首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two cluster (4Fe-4S) ferredoxin and a rubredoxin have been isolated from the sulfur-reducing bacterium Desulfuromonas acetoxidans. Their amino acid compositions are reported and compared to those of other iron-sulfur proteins. The ferredoxin contains 8 cysteine residues, 8 atoms of iron and 8 atoms of labile sulfur per molecule; its minimum molecular weight is 6163. The protein exhibits an abosrbance ratio of A385/A283 = 0.74. Storage results in a bleaching of the chromophore; the denatured ferredoxin is reconstitutable with iron and sulfide. The instability temperature is 52 degrees C. The rubredoxin does not differ markedly from rubredoxins from other anaerobic bacteria.  相似文献   

2.
The structure of a small rubredoxin from the bacterium Desulfovibrio desulfuricans has been determined and refined at 1.5 A resolution. The hairpin loop containing seven residues in other rubredoxins is missing in this 45 residue molecule, and once that fact was determined by amino acid sequencing studies, refinement progressed smoothly to an R value of 0.093 for all reflections from 5 to 1.5 A resolution. Nearly all of the water molecules in the well-ordered triclinic unit cell have been added to the crystallographic model. As in the other refined rubredoxin models, the Fe-S4 complex is slightly distorted from ideal tetrahedral coordination.  相似文献   

3.
A new type of non-heme iron protein was purified to homogeneity from extracts of Desulfovibrio desulfuricans (ATCC 27774) and Desulfovibrio vulgaris (strain Hildenborough). This protein is a monomer of 16-kDa containing two iron atoms per molecule. The visible spectrum has maxima at 495, 368, and 279 nm and the EPR spectrum of the native form shows resonances at g = 7.7, 5.7, 4.1 and 1.8 characteristic of a high-spin ferric ion (S = 5/2) with E/D = 0.08. M?ssbauer data indicates the presence of two types of iron: an FeS4 site very similar to that found in desulforedoxin from Desulfovibrio gigas and an octahedral coordinated high-spin ferrous site most probably with nitrogen/oxygen-containing ligands. Due to this rather unusual combination of active centers, this novel protein is named desulfoferrodoxin. Based on NH2-terminal amino acid sequence determined so far, the desulfoferrodoxin isolated from D. desulfuricans (ATCC 27774) appears to be a close analogue to a recently discovered gene product from D. vulgaris (Brumlik, M.J., and Voordouw, G. (1989) J. Bacteriol. 171, 49996-50004), which was suggested to be a rubredoxin oxidoreductase. However, reduced pyridine nucleotides failed to reduce the desulforedoxin-like center of this new protein.  相似文献   

4.
The structures of the oxidized and reduced forms of the rubredoxin from the archaebacterium, Pyrococcus furiosus, an organism that grows optimally at 100 degrees C, have been determined by X-ray crystallography to a resolution of 1.8 A. Crystals of this rubredoxin grow in space group P2(1)2(1)2(1) with room temperature cell dimensions a = 34.6 A, b = 35.5 A, and c = 44.4 A. Initial phases were determined by the method of molecular replacement using the oxidized form of the rubredoxin from the mesophilic eubacterium, Clostridium pasteurianum, as a starting model. The oxidized and reduced models of P. furiosus rubredoxin each contain 414 nonhydrogen protein atoms comprising 53 residues. The model of the oxidized form contains 61 solvent H2O oxygen atoms and has been refined with X-PLOR and TNT to a final R = 0.178 with root mean square (rms) deviations from ideality in bond distances and bond angles of 0.014 A and 2.06 degrees, respectively. The model of the reduced form contains 37 solvent H2O oxygen atoms and has been refined to R = 0.193 with rms deviations from ideality in bond lengths of 0.012 A and in bond angles of 1.95 degrees. The overall structure of P. furiosus rubredoxin is similar to the structures of mesophilic rubredoxins, with the exception of a more extensive hydrogen-bonding network in the beta-sheet region and multiple electrostatic interactions (salt bridge, hydrogen bonds) of the Glu 14 side chain with groups on three other residues (the amino-terminal nitrogen of Ala 1; the indole nitrogen of Trp 3; and the amide nitrogen group of Phe 29). The influence of these and other features upon the thermostability of the P. furiosus protein is discussed.  相似文献   

5.
6.
The antitumor antibiotic protein mitomalcin, from the microorganism Streptomyces malayensis, has been purified to apparent homogeneity and crystallized. The crystals belong to space group P2(1)2(1)2(1) and have the following cell parameters: a = 27.2 A, b = 34.1 A, c = 101.7 A, and alpha = beta = gamma = 90 degrees. These crystal properties are extremely similar to crystals of the antitumor protein neocarzinostatin (11.7 kilodaltons [kDa]) from Streptomyces carzinostaticus in spite of differing pH conditions for crystallizing the two proteins and an apparent difference in molecular weight. Gel electrophoresis shows the molecular weight is similar to that of neocarzinostatin. An amino acid composition analysis of mitomalcin indicates that some differences may exist between the two molecules, but a preliminary amino acid sequence analysis of the first 37 residues found no difference in the N-terminal region of the molecule.  相似文献   

7.
A two cluster (4Fe4S) ferredoxin and a rubredoxin have been isolated from the sulfur-reducing bacterium Desulfuromonas acetoxidans. Their amino acid compositions are reported and compared to those of other iron-sulfur proteins.The ferredoxin contains 8 cysteine residues, 8 atoms of iron and 8 atoms of labile sulfur per molecule; its minimum molecular weight is 6163. The protein exhibits an absorbance ratio of A385A283 = 0.74. Storage results in a bleaching of the chromophore; the denatured ferredoxin is reconstitutable with iron and sulfide. The instability temperature is 52°C.The rubredoxin does not differ markedly from rubredoxins from other anaerobic bacteria.  相似文献   

8.
A complete amino acid sequence for the rubredoxin from the photosynthetic bacterium Chlorobium thiosulphatophilum is proposed. The sequence, a single polypeptide chain of 53 amino acids, was deduced from the sequences of peptides obtained by chymotryptic, tryptic, thermolytic or mild acid digestion. The rubredoxin shows a high degree of sequence homology with rubredoxins from non-photosynthetic bacteria, and the evolutionary implications of this are considered.  相似文献   

9.
Different electron carriers of the non-desulfoviridin-containing, sulfate-reducing bacterium Desulfovibrio desulfuricans (Norway strain) have been studied. Two nonheme iron proteins, ferredoxin and rubredoxin, have been purified. This ferredoxin contains four atoms of non-heme iron and acid-labile sulfur and six residues of cysteine per molecule. Its amino acid composition suggests that it is homologous with the other Desulfovibrio ferredoxins. The rubredoxin is also an acidic protein of 6,000 molecular weight and contains one atom of iron and four cysteine residues per molecule. The amino acid composition and molecular weight of the cytochrome c3 from D. desulfuricans (strain Norway 4) are reported. Its spectral properties are very similar to those of the other cytochromes c3 (molecular weight, 13,000) of Desulfovibrio and show that it contains four hemes per molecule. This cytochrome has a very low redox potential and acts as a carrier in the coupling of hydrogenase and thiosulfate reductase in extracts of Desulfovibrio gigas and Desulfovibrio desulfuricans (Norway strain) in contrast to D. gigas cytochrome c3 (molecular weight, 13,000). A comparison of the activities of the cytochrome c3 (molecular weight, 13,000) of D. gigas and that of D. desulfuricans in this reaction suggests that these homologous proteins can have different specificity in the electron transfer chain of these bacteria.  相似文献   

10.
The oxidation of alkanes to alkanols by Pseudomonas oleovorans involves a three-component enzyme system: alkane hydroxylase, rubredoxin and rubredoxin reductase. Alkane hydroxylase and rubredoxin are encoded by the alkBFGHJKL operon, while previous studies indicated that rubredoxin reductase is most likely encoded on the second alk cluster: the alkST operon. In this study we show that alkT encodes the 41 x 10(3) Mr rubredoxin reductase, on the basis of a comparison of the expected amino acid composition of AlkT and the previously established amino acid composition of the purified rubredoxin reductase. The alkT sequence revealed significant similarities between AlkT and several NAD(P)H and FAD-containing reductases and dehydrogenases. All of these enzymes contain two ADP binding sites, which can be recognized by a common beta alpha beta-fold or fingerprint, derived from known structures of cofactor binding enzymes. By means of this amino acid fingerprint we were able to determine that one ADP binding site in rubredoxin reductase (AlkT) is located at the N terminus and is involved in FAD binding, while the second site is located in the middle of the sequence and is involved in the binding of NAD or NADP. In addition, we derived from the sequences of FAD binding reductases a second amino acid fingerprint for FAD binding, and we used this fingerprint to identify a third amino acid sequence in AlkT near the carboxy terminus for binding of the flavin moiety of FAD. On the basis of the known architecture and relative spatial orientations of the NAD and FAD binding sites in related dehydrogenases, a model for part of the tertiary structure of AlkT was developed.  相似文献   

11.
Here we provide insights into the molecular structure of the two-iron 19-kDa rubredoxin (AlkG) of Pseudomonas oleovorans using solution-state nuclear magnetic resonance (NMR) and small-angle X-ray scattering studies. Sequence alignment and biochemical studies have suggested that AlkG comprises two rubredoxin folds connected by a linker region of approximately 70 amino acid residues. The C-terminal domain (C-Rb) of this unusual rubredoxin, together with approximately 35 amino acid residues of the predicted linker region, was expressed in Escherichia coli, purified in the one-iron form and the structure of the cadmium-substituted form determined at high-resolution by NMR spectroscopy. The structure shows that the C-Rb domain is similar in fold to the conventional one-iron rubredoxins from other organisms, whereas the linker region does not have any discernible structure. This tandem "flexible-folded" structure of the polypeptide chain derived for the C-Rb protein was confirmed using solution X-ray scattering methods. X-ray scattering studies of AlkG indicated that the 70-amino acid residue linker forms a structured, yet mobile, polypeptide segment connecting the globular N- and C-terminal domains. The X-ray scattering studies also showed that the N-terminal domain (N-Rb) has a molecular conformation similar to that of C-Rb. The restored molecular shape indicates that the folded N-Rb and C-Rb domains of AlkG are noticeably separated, suggesting some domain movement on complex formation with rubredoxin reductase to allow interdomain electron transfer between the metal centers in AlkG. This study demonstrates the advantage of combining X-ray scattering and NMR methods in structural studies of dynamic, multidomain proteins that are not suited to crystallographic analysis. The study forms a structural foundation for functional studies of the interaction and electron-transfer reactions of AlkG with rubredoxin reductase, also reported herein.  相似文献   

12.
The formal equilibrium reduction potentials of recombinant electron transport protein, rubredoxin (MW = 7500 Da), from both the mesophilic Clostridium pasteurianum (Topt = 37 degrees C) and hyperthermophilic Pyrococcus furiosus (Topt = 95 degrees C) were recorded as a function of pressure and temperature. Measurements were made utilizing a specially designed stainless steel electrochemical cell that easily maintains pressures between 1 and 600 atm and a temperature-controlled cell that maintains temperatures between 4 and 100 degrees C. The reduction potential of P. furiosus rubredoxin was determined to be 31 mV at 25 degrees C and 1 atm, -93 mV at 95 degrees C and 1 atm, and 44 mV at 25 degrees C and 400 atm. Thus, the reduction potential of P. furiosus rubredoxin obtained under standard conditions is likely to be dramatically different from the reduction potential obtained under its normal operating conditions. Thermodynamic parameters associated with electron transfer were determined for both rubredoxins (for C. pasteurianum, DeltaV degrees = -27 mL/mol, DeltaS degrees = -36 cal K-1 mol-1, and DeltaH degrees = -10 kcal/mol, and for P. furiosus, DeltaV degrees = -31 mL/mol, DeltaS degrees = -41 cal K-1 mol-1, and DeltaH degrees = -13 kcal/mol) from its pressure- and temperature-reduction potential profiles. The thermodynamic parameters for electron transfer (DeltaV degrees, DeltaS degrees, and DeltaH degrees ) for both proteins were very similar, which is not surprising considering their structural similarities and sequence homology. Despite the fact that these two proteins exhibit dramatic differences in thermostability, it appears that structural changes that confer dramatic differences in thermostability do not significantly alter electron transfer reactivity. The experimental changes in reduction potential as a function of pressure and temperature were simulated using a continuum dielectric electrostatic model (DELPHI). A reasonable estimate of the protein dielectric constant (epsilonprotein) of 6 for both rubredoxins was determined from these simulations. A discussion is presented regarding the analysis of electrostatic interaction energies of biomolecules through pressure- and temperature-controlled electrochemical studies.  相似文献   

13.
NAD(P)H:rubredoxin oxidoreductase (NROR) has been purified from the hyperthermophilic archaeon Pyrococcus furiosus. The enzyme is exceedingly active in catalyzing the NADPH-dependent reduction of rubredoxin, a small (5.3-kDa) iron-containing redox protein that had previously been purified from this organism. The apparent Vmax at 80 degrees C is 20,000 micromol/min/mg, which corresponds to a kcat/Km value of 300,000 mM(-1) s(-1). The apparent Km values measured at 80 degrees C and pH 8.0 for rubredoxin, NADPH, and NADH were 50, 5, and 34 microM, respectively. The enzyme did not reduce P. furiosus ferredoxin. NROR is a monomer with a molecular mass of 45 kDa and contains one flavin adenine dinucleotide molecule per mole but lacks metals and inorganic sulfide. The possible physiological role of this hyperactive enzyme is discussed.  相似文献   

14.
The molecular structure of an insect fatty-acid-binding protein isolated from Manduca sexta L. has been determined and refined to a nominal resolution of 1.75 A. Crystals used in the investigation were grown from 1.6 M-ammonium sulfate solutions buffered at pH 4.5 with 50 mM-sodium succinate, and belonged to space group P2(1) with unit cell dimensions of a = 27.5 A, b = 71.0 A, c = 28.7 A and beta = 90.8 degrees. An electron density map, phased with four heavy-atom derivatives and calculated to 2.5 A resolution, allowed for complete tracing of the 131 amino acid residue polypeptide chain. Subsequent least-squares refinement of the model reduced the R-factor from 46.0% to 17.3% using all measured X-ray data from 30.0 A to 1.75 A. Approximately 92% of the amino acid residues fall into classical secondary structural elements including ten strands of anti-parallel beta-pleated sheet, two alpha-helices, one type I turn, three type II turns, four type II' turns and one type III turn. As in other fatty-acid-binding proteins, the overall molecular architecture of the insect molecule consists of ten strands of anti-parallel beta-pleated sheet forming two layers that are nearly orthogonal to one another. A helix-turn-helix motif at the N-terminal portion of the protein flanks one side of the up-and-down beta-barrel. The functional group of the fatty acid is within hydrogen-bonding distance of Gln39, Tyr129, Arg127 and a sulfate molecule, while the aliphatic portion of the ligand is surrounded by hydrophobic amino acid residues lining the beta-barrel. The binding of the carboxylic acid portion of the ligand is very similar to that observed in P2 myelin protein and the murine adipocyte lipid-binding protein, but the positioning of the hydrocarbon tail after approximately C6 is completely different.  相似文献   

15.
Carbohydrate Metabolism in Spirochaeta stenostrepta   总被引:11,自引:4,他引:7       下载免费PDF全文
The pathways of carbohydrate metabolism in Spirochaeta stenostrepta, a free-living, strictly anaerobic spirochete, were studied. The organism fermented glucose to ethyl alcohol, acetate, lactate, CO(2), and H(2). Assays of enzymatic activities in cell extracts, and determinations of radioactivity distribution in products formed from (14)C-labeled glucose indicated that S. stenostrepta degraded glucose via the Embden-Meyerhof pathway. The spirochete utilized a clostridial-type clastic reaction to metabolize pyruvate to acetyl-coenzyme A, CO(2), and H(2), without production of formate. Acetyl-coenzyme A was converted to ethyl alcohol by nicotinamide adenine dinucleotide-dependent acetaldehyde and alcohol dehydrogenase activities. Phosphotransacetylase and acetate kinase catalyzed the formation of acetate from acetyl-coenzyme A. Hydrogenase and lactate dehydrogenase activities were detected in cell extracts. A rubredoxin was isolated from cell extracts of S. stenostrepta. Preparations of this rubredoxin stimulated acetyl phosphate formation from pyruvate by diethylaminoethyl cellulose-treated extracts of S. stenostrepta, an indication that rubredoxin may participate in pyruvate cleavage by this spirochete. Nutritional studies showed that S. stenostrepta fermented a variety of carbohydrates, but did not ferment amino acids or other organic acids. An unidentified growth factor present in yeast extract was required by the organism. Exogenous supplements of biotin, riboflavin, and vitamin B(12) were either stimulatory or required for growth.  相似文献   

16.
A ferredoxin and a rubredoxin from Butyribacterium methylotrophicum, which displays a carbonyl-dependent acetyl-coenzyme A synthesis, were purified to electrophoretic homogeneity. The two electron carriers showed absorption spectra similar to those in Clostridium species. The ferredoxin displayed absorption peaks at 280 and 391 nm, while rubredoxin displayed absorption peaks at 279, 382, and 482 nm. Minimum molecular weights calculated from the respective amino acid compositions were 5,727 for ferredoxin and 5,488 for rubredoxin, excluding iron and inorganic sulfur atoms. Both electron carriers were isolated as monomers, according to gel-filtration data. Electron spin resonance analysis revealed that the ferredoxin was a 2[4Fe-4S]-type and that both clusters had a midpoint redox potential value of -410 mV, whereas rubredoxin contained one acid-stable iron and had a redox value of -40 mV. The coupling of these electron carriers to hydrogenase and carbon monoxide dehydrogenase activities was investigated. Rubredoxin showed higher activity towards carbon monoxide dehydrogenase, whereas ferredoxin showed higher activity towards hydrogenase.  相似文献   

17.
The dnaG gene encoding DNA primase has been isolated from chromosomal DNA of Bacillus stearothermophilus and its entire nucleotide sequence determined. The deduced amino acid sequence comprised 597 amino acid residues and the molecular mass was calculated to be 67068 Da. B. stearothermophilus primase was overexpressed in Escherichia coli and purified to homogeneity. The N-terminal 12 kDa zinc-binding domain has been crystallized. The crystals are of the monoclinic space group P21 with cell dimensions a=36 A, b=59 A, c=46 A, beta=91.8 degrees and diffract to 1.7 A resolution.  相似文献   

18.
Rubredoxin and two distinct ferredoxins have been purified from Desulfovibrio africanus. The rubredoxin has a molecular weight of 6000 while the ferredoxins appear to be dimers of identical subunits of approximately 6000 to 7000 molecular weight. Rubredoxin contains one iron atom, no acid-labile sulfide and four cysteine residues per molecule. Its absorbance ratio A278/A490 is 2.23 and its amino acid composition is characterized by the absence of leucine and a preponderance of acidic amino acids. The two ferredoxins, designated I and II, are readily separated on DEAE-cellulose. The amino acid compositions of ferredoxins I and II show them to be different protein species; the greater number of acidic amino acid residues in ferredoxin I than in ferredoxin II appears to account for separation based on electronic charge. Both ferredoxins contain four iron atoms, four acid-labile residues per molecule. Spectra of the two ferredoxins differ from those of ferredoxins of other Desulfovibrio species by exhibiting a pronounced absorption peak at 283 nm consistent with an unusual high content of aromatic residues. The A385/A283 absorbance ratio of ferredoxins I and II are 0.56 and 0.62, respectively. The N-terminal sequencing data of the two ferredoxins clearly indicate that ferredoxins I and II are different protein species. However, the two proteins exhibit a high degree of homology.  相似文献   

19.
Rubrerythrin is a non-heme iron dimeric protein isolated from the sulfate-reducing bacterium Desulfovibrio vulgaris. Each monomer has one mononuclear iron center similar to rubredoxin and one dinuclear metal center similar to hemerythrin or ribonucleotide reductase. The 1.88 A X-ray structure of the "as isolated" molecule and a uranyl heavy atom derivative have been solved by molecular replacement techniques. The resulting model of the native "as isolated" molecule, including 164 water molecules, has been refined giving a final R factor of 0.197 (R(free) = 0.255). The structure has the same general protein fold, domain structure, and dimeric interactions as previously found for rubrerythrin [1, 2], but it also has some interesting undetected differences at the metal centers. The refined model of the protein structure has a cis peptide between residues 78 and 79. The Fe-Cys4 center has a previously undetected strong seventh N-H...S hydrogen bond in addition to the six N-H...S bonds usually found in rubredoxin. The dinuclear metal center has a hexacoordinate Fe atom and a tetracoordinate Zn atom. Each metal is coordinated by a GluXXHis polypeptide chain segment. The Zn atom binds at a site distinctly different from that found in the structure of a diiron rubrerythrin. Difference electron density for the uranyl derivative shows an extremely large peak adjacent to and replacing the Zn atom, indicating that this particular site is capable of binding other atoms. This feature/ability may give rise to some of the confusing activities ascribed to this molecule.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号