首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Goal in pharmaceutical research is achievement of necessary drug concentrations in the target organ, effective treatment with safe delivery of genetic agents, while sparing normal tissue and minimizing side effects. A new “BioShuttle”-delivery system harbouring a cathepsin B cutting site, a nuclear address sequence and a functional peptide was developed and tumor cells were treated. Transport and subcellular activation were determined by confocal laser scanning microscopy permitting the conclusion: BioShuttle-conjugates prove as efficient tools for genetic interventions by selective and topical activation of therapeutic peptide precursors by enzymatic cleavage. As shown here for glioma cells and the cathepsin B cleavable site, living cells can be treated with high specificity and selectivity for diagnostic and therapeutic purposes.  相似文献   

2.
Action of purified human cathepsin B on recombinant single-chain urokinase-type plasminogen activator (pro-uPA) generated enzymatically active two-chain uPA (HMW-uPA), which was indistinguishable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot from plasmin-generated HMW-uPA and from elastase- or thrombin-generated inactive two-chain urokinase-type plasminogen activator. Preincubation of cathepsin B with E-64 (transepoxysuccinyl-L-leucylamino- (4-guanidino)butane, a potent inhibitor for cathepsin B) prior to the addition of pro-uPA prevented the activation of pro-uPA. The cleavage site within the cathepsin B-treated urokinase-type plasminogen activator (uPA) molecule, determined by N-terminal amino acid sequence analysis, is located between Lys158 and Ile159. Pro-uPA is cleaved by cathepsin B at the same peptide bond that is cleaved by plasmin or kallikrein. Binding of cathepsin B-activated pro-uPA to the uPA receptor on U937 cells did not differ from that of enzymatically inactive pro-uPA, indicating an intact receptor-binding region within the growth factor-like domain of the cathepsin B-treated uPA molecule. Not only soluble but also tumor cell receptor-bound pro-uPA could be efficiently cleaved by cathepsin B to generate enzymatically active two-chain uPA. Thus, cathepsin B can substitute for plasmin in the proteolytic activation of pro-uPA to enzymatically active HMW-uPA. In contrast, no significant activation of pro-uPA by cathepsin D was observed. As tumor cells may produce both pro-uPA and cathepsin B, implications for the activation of tumor cell-derived pro-uPA by cellular proteases may be considered.  相似文献   

3.
Equinatoxin II is a pore forming toxin produced by the sea anemone Actinia equina. It is able to kill very unspecifically most cell types by the membrane-perturbing action of an amphiphilic alpha-helix located at its N-terminal. A normally active N-terminal mutant, containing one single cys in the amphiphilic alpha-helix, becomes totally inactive when it is bound to avidin via a biotinylated linker. By choosing, as a linker, a peptide containing a tumor protease cleavage site, we were able to construct an enzymatically activable conjugate which should be selective for tumor cells. The introduced cleavage site was designed in order to be digested by both cathepsin B and matrix metalloproteases (MMPs). We confirmed that this conjugate could be activated in vitro by cathepsin B and MMPs. After having measured the enzymatic activity of fibrosarcoma and breast carcinoma cells, we analyzed the cytotoxic effect of the conjugate on the same lines and on human red blood cells (HRBC) as controls. We found that the conjugate was activated, at least in part, by the tumor cell lines used, whereas it was inactive on HRBC. That the activation process was dependent on the enzymatic action of cathepsin B and MMPs, was indicated by three lines of evidence: (1) binding occurred normally on all type of cells including HRBC which however were insensitive being devoid of enzymes; (2) the cytotoxic effect correlated with the amount of cathepsin B activity expressed by the cells; (3) conjugate activation was reduced by specific inhibitors of cathepsin B and MMPs. These results demonstrate the possibility of tumor cell killing by a pore-forming toxin conjugate specifically activated by tumor proteases.  相似文献   

4.
Increased levels of both the cysteine protease, cathepsin L, and the serine protease, uPA (urokinase-type plasminogen activator), are present in solid tumors and are correlated with malignancy. uPA is released by tumor cells as an inactive single-chain proenzyme (pro-uPA) which has to be activated by proteolytic cleavage. We analyzed in detail the action of the cysteine protease, cathepsin L, on recombinant human pro-uPA. Enzymatic assays, SDS-PAGE and Western blot analysis revealed that cathepsin L is a potent activator of pro-uPA. As determined by N-terminal amino acid sequence analysis, activation of pro-uPA by cathepsin L is achieved by cleavage of the Lys158-Ile159 peptide bond, a common activation site of serine proteases such as plasmin and kallikrein. Similar to cathepsin B (Kobayashi et al., J. Biol. Chem. (1991) 266, 5147-5152) cleavage of pro-uPA by cathepsin L was most effective at acidic pH (molar ratio of cathepsin L to pro-uPA of 1:2,000). Nevertheless, even at pH 7.0, pro-uPA was activated by cathepsin L, although a 10-fold higher concentration of cathepsin L was required. As tumor cells may produce both pro-uPA and cathepsin L, implications for the activation of tumor cell-derived pro-uPA by cathepsin L may be considered. Different pathways of activation of pro-uPA in tumor tissues may coexist: (i) autocatalytic intrinsic activation of pro-uPA; (ii) activation by serine proteases (plasmin, kallikrein, Factor XIIa); and (iii) activation by cysteine proteases (cathepsin B and L).  相似文献   

5.
From the lysosomal cysteine proteinase cathepsin B, isolated from human liver in its two-chain form, monoclinic crystals were obtained which contain two molecules per asymmetric unit. The molecular structure was solved by a combination of Patterson search and heavy atom replacement methods (simultaneously with rat cathepsin B) and refined to a crystallographic R value of 0.164 using X-ray data to 2.15 A resolution. The overall folding pattern of cathepsin B and the arrangement of the active site residues are similar to the related cysteine proteinases papain, actinidin and calotropin DI. 166 alpha-carbon atoms out of 248 defined cathepsin B residues are topologically equivalent (with an r.m.s. deviation of 1.04 A) with alpha-carbon atoms of papain. However, several large insertion loops are accommodated on the molecular surface and modify its properties. The disulphide connectivities recently determined for bovine cathepsin B by chemical means were shown to be correct. Some of the primed subsites are occluded by a novel insertion loop, which seems to favour binding of peptide substrates with two residues carboxy-terminal to the scissile peptide bond; two histidine residues (His110 and His111) in this "occluding loop' provide positively charged anchors for the C-terminal carboxylate group of such polypeptide substrates. These structural features explain the well-known dipeptidyl carboxypeptidase activity of cathepsin B. The other subsites adjacent to the reactive site Cys29 are relatively similar to papain; Glu245 in the S2 subsite favours basic P2-side chains. The above mentioned histidine residues, but also the buried Glu171 might represent the group with a pKa of approximately 5.5 near the active site, which governs endo- and exopeptidase activity. The "occluding loop' does not allow cystatin-like protein inhibitors to bind to cathepsin B as they do to papain, consistent with the reduced affinity of these protein inhibitors for cathepsin B compared with the related plant enzymes.  相似文献   

6.
Proteolytic activation of the fusion protein of the highly pathogenic Nipah virus (NiV F) is a prerequisite for the production of infectious particles and for virus spread via cell-to-cell fusion. Unlike other paramyxoviral fusion proteins, functional NiV F activation requires endocytosis and pH-dependent cleavage at a monobasic cleavage site by endosomal proteases. Using prototype Vero cells, cathepsin L was previously identified to be a cleavage enzyme. Compared to Vero cells, MDCK cells showed substantially higher F cleavage rates in both NiV-infected and NiV F-transfected cells. Surprisingly, this could not be explained either by an increased F endocytosis rate or by elevated cathepsin L activities. On the contrary, MDCK cells did not display any detectable cathepsin L activity. Though we could confirm cathepsin L to be responsible for F activation in Vero cells, inhibitor studies revealed that in MDCK cells, cathepsin B was required for F-protein cleavage and productive replication of pathogenic NiV. Supporting the idea of an efficient F cleavage in early and recycling endosomes of MDCK cells, endocytosed F proteins and cathepsin B colocalized markedly with the endosomal marker proteins early endosomal antigen 1 (EEA-1), Rab4, and Rab11, while NiV F trafficking through late endosomal compartments was not needed for F activation. In summary, this study shows for the first time that endosomal cathepsin B can play a functional role in the activation of highly pathogenic NiV.  相似文献   

7.

Background

Legionella pneumophila (LPN) can cause a lethal infectious disease with a marked inflammatory response in humans. However, the mechanism of this severe inflammation remains poorly understood. Since necrosis is known to induce inflammation, we investigated whether LPN induces necrosis in macrophages. We also analyzed the involvement of lysosomal cathepsin B in LPN-induced cell death.

Methods

The human monocytic cell line THP-1 was infected with LPN, NUL1 strain. MG132-treated cells were used as apoptotic control cells. After infection, the type of cell death was analyzed by using microscopy, LDH release and flow cytometry. As a proinflammatory mediator, high-mobility group box 1 (HMGB-1), was measured. Cathepsin B activity was also measured and the inhibitory effects of cathepsin B on LPN-induced cell death were analyzed.

Results

THP-1 cells after treatment with high dose of LPN showed necrotic features with releasing HMGB-1. This necrosis and the HMGB-1 release were inhibited by a specific lysosomal cathepsin B inhibitor and were characterized by a rapid and high activation of cathepsin B that was not observed in apoptotic control cells. The necrosis was also accompanied by cathepsin B-dependent poly(ADP-ribose) polymerase (PARP) cleavage.

Conclusions

We demonstrate here that L. pneumophila rapidly induces cathepsin B-dependent necrosis in a dose-dependent manner and releases a proinflammatory mediator, HMGB-1, from macrophages. This report describes a novel aspect of the pathogenesis of Legionnaires'' disease and provides a possible therapeutic target for the regulation of inflammation.  相似文献   

8.
9.
Galactosialidosis is a human lysosomal storage disease caused by deficiency in the multifunctional lysosomal protease cathepsin A (also known as protective protein/cathepsin A, PPCA, catA, HPP, and CTSA; EC 3.4.16.5). Previous structural work on the inactive precursor human cathepsin A (zymogen) led to a two-stage model for activation, where proteolysis of a 1.6-kDa excision peptide is followed by a conformational change in a blocking peptide occluding the active site. Here we present evidence for an alternate model of activation of human cathepsin A, needing only cleavage of a 3.3-kDa excision peptide to yield full enzymatic activity, with no conformational change required. We present x-ray crystallographic, mass spectrometric, amino acid sequencing, enzymatic, and cellular data to support the cleavage-only activation model. The results clarify a longstanding question about the mechanism of cathepsin A activation and point to new avenues for the design of mechanism-based inhibitors of the enzyme.  相似文献   

10.
Besides its physiological role in lysosomal protein breakdown, extralysosomal cathepsin B has recently been implicated in apoptotic cell death. Highly specific irreversible cathepsin B inhibitors that are readily cell-permeant should be useful tools to elucidate the effects of cathepsin B in the cytosol. We have covalently functionalised the poorly cell-permeant epoxysuccinyl-based cathepsin B inhibitor [R-Gly-Gly-Leu-(2S,3S)-tEps-Leu-Pro-OH; R=OMe] with the C-terminal heptapeptide segment of penetratin (R=epsilonAhx-Arg-Arg-Nle-Lys-Trp-Lys-Lys-NH2). The high inhibitory potency and selectivity for cathepsin B versus cathepsin L of the parent compound was not affected by the conjugation with the penetratin heptapeptide. The conjugate was shown to efficiently penetrate into MCF-7 cells as an active inhibitor, thereby circumventing an intracellular activation step that is required by other inhibitors, such as the prodrug-like epoxysuccinyl peptides E64d and CA074Me.  相似文献   

11.
12.
Cathepsin C is a cysteine protease required for the activation of several pro-inflammatory serine proteases and, as such, is of interest as a therapeutic target. In cathepsin C-deficient mice and humans, the N-terminal processing and activation of neutrophil elastase, cathepsin G, and proteinase-3 is abolished and is accompanied by a reduction of protein levels. Pharmacologically, the consequence of cathepsin C inhibition on the activation of these serine proteases has not been described, due to the lack of stable and non-toxic inhibitors and the absence of appropriate experimental cell systems. Using novel reversible peptide nitrile inhibitors of cathepsin C, and cell-based assays with U937 and EcoM-G cells, we determined the effects of pharmacological inhibition of cathepsin C on serine protease activity. We show that indirect and complete inhibition of neutrophil elastase, cathepsin G, and proteinase-3 is achievable in intact cells with selective and non-cytotoxic cathepsin C inhibitors, at concentrations approximately 10-fold higher than those required to inhibit purified cathepsin C. The concentration of inhibitor needed to block processing of these three serine proteases was similar, regardless of the cell system used. Importantly, cathepsin C inhibition must be sustained to maintain serine protease inhibition, because removal of the reversible inhibitors resulted in the activation of pro-enzymes in intact cells. These findings demonstrate that near complete inhibition of multiple serine proteases can be achieved with cathepsin C inhibitors and that cathepsin C inhibition represents a viable but challenging approach for the treatment of neutrophil-based inflammatory diseases.  相似文献   

13.
A precursor form of cathepsin B (Mr 45-47 kd) was purified from ascitic fluids of patients with ovarian adenocarcinomas. Following pepsin activation, this precursor produced a 33 kd cathepsin B-like proteinase closely related to lysosomal cathepsin B. A similar activation was found using the 52 kd pro-cathepsin D secreted by the MCF7 human breast cancer cells. This activation was a time, dose and pH dependent process. These results suggest that the 52 kd pro-cathepsin D may be involved in the early steps of the "metastatic cascade", activating pro-cathepsin B in an acidic environment.  相似文献   

14.
The regulated secretory pathway of neurons is the major source of extracellular A beta that accumulates in Alzheimer's disease (AD). Extracellular A beta secreted from that pathway is generated by beta-secretase processing of amyloid precursor protein (APP). Previously, cysteine protease activity was demonstrated as the major beta-secretase activity in regulated secretory vesicles of neuronal chromaffin cells. In this study, the representative cysteine protease activity in these secretory vesicles was purified and identified as cathepsin B by peptide sequencing. Immunoelectron microscopy demonstrated colocalization of cathepsin B with A beta in these vesicles. The selective cathepsin B inhibitor, CA074, blocked the conversion of endogenous APP to A beta in isolated regulated secretory vesicles. In chromaffin cells, CA074Me (a cell permeable form of CA074) reduced by about 50% the extracellular A beta released by the regulated secretory pathway, but CA074Me had no effect on A beta released by the constitutive pathway. Furthermore, CA074Me inhibited processing of APP into the COOH-terminal beta-secretase-like cleavage product. These results provide evidence for cathepsin B as a candidate beta-secretase in regulated secretory vesicles of neuronal chromaffin cells. These findings implicate cathepsin B as beta-secretase in the regulated secretory pathway of brain neurons, suggesting that inhibitors of cathepsin B may be considered as therapeutic agents to reduce A beta in AD.  相似文献   

15.
Psoralens are well-known photosensitizers, and 8-methoxypsoralen and 4,5',8-trimethylpsoralen are widely used in photomedicine as "psoralens plus UVA therapy" (PUVA), in photopheresis, and in sterilization of blood preparations. In an attempt to improve the therapeutic efficiency of PUVA therapy and photopheresis, four poly(ethylene glycol) (PEG)-psoralen conjugates were synthesized to promote tumor targeting by the enhanced permeability and retention (EPR) effect. Peptide linkers were used to exploit specific enzymatic cleavage by lysosomal proteases. A new psoralen, 4-hydroxymethyl-4',8-dimethylpsoralen (6), suitable for polymer conjugation was synthesized. The hydroxy group allowed exploring different strategies for PEG conjugation, and linkages with different stability such ester or urethanes were obtained. PEG (5 kDa) was covalently conjugated to the new psoralen derivative using four different linkages, namely, (i) direct ester bond (7), (ii) ester linkage with a peptide spacer (8), (iii) a carbamic linker (9), and (iv) a carbamic linker with a peptide spacer (12). The stability of these new conjugates was assessed at different pHs, in plasma and following incubation with cathepsin B. Conjugates 7 and 8 were rapidly hydrolyzed in plasma, while 9 was stable in buffer and in the presence of cathepsin B. As expected, only the conjugates containing the peptide linker released the drug in presence of cathepsin B. In vitro evaluation of the cytotoxic activity in the presence and absence of light was carried out in two cell lines (MCF-7 and A375 cells). Conjugates 7 and 8 displayed a similar activity to the free drug (probably due to the low stability of the ester linkage). Interestingly, the conjugates containing the carbamate linkage (9 and 12) were completely inactive in the dark (IC50 > 100 microM in both cell lines). However, antiproliferative activity become apparent after UV irradiation. Conjugate 12 appears to be the most promising for future in vivo evaluation, since it was relatively stable in plasma, which should allow tumor targeting and drug release to occur by cathepsin B-mediated hydrolysis.  相似文献   

16.
We examined by immunocytochemistry the localization of cathepsin B in endocrine cells of rat anterior pituitary lobe, using a monospecific antibody to cathepsin B. By light microscopy, granular immunodeposits for cathepsin B were detected in most endocrine cells of anterior pituitary lobe. Cells immunoreactive for luteinizing hormone (LH) were diffusely immunostained by anti-cathepsin B. By electron microscopy, immunogold particles for cathepsin B were localized in lysosomes of thyrotrophs, somatotrophs, and mammotrophs. In mammotrophs, immunogold particles for cathepsin B were also detected in crinophagic bodies. Double immunostaining co-localized immunogold particles for LH and cathepsin B in secretory granules of gonadotrophs. Immunocytochemistry was also applied to demonstrate localization of renin and prorenin in LH-producing gonadotrophs; immunogold particles for renin were co-localized with those for LH, cathepsin B, or prorenin in their secretory granules. Immunogold particles for prorenin were also co-localized with those for LH or cathepsin B in secretory granules, but prorenin-positive granules appeared less frequently than renin-positive granules. These results suggest that cathepsin B not only plays a role in the protein degradation in lysosomes of anterior pituitary endocrine cells but also participates in the activation of renin in gonadotrophs, as has been demonstrated in secretory granules of juxtaglomerular cells.  相似文献   

17.
Neuropeptide Y (NPY) functions as a peptide neurotransmitter and as a neuroendocrine hormone. The active NPY peptide is generated in secretory vesicles by proteolytic processing of proNPY. Novel findings from this study show that cathepsin L participates as a key proteolytic enzyme for NPY production in secretory vesicles. Notably, NPY levels in cathepsin L knockout (KO) mice were substantially reduced in brain and adrenal medulla by 80% and 90%, respectively. Participation of cathepsin L in producing NPY predicts their colocalization in secretory vesicles, a primary site of NPY production. Indeed, cathepsin L was colocalized with NPY in brain cortical neurons and in chromaffin cells of adrenal medulla, demonstrated by immunofluorescence confocal microscopy. Immunoelectron microscopy confirmed the localization of cathepsin L with NPY in regulated secretory vesicles of chromaffin cells. Functional studies showed that coexpression of proNPY with cathepsin L in neuroendocrine PC12 cells resulted in increased production of NPY. Furthermore , in vitro processing indicated cathepsin L processing of proNPY at paired basic residues. These findings demonstrate a role for cathepsin L in the production of NPY from its proNPY precursor. These studies illustrate the novel biological role of cathepsin L in the production of NPY, a peptide neurotransmitter, and neuroendocrine hormone.  相似文献   

18.
19.
20.
A novel activating peptide was designed and synthesized from V. cholerae hemagglutinine protease (HAP) mediated cleavage site of mouse PAR1. The peptide “PFISED” interacts with PAR1 in a new site which is different from its thrombin mediated conventional activation site and induced a series of new downstream signaling pathways. The peptide showed apoptosis in human and mouse breast (MCF-7 and EAC) and colon (HT29 and CT26) cancer cells where as in the same peptide concentration in normal human breast epithelial cells (MCF-10A), normal human fibroblast cells (MRC-5), normal mouse peritoneal macrophage cells and normal mouse breast and colon tissues did not show any effect. Treatment with this peptide enhanced the survival kinetics of EAC induced mice. The peptide mediated apoptosis was inhibited in presence of PAR1 inhibitor and was significantly reduced in si-PAR1 treated cells that indicate the activating peptide “PFISED” induced PAR1 mediated apoptosis of colon and breast cancer cells. This peptide induced over expression and activation of PAR1 and its downstream MAP kinase and NFκB signaling pathways. These signaling pathways enhanced the cellular ROS level to kill malignant cells. We report a novel pro-apoptotic peptide which can selectively kill malignant cells via its specific target receptor PAR1 which is over expressed in the malignant cells and can be used as a molecular target therapy for cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号