKC) levels in the cells. However, the PKC activator, phorbol myristate acetate did not inhibit CaR-mediated Ca2+ signaling. Rather, a spectrum of PKC inhibitors partially reduced peak responses to Cae2+. Treatment of cells with 100 nM PMA for 24 h, to downregulate PKC, reduced [Ca2+]i transients by 49.9 ± 5.2% (at 1 mM Ca2+) and 40.5 ± 6.5% (at 2 mM Ca2+), compared with controls. The findings suggest involvement of PKC in the pathway for Ca2+ mobilization following CaR activation. desensitization; protein kinase C  相似文献   

13.
We examined the effects of dissolved nitric oxide (NO) gas oncytoplasmic calcium levels ([Ca2+]i) in C6glioma cells under anoxic conditions. The maximum elevation (27 ± 3 nM) of [Ca2+]i was reached at 10 µM NO. Asecond application of NO was ineffective if the first was >0.5 µM.The NO donor diethylamine/NO mimicked the effects of NO. Acute exposureof the cells to low calcium levels was without effect on the NO-evokedresponse. Thapsigargin (TG) increased [Ca2+]iand was less effective if cells were pretreated with NO. Hemoglobin inhibited the effects of NO at a molar ratio of 10:1. 8-Bromo-cGMP waswithout effect on the NO-evoked response. If cells were pretreated withTG or exposed chronically to nominal amounts of calcium, NO decreased[Ca2+]i. The results suggest that C6 gliomacells have two receptors for NO. One receptor (NOA)elevates [Ca2+]i and resides on theendoplasmic reticulum (ER). The other receptor (NOB)decreases [Ca2+]i and resides on theplasmalemma or the ER. The latter receptor dominates when the level ofcalcium within intracellular stores is diminished.

  相似文献   

14.
Thenotion that intracellular Ca2+ (Cai2+)stores play a significant role in the chemoreception process inchemoreceptor cells of the carotid body (CB) appears in the literaturein a recurrent manner. However, the structural identity of theCa2+ stores and their real significance in the function ofchemoreceptor cells are unknown. To assess the functional significanceof Cai2+ stores in chemoreceptor cells, we havemonitored 1) the release of catecholamines (CA) from thecells using an in vitro preparation of intact rabbit CB and2) the intracellular Ca2+ concentration([Ca2+]i) using isolated chemoreceptor cells;both parameters were measured in the absence or the presence of agentsinterfering with the storage of Ca2+. We found thatthreshold [Ca2+]i for high extracellularK+ (Ke+) to elicit a release response is250 nM. Caffeine (10-40 mM), ryanodine (0.5 µM), thapsigargin(0.05-1 µM), and cyclopiazonic acid (10 µM) did not alter thebasal or the stimulus (hypoxia, high Ke+)-inducedrelease of CA. The same agents produced Cai2+transients of amplitude below secretory threshold; ryanodine (0.5 µM), thapsigargin (1 µM), and cyclopiazonic acid (10 µM) did notalter the magnitude or time course of the Cai2+responses elicited by high Ke+. Several potentialactivators of the phospholipase C system (bethanechol, ATP, andbradykinin), and thereby of inositol 1,4,5-trisphosphate receptors,produced minimal or no changes in [Ca2+]i anddid not affect the basal release of CA. It is concluded that, in therabbit CB chemoreceptor cells, Cai2+ stores do not playa significant role in the instant-to-instant chemoreception process.

  相似文献   

15.
We determined the effect of aromatic aminoacid stimulation of the human extracellular Ca2+-sensingreceptor (CaR) on intracellular Ca2+ concentration([Ca2+]i) in single HEK-293 cells. Additionof L-phenylalanine or L-tryptophan (at 5 mM)induced [Ca2+]i oscillations from a restingstate that was quiescent at 1.8 mM extracellular Ca2+concentration ([Ca2+]e). Each[Ca2+]i peak returned to baseline values, andthe average oscillation frequency was ~1 min1 at37°C. Oscillations were not induced or sustained if the[Ca2+]e was reduced to 0.5 mM, even in thecontinued presence of amino acid. Average oscillation frequency inresponse to an increase in [Ca2+]e (from 1.8 to 2.5-5 mM) was much higher (~4 min1) than thatinduced by aromatic amino acids. Oscillations in response to[Ca2+]e were sinusoidal whereas those inducedby amino acids were transient. Thus both amino acids andCa2+, acting through the same CaR, produce oscillatoryincreases in [Ca2+]i, but the resultantoscillation pattern and frequency allow the cell to discriminate whichagonist is bound to the receptor.

  相似文献   

16.
The regulationof intracellular Ca2+ signals in smooth muscle cells andarterial diameter by intravascular pressure was investigated in ratcerebral arteries (~150 µm) using a laser scanning confocal microscope and the fluorescent Ca2+ indicator fluo 3. Elevation of pressure from 10 to 60 mmHg increased Ca2+spark frequency 2.6-fold, Ca2+ wave frequency 1.9-fold, andglobal intracellular Ca2+ concentration([Ca2+]i) 1.4-fold in smooth muscle cells,and constricted arteries. Ryanodine (10 µM), an inhibitor ofryanodine-sensitive Ca2+ release channels, or thapsigargin(100 nM), an inhibitor of the sarcoplasmic reticulumCa2+-ATPase, abolished sparks and waves, elevated global[Ca2+]i, and constricted pressurized (60 mmHg) arteries. Diltiazem (25 µM), a voltage-dependentCa2+ channel (VDCC) blocker, significantly reduced sparks,waves, and global [Ca2+]i, and dilatedpressurized (60 mmHg) arteries. Steady membrane depolarization elevatedCa2+ signaling similar to pressure and increased transientCa2+-sensitive K+ channel current frequencye-fold for ~7 mV, and these effects were prevented by VDCCblockers. Data are consistent with the hypothesis that pressure inducesa steady membrane depolarization that activates VDCCs, leading to anelevation of spark frequency, wave frequency, and global[Ca2+]i. In addition, pressure inducescontraction via an elevation of global[Ca2+]i, whereas the net effect of sparks andwaves, which do not significantly contribute to global[Ca2+]i in arteries pressurized to between 10 and 60 mmHg, is to oppose contraction.

  相似文献   

17.
Regulation of intracellular calcium in human esophageal smooth muscles   总被引:7,自引:0,他引:7  
We have investigated sources ofCa2+ contributing to excitation ofhuman esophageal smooth muscle, using fura 2 to study cytosolic freeCa2+ concentration([Ca2+]i)in dispersed cells and contraction of intact muscles. Acetylcholine (ACh) caused an initial peak rise of[Ca2+]ifollowed by a plateau accompanied by reversible contraction. Removal ofextracellular Ca2+ or addition ofdihydropyridine Ca2+ channelblockers reduced the plateau phase but did not prevent contraction.Caffeine also caused elevation of[Ca2+]iand blocked responses to ACh. Undershoots of[Ca2+]iwere apparent after ACh or caffeine. Blockade of the sarcoplasmic reticular Ca2+-ATPase bycyclopiazonic acid (CPA) reduced the ACh-evoked increase of[Ca2+]iand abolished the undershoot, indicating involvement ofCa2+ stores. When contraction wasstudied in intact muscles, removal ofCa2+ or addition of nifedipinereduced, but did not abolish, carbachol (CCh)-induced contraction.Elevation of extracellular K+caused contraction that was inhibited by nifedipine, although CCh stillelicited contraction. CPA caused contraction and suppressed theCCh-induced contraction, whereas ryanodine reduced CCh-induced contraction. Our studies provide evidence that muscarinic excitation ofhuman esophagus involves both release ofCa2+ from intracellular stores andinflux of Ca2+.

  相似文献   

18.
The biological characteristics of the globular substance, aprecursor of otoconia, are unclear. In the present study, the ATP-induced internal free Ca2+ concentration([Ca2+]i) changes of the globular substanceand the ATP distribution in the vestibular organ were investigatedusing a Ca2+ indicator, fluo 3, and an adeninenucleotide-specific fluorochrome, quinacrine, by means of confocallaser scanning microscopy. [Ca2+]i showed arapid and dose-dependent increase in response to ATP with a 50%effective concentration (EC50) of 16.7 µM. Thisreaction was independent of external Ca2+, indicating thepresence of an internal Ca2+ reservoir. Neither adenosine,,-methylene-ATP, 3'-O-(4-benzoylbenzoyl)-ATP, ADP, norUTP evoked this reaction, whereas 2-methylthio-ATP induced an increaseof [Ca2+]i with an EC50 of 14.4 µM. Moreover, P2 antagonists, reactive blue 2 and suramin, and aphospholipase C inhibitor, U-73122, inhibited the ATP-induced[Ca2+]i increase. These findings indicate thepresence of a P2Y purinoceptor on the globular substance. In addition,granular fluorescence was observed in the quinacrine-stained macularsensory epithelium, indicating the presence of ATP-containing granulesin this tissue. These results suggest that a paracrine mechanisminvolving ATP may exist in the macula and that this mechanism regulatesthe biological behavior of the globular substance.

  相似文献   

19.
Recent studies on the role of nitric oxide (NO) ingastrointestinal smooth muscle have raised the possibility thatNO-stimulated cGMP could, in the absence of cGMP-dependent proteinkinase (PKG) activity, act as aCa2+-mobilizing messenger[K. S. Murthy, K.-M. Zhang, J.-G. Jin, J. T. Grider, and G. M. Makhlouf. Am. J. Physiol. 265 (Gastrointest. Liver Physiol. 28):G660-G671, 1993]. This notion was examined indispersed gastric smooth muscle cells with 8-bromo-cGMP (8-BrcGMP) andwith NO and vasoactive intestinal peptide (VIP), which stimulate endogenous cGMP. In muscle cells treated with cAMP-dependent protein kinase (PKA) and PKG inhibitors (H-89 and KT-5823), 8-BrcGMP (10 µM),NO (1 µM), and VIP (1 µM) stimulated45Ca2+release (21 ± 3 to 30 ± 1% decrease in45Ca2+cell content); Ca2+ releasestimulated by 8-BrcGMP was concentration dependent with anEC50 of 0.4 ± 0.1 µM and athreshold of 10 nM. 8-BrcGMP and NO increased cytosolic freeCa2+ concentration([Ca2+]i)and induced contraction; both responses were abolished after Ca2+ stores were depleted withthapsigargin. With VIP, which normally increases[Ca2+]iby stimulating Ca2+ influx,treatment with PKA and PKG inhibitors caused a further increase in[Ca2+]ithat reverted to control levels in cells pretreated with thapsigargin. Neither Ca2+ release norcontraction induced by cGMP and NO in permeabilized muscle cells wasaffected by heparin or ruthenium red.Ca2+ release induced by maximallyeffective concentrations of cGMP and inositol 1,4,5-trisphosphate(IP3) was additive, independent of which agent was applied first. We conclude that, in the absence ofPKA and PKG activity, cGMP stimulatesCa2+ release from anIP3-insensitive store and that itseffect is additive to that of IP3.

  相似文献   

20.
The effect of sphingosine-1-phosphate (S1P) on large-conductance Ca2+-activated K+ (BKCa) channels was examined in primary cultured human umbilical vein endothelial cells by measuring intracellular Ca2+ concentration ([Ca2+]i), whole cell membrane currents, and single-channel activity. In nystatin-perforated current-clamped cells, S1P hyperpolarized the membrane and simultaneously increased [Ca2+]i. [Ca2+]i and membrane potentials were strongly correlated. In whole cell clamped cells, BKCa currents were activated by increasing [Ca2+]i via cell dialysis with pipette solution, and the activated BKCa currents were further enhanced by S1P. When [Ca2+]i was buffered at 1 µM, the S1P concentration required to evoke half-maximal activation was 403 ± 13 nM. In inside-out patches, when S1P was included in the bath solution, S1P enhanced BKCa channel activity in a reversible manner and shifted the relationship between Ca2+ concentration in the bath solution and the mean open probability to the left. In whole cell clamped cells or inside-out patches loaded with guanosine 5'-O-(2-thiodiphosphate) (GDPS; 1 mM) using a patch pipette, GDPS application or pretreatment of cells with pertussis toxin (100 ng/ml) for 15 h did not affect S1P-induced BKCa current and channel activation. These results suggest that S1P enhances BKCa channel activity by increasing Ca2+ sensitivity. This channel activation hyperpolarizes the membrane and thereby increases Ca2+ influx through Ca2+ entry channels. Inasmuch as S1P activates BKCa channels via a mechanism independent of G protein-coupled receptors, S1P may be a component of the intracellular second messenger that is involved in Ca2+ mobilization in human endothelial cells. sphingolipid metabolites; intracellular second messenger; Ca2+ mobilization  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号