首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lungs of two chimpanzees (Pan troglodytes) were examined. The right pulmonary artery runs across the ventral side of the right upper lobe bronchiole and, then across the dorsal side of the right middle lobe bronchiole. Thereafter, it runs between the dorsal bronchiole system and the lateral bronchiole system, along the right bronchus. During its course, it gives off arterial branches which run along each bronchiole. The left pulmonary artery runs across the dorsal side of the left middle lobe bronchiole and then between the dorsal bronchiole system and the lateral bronchiole system. The branches of the pulmonary artery run mainly along the dorsal or lateral side of the bronchiole. The pulmonary veins run mainly along the ventral or medial side of the bronchioles, and between them. Finally, they enter the left atrium with four large veins, i.e. the common trunk of the right upper lobe vein and the right middle lobe vein, right lower lobe pulmonary venous trunk, left middle lobe vein, and left lower lobe pulmonary venous trunk.  相似文献   

2.
The lungs of four white handed gibbons (Hylobates agilis) were examined. The right pulmonary artery runs across the ventral side of the right upper lobe bronchiole, and then traverses the dorsal side of the right middle lobe bronchiole. Thereafter, it runs along the dorso-lateral side of the right bronchus, between the dorsal bronchiole system and the lateral bronchiole system, and gradually follows the dorsal side of the right bronchus. During its course, it gives off arterial branches which run along each bronchiole. The left pulmonary artery runs across the dorsal side of the left middle lobe bronchiole and then along the left bronchus as in the right lung. The branches of the pulmonary artery run mainly along the dorsal or lateral side of the bronchiole, while the pulmonary veins run mainly the medial side of the bronchioles or between them. However, in a few portions, the pulmonary veins run the lateral side of the bronchioles. Finally, they enter the left atrium with four large veins i.e. the common trunk of the right upper lobe vein and right middle lobe vein, right lower lobe pulmonary venous trunk, left middle lobe vein, and left lower lobe pulmonary venous trunk.  相似文献   

3.
The distribution of the pulmonary artery and vein of the orangutan lung was examined. The right pulmonary artery runs obliquely across the ventral side of the right bronchus at the caudally to the right upper lobe bronchiole. It then runs across the dorsal side of the right middle lobe bronchiole. Thereafter it runs obliquely across the dorsal side of the right bronchus, and then along the dorso-medial side of the right bronchus. This course is different from that in other mammals. During its course, it gives off branches which run mainly along the dorsal or lateral side of each bronchiole. The left pulmonary artery runs across the dorsal side of the left middle lobe bronchiole, then along the dorso-lateral side of the left bronchus, giving off branches which run along each bronchiole. The pulmonary veins run mainly the ventral or medial side of, along or between the bronchioles. In the left lung, the left middle lobe vein has two trunks; one enters the left atrium, and the other enters the left lower lobe pulmonary venous trunk. This is also different from that found in most mammals. Finally, the pulmonary veins enter the left atrium with four large veins.  相似文献   

4.
The lungs of three silvered lutongs (Presbytis cristata) were examined. The right and left lungs have the dorsal, lateral, ventral, and medial bronchiole systems, which arise from the corresponding sides of both bronchi, respectively. Bronchioles in the dorsal and lateral bronchiole systems are well developed, whereas those in the ventral and medial bronchiole systems are poorly developed and lack some portions. According to the fundamental structure of bronchial ramifications of the mammalian lung (Nakakuki, 1975, 1980), the right lung consists of the upper, middle, lower, and accessory lobes, whereas the left lung consists of a bilobed middle lobe and a lower lobe, in which the right upper lobe is extremely well developed. The right pulmonary artery runs across the ventral side of the right upper lobe bronchiole, and then across the dorsal side of the right middle lobe bronchiole. Initially it runs along the lateral side of the right bronchus and then gradually comes to run along the dorsal side. During its course, it gives off branches which run mainly along the dorsal or lateral side of the bronchiole. The left pulmonary artery runs across the dorsal side of the left middle lobe bronchiole, and then follows the same course as that in the right lower lobe. The pulmonary veins run medially or ventrally to the bronchioles, and finally enter the left atrium as four or five large veins.  相似文献   

5.
The lobular division, bronchial tree, and blood vessels in lungs of seven squirrel monkeys (Saimiri sciureus) were examined from the viewpoint of comparative anatomy. The right lung of the squirrel monkey consists of the upper, middle, lower, and accessory lobes, whereas the left lung consists of the upper, middle, and lower lobes. These lobes are completely separated by interlobular fissures. In three of seven examples examined the left middle lobe was lacking. The squirrel monkey lung has four bronchiole systems, i.e. dorsal, lateral, ventral, and medial, on both sides. The upper lobes are formed by the first branches of the dorsal bronchiole systems. The middle lobes are formed by the first branches of the lateral bronchiole systems. The remaining bronchioles constitute the lower lobes. In addition to the above lobes, in the right lung, the accessory lobe is present, being formed by the first branch of the ventral bronchiole system. The right pulmonary artery runs across the ventral side of the right upper lobe bronchiole, and then across the dorsal side of the right middle lobe bronchiole. Thereafter, it runs between the dorsal bronchiole and lateral bronchiole systems along the dorso-lateral side of the right bronchus. During its course, the right pulmonary artery gives off the arterial branches which run along each bronchiole. These branches run mainly along the dorsal or lateral side of the bronchioles. In the left lung, the pulmonary artery and its branches run the same course as in the right lung. The pulmonary veins run mainly the ventral or medial side of the bronchioles, and between the bronchioles.  相似文献   

6.
The authors examined the lung of one Diana monkey (Cercopithecus diana). The right lung consists of upper, middle, lower, and accessory lobes, the upper and middle lobes being united dorsally. The accessory and lower lobes are separated from the other lobes by fissures. The left lung consists of a bi-lobed middle lobe and a lower lobe. These lobes are separated by an interlobular fissure. The Diana monkey has dorsal, lateral, ventral, and medial bronchiole systems on either side. The upper lobe is formed by the first bronchiole of the dorsal bronchiole system. The middle lobe is formed by the first bronchiole of the lateral bronchiole system and the accessory lobe is formed by the first bronchiole of the ventral bronchiole system. The remaining bronchioles of the four bronchiole systems constitute the lower lobe. The right pulmonary artery runs across the ventral side of the right upper lobe bronchiole, and then across the dorsal side of the right middle lobe bronchiole. Thereafter, it runs between the dorsal and lateral bronchiole systems, along the dorso-lateral side of the right bronchus. During its course, the right pulmonary artery gives off arterial branches running along the dorsal or lateral side of each bronchiole. The left pulmonary artery runs across the dorsal side of the left middle lobe bronchiole. Thereafter, it follows the same course as in the right lung, giving off arterial branches. The pulmonary veins run along the ventral or medial side of the bronchiole, and between the bronchioles.  相似文献   

7.
The author injected various colored celluloid solutions into the bronchial tree and blood vessels of the lungs of five adult Japanese monkeys (Macaca fuscata) in order to prepare cast specimens. These specimens were investigated from the comparative anatomical viewpoint to determine whether the bronchial ramification theory of the mammalian lung (Nakakuki, 1975, 1980) can be applied to the Japanese monkey lung or not. The bronchioles are arranged stereotaxically like those of other mammalian lungs. The four bronchiole systems, dorsal, ventral, medial, and lateral, arise from both bronchi, respectively, although some bronchioles are lacking. In the right lung, the bronchioles form the upper, middle, accessory, and lower lobes, while in the left lung, the upper and accessory lobes are lacking and bi-lobed middle and lower lobes are formed. In the right lung, the upper lobe is formed by the first branch of the dorsal bronchiole system. The middle lobe is the first branch of the lateral bronchiole system. The accessory lobe is the first branch of the ventral bronchiole system. The lower lobe is formed by the remaining bronchioles of the four bronchiole systems. In the left lung, the middle lobe is formed by the first branch of the lateral bronchiole system. The lower lobe is formed by the remaining bronchioles. Thus, the bronchial ramification theory of the mammalian lung applied well to the Japanese monkey lung. The right pulmonary artery runs across the ventral side of the right upper lobe bronchiole. It then runs along the dorso-lateral side of the right bronchus between the dorsal bronchiole system and the lateral bronchiole system. On its way, it gives off branches of the pulmonary artery which run along the dorsal or lateral side of each bronchiole except in the ventral bronchiole system. In the ventral bronchiole system, the branches run along the ventral side of the bronchioles. The distributions of the pulmonary artery in the left lung are the same as those in the right lung. The pulmonary veins do not always run along the bronchioles. Most of them run on the medial or ventral side of the bronchioles. Some of them run between the pulmonary segments. In the right lung, these pulmonary veins finally form the right upper lobe vein, right middle lobe vein and the right lower lobe pulmonary venous trunk before entering the left atrium. However, the right accessory lobe vein runs on the dorsal side of the bronchiole and pours into the right lower lobe pulmonary venous trunk. In four cases out of the five examples, part of the right lower lobe veins pour into the right middle lobe vein, while the others enter the right lower lobe pulmonary venous trunk. In the left lung, the branches of the pulmonary veins finally form the left middle lobe vein and the left lower lobe pulmonary venous trunk.  相似文献   

8.
The bronchial tree and lobular division of the lungs of four white handed gibbons (Hylobates agilis) were examined from the viewpoint of comparative anatomy, based upon the fundamental structure of the bronchial ramifications of the mammalian lung (Nakakuki, 1975, 1980). The right lung of the white handed gibbon consists of the upper, middle, lower, and accessory lobes, whereas the left lung consists of the middle and lower lobes. Each lobe is separated by the interlobular fissure, on both sides. The right and left lungs have the dorsal bronchiole system, lateral bronchiole system, and ventral bronchiole system. The medial bronchiole system is lacking on both sides. In the right lung, the upper lobe is formed by the first branch of the dorsal bronchiole system. The middle lobe is formed by the first brach of the lateral bronchiole system, and the accessory lobe by the first branch of the ventral bronchiole system. The remaining bronchioles constitute the right lower lobe. In the left lung, the upper lobe bronchiole, which is the first branch of the dorsal bronchiole system, is lacking. Therefore, the middle lobe bronchiole, i.e. the first branch of the lateral bronchiole system, is well developed. The accessory lobe bronchiole, the first branch of the ventral bronchiole system, is also lacking. The remaining bronchioles constitute the left lower lobe. These features were compared with those of other apes and man.  相似文献   

9.
The bronchial ramification in one specimen of gorilla lung was examined from the viewpoint of comparative anatomy, on the basis of the fundamental structure of bronchial ramification in the mammalian lung (Nakakuki, 1975, 1980). The right lung of the gorilla consists of the upper, middle, lower, and accessory lobes. The right lung has the dorsal, lateral, and ventral bronchiole systems, but the medial bronchiole system is lacking. The upper lobe is formed by the first branch of the dorsal bronchiole system. The middle lobe is formed by the first branch of the lateral bronchiole system. The accessory lobe is formed by the first branch of the ventral bronchiole system. The remaining bronchioles constitute the lower lobe. The left lung consists of the middle and lower lobes; the upper and accessory lobes are lacking. The left lung has the dorsal and lateral bronchiole systems, but the ventral and medial bronchiole systems are lacking. The middle lobe is formed by the first branch of the lateral bronchiole system. The remaining bronchioles constitute the lower lobe. The bronchial ramifications of the gorilla lung are rather similar to those of the human lung.  相似文献   

10.
The bronchial ramification and lobular division in lungs of two chimpanzees (Pan troglodytes) were examined from the viewpoint of comparative anatomy, on the basis of the fundamental structure of bronchial ramification of the mammalian lung (Nakakuki, 1975, 1980). The right lung of the chimpanzee consists of the upper, middle, and lower lobes, whereas the left lung consists of the middle and lower lobes. The right and left lungs have the dorsal bronchiole system, lateral bronchiole system, and medial bronchiole system. The ventral bronchiole system is lacking on both sides. The right upper lobe is formed by the first branch of the dorsal bronchiole system. The right middle lobe is formed by the first branch of the lateral bronchiole system, and the right accessory lobe bronchiole is lacking. The remaining bronchioles constitute the right lower lobe. In the left lung, the upper and accessory lobes are lacking. The well developed middle lobe is formed by the first branch of the lateral bronchiole system. The left lower lobe is formed by the remaining bronchioles. Furthermore, these bronchioles are compared with those of the human lung byBoyden (1955).  相似文献   

11.
The vascularization of the telencephalic choroid plexus of the sterlet Acipenser ruthenus, a ganoid fish, was examined by vascular corrosion casting and by light and transmission electron microscopy. The arterial supply is from the dorsal mesencephalic artery via: 1) the ventral choroidal arteries (left and right); 2) the dorsal choroidal arteries (left and right); 3) the caudal choroidal arteries (left and right); 4) the ventral arteries of the dorsal sac; and, from the olfactory arteries, via 5) the rostral choroidal arteries. The venous drainage is mainly through a single main choroidal vein that can take various courses either directly to the anterior cardinal vein or via the middle cerebral vein to the anterior cardinal vein. To a lesser extent, the plexus is drained via the lateral telencephalic veins and the ventral vein of the dorsal sac to the middle cerebral vein. By angioarchitecture and form, the plexus can be subdivided into five distinct parts: the surface network, the median folds, the large lateral folds, the small lateral folds, and the area common to the bottom of the dorsal sac and the telencephalic plexus. Diameters of terminal vessels as measured from vascular corrosion casts and from paraplast, semithin, and ultrathin sections were never less than 10 micron. It is suggested that the different areas in one plexus may have different functions with respect to secretion and absorption of cerebrospinal fluid.  相似文献   

12.
环颈雉胃的血供   总被引:9,自引:1,他引:8  
用血管铸型法和大体解剖学方法对环颈雉胃动脉的起源、分布及胃静脉的回流情况进行了解剖学研究。结果表明,环颈雉的胃动脉均由腹腔动脉分出;腺胃由腺胃背侧动脉和腺胃腹侧动脉营养,腺胃背侧动脉直接起自腹腔动态的左侧,腺胃腹侧动脉起自腹腔动脉左支。腺胃血液的静脉有腺胃前静脉和腺胃后静脉,分别汇入后腔静脉和左肝门静脉。肌胃由肌胃左动脉、肌胃右动脉和肌胃背侧动脉营养,肌胃左动脉起自腹腔动脉的左支;肌胃右动脉起自腹腔动脉的右支;肌胃背侧动脉从腺胃背动脉分支而来。回流肌胃血液的静脉有胃右静脉、胃左静脉和胃腹侧静脉;胃右静脉汇入右肝门静脉,胃左静脉和胃腹侧静脉汇入左肝门静脉。另外腺胃和肌胃的表面缺乏主干动脉间的吻合。  相似文献   

13.
Summary The topographical distribution of the blood vessels in the bed nucleus of the stria terminalis (NIST) has been mapped in rats. Arteries and veins were visualized in red and blue by using a double-ink perfusion technique. Arteries supplying the NIST arise from the anterior cerebral artery directly or through the anterior communicating and interhemispheric arteries. Only a few, dorsal branches derive from the medial cerebral artery through thalamostriatal arteries. According to their terminal branches, NIST arteries can be divided into five groups: medial, ventral, lateral, septal and dorsal, which have only a relatively small overlap in their territories. About 90% of veins from the NIST drain into the major basal veins. Medial branches run into the perioptic and interhemispheric veins, while the ventral branches and the large lateral vein drain directly into the anterior cerebral vein. A small proportion of NIST veins run dorsalward into the vena cerebri magna via thalamostriatal veins.  相似文献   

14.
一雄性灰鹤胃的血液供应   总被引:3,自引:0,他引:3  
用血管铸型法对一只因伤致死的雄性灰鹤胃的血供进行铸型观察,结果显示,灰鹤的胃动脉均由腹腔动脉分出,腺胃由腺胃背侧动脉和腺胃腹侧动脉供应营养,肌胃由胃左动脉、胃右动脉和肌胃背侧动脉供应营养。腺胃的静脉有腺胃腹侧静脉、胃凹腹侧静脉和腺胃背侧静脉,分别经左(腺胃腹侧静脉和胃凹腹侧静脉)、右(腺胃背侧静脉)肝门静脉回流;肌胃的静脉有胃左静脉、胃右静脉和胃背侧静脉,分别经左(胃左静脉)、右(胃右静脉和肌胃背侧静脉)肝门静脉回流。此外本文将灰鹤胃的血供与其它动物的进行了比较。  相似文献   

15.
用光学显微镜对北草蜥(Takydromus septentrionalis)中脑视叶组织学结构进行了观察。视叶分为背侧的顶盖和腹侧的被盖,两者无明显界限。顶盖处灰质和白质交替排列。由表及里,可分为分子层、外灰质层、浅白质层、中灰质层、中白质层、深灰质层、深白质层和室管膜层。被盖处细胞层次不明显。在视叶的前部有横行的纤维将左右视叶联系起来。左右视叶室与中脑水管以及两视叶间的纵沟在视叶的中、后部相通。同时将北草蜥的中脑与其它低等脊椎动物进行了比较,推测北草蜥在进化上处于较低等地位。  相似文献   

16.
报道了中国蛩螽亚科新纪录属和新纪录种,即三岛螽属Tamdaora Gorochov,1998和大三岛螽Tamdaora magnifica Gorochov,1998,并首次描述了该种的雌性。大三岛螽雄性肛上板分为左、右两叶,每叶具1短的上突和1较长的下突,左、右上突基部愈合。雌性产卵瓣背、腹缘光滑,腹瓣稍长于背瓣,端部尖;下生殖板长卵圆形,基缘弧形凹入,侧缘向腹面卷,后缘微凹。  相似文献   

17.
The major canine cardiopulmonary nerves which arise from the middle cervical and stellate ganglia and the vagi course toward the heart in the dorsal mediastinum where they form, at the base of the heart dorsal to the pulmonary artery and aorta, the dorsal mediastinal cardiac nerves. In addition, the left caudal pole and interganglionic nerves project onto the left lateral side of the heart as the left lateral cardiac nerve. These nerves contain afferent and (or) efferent axons which, upon stimulation, modify specific cardiac regions and (or) systemic pressure. In addition, with the exception of the left lateral cardiac nerve, stimulation of each of these nerves produces compound action potentials in the cranial ends of the majority of the major cardiopulmonary nerves demonstrating that axons in each dorsal mediastinal cardiac nerve interconnect with axons in the majority of the cardiopulmonary nerves. Axons in the left lateral cardiac nerve connect primarily with axons in the left caudal pole and left interganglionic nerves. The dorsal mediastinal nerves project distally onto the heart as coronary nerves accompanying the right or left coronary arteries. These innervated the ventricular myocardium which is supplied by their respective vessels. The left lateral cardiac nerve projects directly onto the lateral epicardium of the left ventricle. The dorsal mediastinal and left lateral cardiac nerves are the major sympathetic cardiac nerves. Thus, the cardiac nerves located in the mediastinum at the base of the heart are not simple extensions of cardiopulmonary nerves, but rather have a unique anatomy and function of their own.  相似文献   

18.
OBJECTIVE: To quantify C cells in normal thyroid aspirates. STUDY DESIGN: Smears of 18 glands from patients with no thyroid disease, 8 women and 10 men aged on average 52.8 years, were analyzed. Five samples were aspirated from the upper, middle and lower thirds of each lateral lobe and from the isthmus. Smears were stained with anticalcitonin monoclonal antibody. RESULTS: C cells were detected in all specimens, ranging in number from 3 to 19 per gland, with 53.4% of the cells in the right lobe, 42.8% in the left lobe and 3.7% in the isthmus. The aspirates from the right lobe had 0-13 cells in the upper third, 0-9 in the middle third and 0-3 in the lower third. In the left lobe aspirates there were 0-7 cells in the upper third, 0-6 in the middle third and 0-2 in the lower third. One to two C cells were observed in the isthmus in only four cases. CONCLUSION: It is possible to determine the presence of C cells in normal thyroids and confirm studies conducted on histologic material; the cells were more frequently detected in the middle and upper third and mainly on the right side. They were rare in the isthmus. The search for C cells in thyroid aspirates is of great importance because it permits one to confirm rapidly, precisely and minimally invasively cases suspected of C cell hyperplasia, a preneoplastic condition that precedes the development of medullary carcinoma. In addition, the method shows numerical changes in these cells in such conditions as Hashimoto's thyroiditis and colloid goiter, in which the present results could serve as a control.  相似文献   

19.
Hepatic preparations obtained from 186 newborns, children and mature persons have been studied. In newborns and babies the size of the right and left hepatic lobes are nearly the same. Beginning from an early age, the right hepatic lobe begins to grow, and the oblongatal or oval form of the liver changes into a triangle one. With changes in its size and form, the topography of the hepatic veins changes, too. In children younger than 1 year of age having the oblongatal or oval form of their liver, the diameters of the right, middle and left hepatic veins are nearly equal. In mature persons having the triangle form of the liver, the right hepatic vein is the largest and its diameter is twice as large as that of the left hepatic vein. Additional hepatic veins flowing into the inferior vena cava, are mainly formed by the branches participating in drainage of the right hepatic lobe. In 25 cases there are additional large hepatic veins; they are observed in cases when the right hepatic vein is poorly developed.  相似文献   

20.
Morphometry of cat's pulmonary arterial tree   总被引:1,自引:0,他引:1  
Morphometic data of the pulmonary artery in the cat's right lung are presented. Silicone elastomer casts of cat's right lung were made, and measured, counted and analyzed. The Strahler system is used to describe the branching pattern of the arterial vascular tree. These data are needed for any quantitative approach to the study of the pulmonary circulation. For all the pulmonary blood vessels of the cat lying between the main pulmonary artery and the capillary beds, there are a total of 10 orders of vessels in the right upper lobe, 9 orders of vessels in the right middle lobe and 11 orders of vessels in the right lower lobe. The ratio of the number of branches in successive orders of vessels or the branching ratio, is 3.58. The corresponding average diameter ratio is 1.72, whereas the average length ratio is 1.81.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号