首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Correlated responses to selection for postweaning gain in mice were studied to determine the influence of population size and selection intensity. Correlated traits measured were three-, six- and eight-week body weights, litter size, twelve-day litter weight, proportion infertile matings and two indexes of reproductive performance. In general, the results agreed with observations made on direct response: correlated responses in the body weight traits and litter size increased as (1) selection intensity increased and (2) effective population size increased. Correlated responses in the body weight traits and litter size were positive in the large population size lines (16 pairs), as expected from the positive genetic correlation between these traits and postweaning gain. However, several negative correlated responses were observed at small population sizes (one and two pairs). Within each level of selection intensity, traits generally associated with fitness tended to decline most in the very small populations (one and two pairs) and in the large populations (16 pairs) for apparently different reasons. The fitness decline at the small effective population sizes was attributable to inbreeding depression. In contrast, it was postulated that the fitness decline at the large effective population size was due to selection moving the population mean for body weight and a trait positively correlated genetically with body weight (i.e., percent body fat) away from an optimum.  相似文献   

2.
S. P. Wilson 《Genetics》1974,76(4):823-836
Two selection experiments comparing the relative efficiencies of individual, family, and combination selection were conducted. The expected results for larval weight of Tribolium (h(2) = 0.20) and for pupal weight (h(2) = 0.40) were that combination selection would be a more efficient method than family selection, and that family selection would exceed individual selection. In experiment I, individual selection produced more response (P < 0.05) than did combination or family, which was not in agreement with expectation. There was confounding of inbreeding levels and random drift due to differential effective population sizes in the lines selected by different methods. Experiment II consisted of ten single-generation selection tests. An advantage of this approach is that it eleminates the inherent problems of differential inbreeding levels and differential rates of genetic drift due to unequal population sizes among the methods of selection. There were no statistically significant differences in efficiency among the three methods of selection for both traits. This was contrary to theoretical expectations but does suggest that with traits of 20% h(2) or higher, and where feasible, one may be justified in basing selection decisions on the phenotype of the individual only. Other advantages of single generation testing are that it allows more precise testing of selection theory and unbiased standard errors for estimates of realized heritability.  相似文献   

3.
Summary Replicate lines, each initially with one hundred pairs of parents selected at 50% intensity, were derived from the Canberra strain. In later generations population size was reduced and selection intensity increased. Three lines were selected without irradiation and five with 1000 r X-rays per generation for thirty generations. Selection was continued until generation 66. Long-term responses were similar in unirradiated and irradiated lines, and there was evidence that genes with large effects influenced response patterns in both groups of lines.This work was carried out while B.H. was on leave from the New South Wales Department of Agriculture, and held a Commonwealth Research Studentship. Robin Hall and Tricia Brown provided much appreciated technical assistance, and we are indebted to the Radio-Therapy Unit, Royal Prince Alfred Hospital, for the use of their equipment.  相似文献   

4.
Summary The effect of selection intensity and population size on the response to selection for percent oil in the grain of maize (Zea mays L.) was evaluated in a replicated experiment over ten cycles of selection. An open-pollinated variety, Armel's Reid Yellow Dent, was divided into subpopulations of 6,10 and 50 plants. Selection proportions of 17% and 5% were imposed upon each subpopulation. Selection was based on the percentage of oil in individual kernels as determined by wide-line nuclear magnetic resonance spectroscopy. As expected, total response to selection increased with larger population sizes and selection intensities. The concave shape of the response curves suggested that an appreciable part of the genetic variance can be attributed to additive genes at high initial frequencies, dominance genes at low initial frequencies, or to the generation of negative linkage disequilibrium due to selection. The consistently greater loss of vigor experienced by the more intensely selected populations reflects the enhancement of inbreeding due to artificial selection, an effect that increases with the intensity of selection. The results indicate that combined selection, based on kernels and using within- and amongfamily information, will be more efficient than other conventional selection procedures, including the normal combined scheme where selection is based on plants.Deceased  相似文献   

5.
K. E. Weber 《Genetics》1990,125(3):579-584
The effect of population size on selection response was investigated with replicated selection lines of 40, 200 and 1000 selected parents, using Drosophila melanogaster homozygous for the mutant raised. Selection for increased wing-tip height was carried out for 55 generations, with an average selection intensity of 0.6 standard deviation. The rank order of responses in the seven individual lines was significantly in order of population size, and the variance of response among lines showed a significant effect of population size. The final mean responses (selected - controls, +/- standard errors) in the three treatments, in order of increasing population size, were 8.6 +/- 1.8 mils (three small lines), 15.1 +/- 1.3 mils (two medium lines), and 19.8 +/- 1.5 mils (two large lines). The differences between treatments seem to have emerged too rapidly to be the result of mutations, and are probably due mainly to the utilization of existing variation with greater efficiency by selection in larger populations.  相似文献   

6.
Selection response of a modified recurrent full-sib (FS) selection scheme conducted in two European flint F2 maize (Zea mays L.) populations was re-evaluated. Our objectives were to (1) determine the selection response for per se and testcross performance in both populations and (2) separate genetic effects due to selection from those due to random genetic drift. Modified recurrent FS selection was conducted at three locations using an effective population size N e = 32 and a selection rate of 25% for a selection index, based on grain yield and grain moisture. Recombination was performed according to a pseudo-factorial mating scheme. Selection response was assessed using a population diallel including the source population and advanced selection cycles, as well as testcrosses with unrelatesd inbred line testers and the parental F1 generation. Selection response per cycle was significant for grain yield and grain moisture in both populations. Effects of random genetic drift caused only a small reduction in the selection response. No significant selection response was observed for testcrosses, suggesting that for heterotic traits, such as grain yield, a high frequency of favorable alleles in the elite tester masked the effects of genes segregating in the populations. We conclude that our modified recurrent FS selection is an alternative to other commonly applied intrapopulation recurrent selection schemes, and some of its features may also be useful for increasing the efficiency of interpopulation recurrent selection programs.  相似文献   

7.
E. J. Eisen 《Genetics》1975,79(2):305-323
Long-term response to within full-sib family selection for increased postweaning gain was evaluated in lines having different effective population sizes (Ne) and selection intensities (i). Line designations were I4(4), I8(2), I16(2), M4(4), M8(2) and M16(2), where I and M indicate selection of the top 50% and 25%, respectively; 4, 8 and 16 represent the number of parental pairs per replicate and number of replicates is given in parentheses. Realized within full-sib family heritabilities (hR2) in the first phase of selection (0-14 generations) were larger in 16-pair lines than in 4- and 8-pair lines. In the second phase of selection (>14 generations), hR2 declined significantly (P<.01) in all lines, and only the I16 and M16 lines had hR2 values significantly (P<.01) greater than zero. Realized genetic correlations involving number born, 12-day litter weight, weaning weight and six-week weight tended to decline in the second phase of selection. The I16, M16 and control (C16) replicates were crossed in all combinations at generation 14. Crosses were then selected within litters for high postweaning gain. The hR2 values in the crossbred lines were all larger than those in the second selection phase for M16-1, M16-2 and I16-1, but not for I16-2. Within each Ne level, total response was significantly (P<.01) less for I lines compared with M lines. Total response increased as Ne increased, within each level of i. Relatively small differences in realized i values among Ne lines could not account for this result. The difference in total response among the Ne lines at a given selection intensity may be due to inbreeding depression and a combination of interactions involving "drift" and selection. By crossing replicates of the M lines with the C16 control, the effects of inbreeding depression were removed. Inbreeding depression and genetic drift, as defined herein, were equally important in accounting for differences among Ne lines in total response.  相似文献   

8.
Abstract Despite their importance in evolutionary biology, heritability and the strength of natural selection have rarely been estimated in wild populations of iteroparous species or have usually been limited to one particular event during an organism's lifetime. Using an animal-model restricted maximum likelihood and phenotypic selection models, we estimated quantitative genetic parameters and the strength of lifetime selection on parturition date and litter size at birth in a natural population of North American red squirrels, Tamiasciurus hudsonicus. Litter size at birth and parturition date had low heritabilities ( h2 = 0.15 and 0.16, respectively). We considered potential effects of temporal environmental covariances between phenotypes and fitness and of spatial environmental heterogeneity in estimates of selection. Selection favored early breeders and females that produced litter sizes close to the population average. Stabilizing selection on litter size at birth may occur because of a trade-off between number of offspring produced per litter and offspring survival or a trade-off between a female's fecundity and her future reproductive success and survival.  相似文献   

9.
We have tested the hypothesis that genetic differences among conspecific populations may result in diverse responses to selection, using natural populations of Drosophila melanogaster. Selection for ethanol tolerance in a tube measuring knockdown resistance was imposed on five West Coast populations. In 24 generations the selected lines increased their mean knockdown times, on average, by a factor of 2.7. An initially weak latitudinal cline was steepened by selection. The two southernmost populations showed the same increases in the selected character, but differed consistently in their correlated responses in characters related to ethanol tolerance. This result indicates that the populations responded to selection by different genetic changes. Selection decreased female body weight and increased resistance to acetone, suggesting components of the response unrelated to ethanol metabolism. The Adhs allele was favored by selection in all populations at the onset, but increased in frequency only in the selected lines of the southernmost population. There was a correlation between latitude and Adh frequency changes, suggesting that fitnesses of the Adh alleles were dependent on the genetic background. Genetic background also had a large effect on the loss of fitness due to selection. Genetic drift between replicate lines caused more variation in selection response than initial genetic differences between populations. This result demonstrates the importance of genetic drift in divergence among natural populations undergoing uniform selection, since the effective population sizes approached those of small natural populations. Drift caused greater divergence between selected replicates than control replicates. Implications of this result for the genetic model of selection response are discussed.  相似文献   

10.
In order to investigate the possibility of using the dwarf gene for egg production, two dwarf brown-egg laying lines were selected for 16 generations on average clutch length; one line (L1) was normally feathered and the other (L2) was homozygous for the naked neck gene NA. A control line from the same base population, dwarf and segregating for the NA gene, was maintained during the selection experiment under random mating. The average clutch length was normalized using a Box-Cox transformation. Genetic variability and selection response were estimated either with the mixed model methodology, or with the classical methods for calculating genetic gain, as the deviation from the control line, and the realized heritability, as the ratio of the selection response on cumulative selection differentials. Heritability of average clutch length was estimated to be 0.42 ± 0.02, with a multiple trait animal model, whereas the estimates of the realized heritability were lower, being 0.28 and 0.22 in lines L1 and L2, respectively. REML estimates of heritability were found to decline with generations of selection, suggesting a departure from the infinitesimal model, either because a limited number of genes was involved, or their frequencies were changed. The yearly genetic gains in average clutch length, after normalization, were estimated to be 0.37 ± 0.02 and 0.33 ± 0.04 with the classical methods, 0.46 ± 0.02 and 0.43 ± 0.01 with animal model methodology, for lines L1 and L2 respectively, which represented about 30% of the genetic standard deviation on the transformed scale. Selection response appeared to be faster in line L2, homozygous for the NA gene, but the final cumulated selection response for clutch length was not different between the L1 and L2 lines at generation 16.  相似文献   

11.
Selection based upon testicular diameter adjusted for body weight at 6, 10 and 14 weeks of age was used to produce two lines of sheep, with either high or low testicular size. Ten generations of selection were carried out and the estimate of the realized heritability of the selection criterion was 0.53 +/- 0.01. There were significant positive correlated responses to selection for testicular diameter at 6, 10 and 14 weeks of age, but the correlated responses in body weight at these ages were negative. In mature females, there were significant negative correlated responses to selection in premating body weight in the 1st, 2nd and 3rd breeding season and in the day of the first oestrus in the 2nd breeding season. Litter size per ewe mated had a small positive correlated response to selection in the second breeding season. This latter response appeared to be due to a positive correlated response in fertility, ewes from the High-line having a significantly higher probability of conceiving to a single mating than those from the Low-line. There was no significant correlated response in ovulation rate or litter size per ewe lambing and the genetic correlation between these traits and the selection criterion is likely to be close to zero. This may be due to the adjustment for body weight used, but it is possible that, in any event, body weight in young rams may be a better predictor of female ovulation rate than testicular diameter. These results do not rule out the possibility that testicular size in rams older than those selected would provide a good predictor of genetic merit for female ovulation rate.  相似文献   

12.
A selection experiment on litter size in the pig was carried on for seventeen generations in an Inra experimental herd. The founder population was made up of 10 males and 120 females from the Large White breed. Selection was first performed for ten generations in a closed line, compared to a control line derived from the same founder population. Selection was carried on within sire family on the total number of piglets born in the first two litters of the dam (TB1 + TB2). After ten generations, the selection criterion became dam TB1 only. The control line was then discontinued and a panel of frozen semen from the 11th generation boars was created for later comparisons. The selected line was opened to gilt daughters of hyperprolific boars and sows, at a rate of 1/8 per generation, and the same selection procedure was applied irrespective of the origin of the gilt. During the whole experiment, the number of ova shed (OS) and the number of live embryos (LE) at 30 days in the 3rd pregnancy were recorded. These two parts of the experiment were analysed using REML estimation of genetic parameters and a BLUP-Animal Model in order to estimate the responses to selection. Significant heritabilities for TB1, TB2, OS and LE were obtained, i.e. 0.10, 0.05, 0.43 and 0.19, respectively. Significant common environment variances and covariances were estimated for nearly all traits. Significantly positive BLUP responses per generation were observed from G0 to G17 for TB1 (+0.086), TB2 (+0.078), OS (+0.197) and LE (+0.157). However, the responses were 3- to 4-fold higher in the G12–G17 interval compared to G0–G11, and they were also in fair agreement with previous estimates based on standard least-squares procedures, using the control line and the control frozen semen panel. Since G11, the selection intensity was increased by nearly 80 p. cent compared to the previous generations, and the proportion of hyperprolific ancestry increased up to 65 p. cent in the sows of the last generation. The total genetic gain of about 1.4 piglets at birth per litter could be shared between a gain due to immigration, of about 0.8 piglets per litter, and a within-line selection gain of about 0.6 piglets. Thus by combining selection and immigration in the second part of the experiment, advantage could be taken from both the genetic superiority of the immigrants and the higher internal selection intensity made possible by immigration.  相似文献   

13.
Oil palm (Elaeis guineensis Jacq.) requires 19 years per cycle of phenotypic selection. The use of molecular markers may reduce the generation interval and the cost of oil-palm breeding. Our objectives were to compare, by simulation, the response to phenotypic selection, marker-assisted recurrent selection (MARS), and genomewide selection with small population sizes in oil palm, and assess the efficiency of each method in terms of years and cost per unit gain. Markers significantly associated with the trait were used to calculate the marker scores in MARS, whereas all markers were used (without significance tests) to calculate the marker scores in genomewide selection. Responses to phenotypic selection and genomewide selection were consistently greater than the response to MARS. With population sizes of N = 50 or 70, responses to genomewide selection were 4–25% larger than the corresponding responses to phenotypic selection, depending on the heritability and number of quantitative trait loci. Cost per unit gain was 26–57% lower with genomewide selection than with phenotypic selection when markers cost US $1.50 per data point, and 35–65% lower when markers cost $0.15 per data point. With population sizes of N = 50 or 70, time per unit gain was 11–23 years with genomewide selection and 14–25 years with phenotypic selection. We conclude that for a realistic yet relatively small population size of N = 50 in oil palm, genomewide selection is superior to MARS and phenotypic selection in terms of gain per unit cost and time. Our results should be generally applicable to other tree species that are characterized by long generation intervals, high costs of maintaining breeding plantations, and small population sizes in selection programs.  相似文献   

14.
Habitat fragmentation is considered to be one of the major threats to biological diversity worldwide. To date, however, its consequences have mainly been studied in an ecological context, while little is known about its effects on evolutionary processes. In this study we examined whether habitat fragmentation affects selection on plant phenotypic traits via changes in plant-pollinator interactions, using the self-incompatible perennial herb Phyteuma spicatum. Specifically, we hypothesized that limited pollination service in small or low-density populations leads to increased selection for traits that attract pollinators. We recorded mean seed production per capsule and per plant as a measure of pollination intensity and assessed selection gradients (i.e., trait-fitness relationships) in 16 natural populations of varying size and density over 2 years. Mean seed production was not related to population size or density, except for a marginal significant effect of density on the mean number of seeds per capsule in 1 year. Linear selection for flowering time and synchrony was consistent across populations; relative fitness was higher in earlier flowering plants and in plants flowering synchronously with others. Selection on inflorescence size, however, varied among populations, and linear selection gradients for inflorescence size were negatively related to plant population size and density in 1 year. Selection for increased inflorescence size decreased with increasing population size and density. Contrary to our expectation this appeared not to be related to changes in pollination intensity (mean seed production was not related to population size or density in this year), but was rather likely linked to differences in some other component of the abiotic or biotic environment. In summary, our results show that habitat fragmentation may influence selection on plant phenotypic traits, thereby highlighting potential evolutionary consequences of human-induced environmental change.  相似文献   

15.
Group selection has historically been an important and controversial subject in evolutionary biology. There is now a compelling body of evidence, both theoretical and experimental, that group selection not only can be effective, but can be effective in situations when individual selection is not. However, experiments in which true population-level traits have been shown to evolve in response to group selection are currently limited to two species of flour beetle in the genus Tribolium and RNA viruses. Here we report the results of an experiment wherein we imposed group selection via differential extinction for increased and decreased population size at 6-week intervals, a true population-level trait, in the poeciliid fish Heterandria formosa. In contrast to most other group selection experiments, we observed no evolutionary response after six rounds of group selection in either the up- or down-selected lines. Populational heritability for population size was low, if not actually negative. Our results suggest that group selection via differential extinction may be effective only if population sizes are very small and/or migration rates are low.  相似文献   

16.
Selection on the timing of seedling emergence was investigated in an experimental population of Lychnis flos-cuculi, a perennial hay-meadow species. Seeds obtained from a full diallel cross of 8 genotypes from a field population were sown along an environment gradient that included the parental site. Significant directional selection for early emergence was found and the intensity of selection varied among sites. Emergence time varied significantly among progeny families of different maternal and paternal genotypes. These differences could be attributed to parental effects whereas narrow-sense heritabilities were close to zero. Survivorship until autumn differed among progeny of paternal families. Survivorship of maternal progeny varied among sites. Whereas differences in survival and plant size among individuals from different emergence cohorts persisted over the winter, the significance of these differences among progeny from different parental genotypes disappeared. It is suggested that a response to selection on emergence time might be low since (1) the narrow sense heritability was low, (2) parental genotypes differed in their effect on offspring emergence time when used as female parent or as pollen donor and (3) there was a family x site interaction for survival. Families with relatively early emerging seedlings also had a significantly higher seed weight, emergence percentage, and plant weight although the strength of these among-family correlations varied among sites. It is therefore not likely that simultaneous selection on emergence time and either of these traits would retard a response to selection on emergence time.  相似文献   

17.
K. E. Weber  L. T. Diggins 《Genetics》1990,125(3):585-597
The effect of large population size on selection response was investigated using Drosophila melanogaster, with four "small" lines of 160 selected parents/generation compared to two "large" lines of 1,600 selected parents/generation. All lines were selected under similar conditions at a selection intensity of approximately 0.55 standard deviations, for 65 generations, for increased ethanol vapor resistance (measured in minutes required to become anesthetized). Two unselected control lines of 320 parents/generation were also maintained. A significant effect of population size was found. The final treatment means and standard errors were: 27.91 +/- 1.28 min (two "large" lines); 19.40 +/- 1.54 min (four "small" lines); and 4.98 +/- 0.35 min (two control lines). To estimate the mutation rate for the trait, two isogenic lines of about 400 selected parents were selected for 29 generations. The mean increase in additive genetic variance per generation was 0.0009 times the initial environmental variance of the outbred lines. This is comparable to other reported mutation rates. Mutation can explain part of the difference in evolved resistance between treatments, but it appears that even at rather large population sizes, a large difference in long-term response can be obtained in larger outbred lines, from more complete utilization of the initial genetic variation.  相似文献   

18.
The effectiveness of selection for positive and negative phototactic behavior in populations of Drosophila melanogaster heterozygous for various multiple inversions was compared using the method of realized heritability. Selection in the presence of FM6, SM1 or TM3 alone was as effective as in populations carrying no inversions. However, the presence of FM6 and TM3 together reduced the effectiveness of selection for photopositive behavior and FM6 and SM1 and TM3 restricted the response to selection for negative phototactic behavior. The results are discussed in terms of the organization of genes influencing phototactic behavior in this species.  相似文献   

19.
Summary Directional selection for heavier pupa weight in Tribolium castaneum was practiced for 18 generations in two replicates of an inbred line, each separately maintained in small population cages for more than 90 generations. Mutational variance was estimated in two ways, based on Hill's (1982a) prediction equation for response to directional selection where an equilibrium state between effective population size and variation created by new mutation is assumed. Estimates of mutational variance based on response to selection in a selected population and from a sire-offspring regression analysis in an unselected control population were in strong agreement within each replicate population. Significant differences between the two replicates were observed. Estimates of the ratio of mutational variance to environmental variance ranged from 0.0002 to 0.0012, depending upon the assumptions made about effective population sizes maintained in the two replicate lines. Estimates of realized heritability from the 18 generations of selection were 0.23±0.02 and 0.12±0.02 in the two replicates. The results support the hypothesis that mutation may have played a significant role in supplying useful genetic variation for long-continuing response to selection for this trait in experiments reported earlier.  相似文献   

20.
Selection is recognized to operate on multiple levels. In disease organisms, selection among hosts is thought to provide an important counterbalance to selection for faster growth within hosts. We performed three experiments, each selecting for a divergence in group size in the entomopathogenic nematode, Steinernema carpocapsae. These nematodes infect and kill insect larvae, reproduce inside the host carcass, and emerge as infective juveniles. We imposed selection on group size by selecting among hosts for either high or low numbers of emerging nematodes. Our goal was to determine whether this trait could respond to selection at the group level, and if so, to examine what other traits would evolve as correlated responses. One of the three experiments showed a significant response to group selection. In that experiment, the high-selected treatment consistently produced more emerging nematodes per host than the low-selected treatment. In addition, nematodes were larger and they emerged later from hosts in the low-selected lines. Despite small effective population sizes, the effects of inbreeding were small in this experiment. Thus, selection among hosts can be effective, leading to both a direct evolutionary response at the population level, as well as to correlated responses in populational and individual traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号