首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of growth conditions on the glutamate transport activity of intact cells and membrane vesicles and on the levels of glutamate-binding protein in wild-type Escherichia coli K-12 CS101 and in two glutamate-utilizing mutants, CS7 and CS2TC, were studied. Growth of CS101 on aspartate as the sole source of carbon or nitrogen resulted in a severalfold increase in glutamate transport activity of intact cells and membrane preparations to levels characteristic of the operator-constitutive mutant CS7. The high glutamate transport activity of mutant CS7 was not depressed further by growth on aspartate. Synthesis of glutamate-binding protein was not enhanced by aspartate in either strain. Mutant CS2TC produces a heat-labile repressor of glutamate permease synthesis and is therefore able to grow on glutamate at 42 C but not at 30 C. CS2TC cells grown in a glycerol-minimal medium at the restrictive temperature (30 C) exhibit low glutamate transport activity. Growth on aspartate at 30 C results in derepressed synthesis of glutamate permease. Cells grown on glycerol at 42 C have high glutamate transport activity. No further derepression is obtained upon growth on aspartate. Growth of CS101 and CS7 in "rich broth" greatly reduces the levels of glutamate-binding protein but does not appreciably affect glutamate transport by whole cells or membrane preparations. The identity of the carrier and the role of the binding protein in glutamate transport are discussed in the light of these findings.  相似文献   

2.
No correlation was found between glutamate decarboxylase (GAD) activity and the ability of Escherichia coli K-12 strains to grow on glutamate. A gene, gad, determining GAD activity maps near gltC, which controls glutamate permease.  相似文献   

3.
4.
The location of the Escherichia coli K-12 genes determining or regulating glutamate transport, and the location of the gene determining glutamate decarboxylase synthesis, were established by conjugation. The ability to grow on glutamate as the sole source of carbon and energy was used to select for glutamate transport recombinants. Two genes determining the ability to grow on glutamate as the sole source of carbon and energy were mapped. One (gltC) is located near mtl (mannitol), and the other (gltH) appears to be located between the gal (galactose) and trp (tryptophan) loci. The glutamate decarboxylase gene (gad) is strongly linked to gltC. The gltC(+) recombinants grow on glutamate much faster and accumulate this amino acid to a greater extent than do the gltH(+) recombinants. The gltH(+) gene functioned only in one female strain (P678), whereas the gltC gene functioned in all the female strains tested (P678, C600, W1).  相似文献   

5.
Y Deguchi  I Yamato    Y Anraku 《Journal of bacteriology》1989,171(3):1314-1319
Two genes encoding distinct glutamate carrier proteins of Escherichia coli B were cloned into an E. coli K-12 strain by using a cosmid vector, pHC79. One of them was the gltS gene coding for a glutamate carrier of an Na+-dependent, binding protein-independent, and glutamate-specific transport system. The content of the glutamate carrier was amplified about 25-fold in the cytoplasmic membranes from a gltS-amplified strain. The gltS gene was located in a 3.2-kilobase EcoRI-MluI fragment, and the gene product was identified as a membrane protein with an apparent Mr of 35,000 in a minicell system. A gene designated gltP was also cloned. The transport activity of the gltP system in cytoplasmic membrane vesicles from a gltP-amplified strain was driven by respiratory substrates and was independent of the concentrations of Na+, K+, and Li+. An uncoupler, carbonylcyanide m-chlorophenylhydrazone, completely inhibited the transport activities of both systems, whereas an ionophore, monensin, inhibited only that of the gltS system. The Kt value for glutamate was 11 microM in the gltP system and 3.5 microM in the gltS system. L-Aspartate inhibited the glutamate transport of the gltP system but not that of the gltS system. Aspartate was taken up actively by membrane vesicles from the gltP-amplified strain, although no aspartate uptake activity was detected in membrane vesicles from a wild-type E. coli strain. These results suggest that gltP is a structural gene for a carrier protein of an Na+-independent, binding protein-independent glutamate-aspartate transport system.  相似文献   

6.
The control mutation that results in a concomitant severalfold increase in the activities of gamma-aminobutyrate-alpha-ketoglutarate transaminase (GSST, EC 2.6.1.19) and succinic semialdehyde dehydrogenase (SSDH, EC 1.2.1.16), leading to the acquisition of the ability to utilize gamma-aminobutyrate (GABA) as the sole source of nitrogen by Escherichia coli K-12 mutants, was mapped by mating and transduction with P1kc. The locus affected, gabC, is approximately 48% co-transduced with the thyA gene, located at min 55 of the E. coli K-12 chromosome. The structural gene of the first enzyme in the GABA pathway, GSST, was mapped by interrupted mating, using one of the GSST-less mutants, DB742, isolated in this work. The mutated locus, gabT, is situated at about min 73 of the E. coli chromosome, close to the gltC gene. Genetic evidence concerning the sensitivity of the enzymes of the GABA pathway to catabolite repression under different physiological conditions suggests that the two structural genes of the GABA regulon do not constitute one operon.  相似文献   

7.
8.
C Yanofsky  V Horn    P Gollnick 《Journal of bacteriology》1991,173(19):6009-6017
Escherichia coli forms three permeases that can transport the amino acid tryptophan: Mtr, AroP, and TnaB. The structural genes for these permeases reside in separate operons that are subject to different mechanisms of regulation. We have exploited the fact that the tryptophanase (tna) operon is induced by tryptophan to infer how tryptophan transport is influenced by the growth medium and by mutations that inactivate each of the permease proteins. In an acid-hydrolyzed casein medium, high levels of tryptophan are ordinarily required to obtain maximum tna operon induction. High levels are necessary because much of the added tryptophan is degraded by tryptophanase. An alternate inducer that is poorly cleaved by tryptophanase, 1-methyltryptophan, induces efficiently at low concentrations in both tna+ strains and tna mutants. In an acid-hydrolyzed casein medium, the TnaB permease is most critical for tryptophan uptake; i.e., only mutations in tnaB reduce tryptophanase induction. However, when 1-methyltryptophan replaces tryptophan as the inducer in this medium, mutations in both mtr and tnaB are required to prevent maximum induction. In this medium, AroP does not contribute to tryptophan uptake. However, in a medium lacking phenylalanine and tyrosine the AroP permease is active in tryptophan transport; under these conditions it is necessary to inactivate the three permeases to eliminate tna operon induction. The Mtr permease is principally responsible for transporting indole, the degradation product of tryptophan produced by tryptophanase action. The TnaB permease is essential for growth on tryptophan as the sole carbon source. When cells with high levels of tryptophanase are transferred to tryptophan-free growth medium, the expression of the tryptophan (trp) operon is elevated. This observation suggests that the tryptophanase present in these cells degrades some of the synthesized tryptophan, thereby creating a mild tryptophan deficiency. Our studies assign roles to the three permeases in tryptophan transport under different physiological conditions.  相似文献   

9.
The spoT gene of Salmonella typhimurium has been identified. Mutations in spoT map between gltC and pyrE at 79 min. The spoT1 mutant has elevated levels of guanosine 5'-diphosphate-3'-diphosphate (ppGpp) during steady-state growth and exhibits a slower than normal decay of ppGpp after reversal of amino acid starvation. The spoT1 mutation elevates his operon expression but is distinct from known his regulatory mutations. Elevated his operon expression in spoT mutants causes resistance to the histidine analogs, 1,2,4-triazole-3-alanine and 3-amino-1,2,4-triazole. These properties of spoT mutants allowed us to identify and characterize additional spoT mutants. Approximately 40% of these mutants are temperature sensitive for growth on minimal medium, suggesting that the spoT function is essential or that excessive accumulation of ppGpp is lethal.  相似文献   

10.
The cls gene responsible for cardiolipin synthesis in Escherichia coli K-12 was cloned in a 5-kilobase-pair DNA fragment inserted in a mini-F vector, pML31, and then subcloned into a 2.0-kilobase-pair fragment inserted in pBR322. The initial selection of the gene was accomplished in a cls pss-1 double mutant that had lesions in both cardiolipin and phosphatidylserine synthases and required either the cls or the pss gene product for normal growth at 42 degrees C in a broth medium, NBY, supplemented with 200 mM sucrose. The cloned gene was identified as the cls gene by the recovery and amplification of both cardiolipin and cardiolipin synthase in a cls mutant as well as by the integration of a pBR322 derivative into its genetic locus at 27 min on the chromosome of a polA1 mutant. The maxicell analysis indicated that a protein of molecular weight 46,000 is the gene product. The cls gene is thus most likely the structural gene coding for cardiolipin synthase. Hybrid plasmids of high copy numbers containing the cls gene were growth inhibitory to pss-I mutants under the above selective conditions, whereas they inhibited neither the growth of pss-I mutants at 30 degrees C nor that of pss+ strains at any temperature. Amplification of cardiolipin synthase activity was observed, but was not proportional to the probable gene dosage (the enzyme activity was at most 10 times that in wild-type cells), and cardiolipin synthesis in vivo was at the maximum 1.5 times that in wild-type strains, implying the presence in E. coli cells of a mechanism that avoids cardiolipin overproduction, which is possibly disadvantageous to proper membrane functions.  相似文献   

11.
Examination of the ilvF locus at 54 min on the Escherichia coli K-12 chromosome revealed that it is a cryptic gene for expression of a valine-resistant acetohydroxy acid synthase (acetolactate synthase; EC 4.1.3.18) distinct from previously reported isozymes. A spontaneous mutation, ilvF663, yielded IlvF+ enzyme activity that was multivalently repressed by all three branched-chain amino acids, was completely insensitive to feedback inhibition, was highly stable at elevated temperatures, and expressed optimal activity at 50 degrees C. The IlvF+ enzyme activity was expressed in strains in which isozyme II was inactive because of the ilvG frameshift in the wild-type strain K-12 and isozymes I and III were inactivated by point mutations or deletions. Tn5 insertional mutagenesis yielded two IlvF- mutants, with the insertion in ilvF663 in each case. These observations suggest that the ilvF663 locus may be a coding region for a unique acetohydroxy acid synthase activity.  相似文献   

12.
L-Homocysteic acid is toxic to Escherichia coli K12. Sensitivity to this compound is higher in cells which can utilize glutamate as sole carbon source via the Na+-dependent glutamate transport system. Such cells become resistant by mutation at the gltS locus. Sensitivity of both wild-type and glutamate-utilizing strains is greater if cells are growing on acetate as compared with glucose as major carbon source.  相似文献   

13.
K Miki  E C Lin 《Journal of bacteriology》1980,143(3):1436-1443
Strains of Escherichia coli K-12 deleted in the native lac operon and bearing both a wild-type glpT operon encoding for sn-glycerol 3-phosphate (G3P) transport and a hybrid operon in which glpT operator and promoter regions are fused to the lacZ gene were constructed. In strains with such a hybrid operon, beta-galactosidase and beta-galactoside permease become inducible by G3P. In these mutants the function and maturation of the glpT-coded proteins should be distinguishable from the level of gene expression, since the beta-galactosidase activity can serve as an index of the latter. With the aid of such mutants, it was shown that: (i) the expressions of the two neighboring operons, glpT and glpA (encoding anaerobic G3P dehydrogenase), are not coordinate; (ii) upon induction, the appearance of the cytoplasmic beta-galactosidase activity preceded that of methyl-beta-D-thiogalactoside transport activity (requiring only a cytoplasmic membrane protein) by about 4 min and that of G3P transport activity (requiring both a cytoplasmic membrane protein and a periplasmic protein) by about 9 min; and (iii) when cells grown at several temperatures from 24 to 42 degrees C were measured for G3P transport activity at 30 degrees C, the activity increased with the growth temperature, indicating that, within the range studied, the rate of transport increases with the fluidity of membrane phospholipids.  相似文献   

14.
Mutants of Neurospora resistant to chromate were selected and all were found to map at a single genetic locus designated as cys-13. The chromate-resistant mutants grow at a wild-type rate on minimal media but are partially deficient in the transport of inorganic sulfate, especially during the conidial stage. An unlinked mutant, cys-14, is sensitive to chromate but transports sulfate during the mycelial stage at only 25% of the wild-type rate; cys-14 also grows at a fully wild-type rate on minimal media. The double-mutant strain, cys-13;cys-14, cannot utilize inorganic sulfate for growth and completely lacks the capacity to transport this anion. The only biochemical lesion that has been detected for the double-mutant strain is its loss in capacity for sulfate transport. Neurospora appears to possess two distinct sulfate permease species encoded by separate genetic loci. The transport system (permease I) encoded by cys-13 predominates in the conidial stage and is replaced by sulfate permease II, encoded by the cys-14 locus, during outgrowth into the mycelial phase. The relationship of these new mutants to cys-3, a regulatory gene that appears to control their expression, is discussed.  相似文献   

15.
A mutant strain (ttr-3) of Escherichia coli was originally isolated as a strain resistant to tributyltin exhibiting temperature-sensitive depressions of growth and ATP synthesis on succinate plates at 42 degrees C. The ttr gene was mapped between the pyrE and dnaA genes (in the 82-83 min region) on the chromosome by P1-transduction experiments. Comparison of proline transport and oxygen uptake by membrane vesicles of the wild-type transductant and the mutant (ttr-3) transductant showed that membrane vesicles of the mutant exhibited temperature-sensitive decrease of proline transport and increase of oxygen uptake at the restrictive temperature (42 degrees C), compatible with depression of growth of the mutant at this temperature. Therefore, the ttr gene seems to code for some factor involved in the respiratory chain that is present in the inner membrane of Escherichia coli.  相似文献   

16.
Six different temperature-sensitive (ts) mutants have been isolated which have parental beta-galactoside permease levels at low temperatures but have decreased permease levels when grown at high temperatures. These mutants were derived from Escherichia coli ML308 (lacI(-)Y(+)Z(+)A(+)). After N-methyl-N'-nitro-N'-nitro-soguanidine mutagenesis, ampicillin was used to select for cells unable to grow on low lactose concentrations at 42 C. Temperature-sensitive mutants were assayed for galactoside permease activity after growth in casein hydrolysate medium at 25 or 42 C by measuring both radioactive methylthio-beta-d-galactoside uptake and in vivo o-nitrophenyl-beta-d-galactoside hydrolysis. The six conditional isolates have decreased levels of galactoside permease which are correlated with decreased growth rates at elevated temperatures. The low permease levels are not due to a temperature labile lacY gene product but rather to a temperature labile synthesis rate of functional permease. Some of the mutants exhibit a ts increase in permeability as shown by the increased leakage of intracellular beta-galactosidase and by the increased rate of in vivo o-nitrophenyl-beta-d-galactoside hydrolysis via the nonpermease mediated entry mechanism. Preliminary evidence indicates that transport in general is decreased in these mutants, yet there is some specificity in the mutational lesion since glucoside transport is unaffected. All these observations suggest that these mutants have ts alterations in membrane synthesis which results in pleiotropic effects on various membrane functions.  相似文献   

17.
18.
We describe a transposon insertion that reduces the efficiency of homologous recombination and DNA repair in Escherichia coli. The insertion, rec-258, was located between pyrE and dgo at min 82.1 on the current linkage map. On the basis of linkage to pyrE and complementation studies with the cloned rec+ gene, rec-258 was identified as an allele of the recG locus first reported by Storm et al. (P. K. Storm, W. P. M. Hoekstra, P. G. De Haan, and C. Verhoef, Mutat. Res. 13:9-17, 1971). The recG258 mutation confers sensitivity to mitomycin C and UV light and a 3- to 10-fold deficiency in conjugational recombination in wild-type, recB recC sbcA, and recB recC sbcB sbcC genetic backgrounds. It does not appear to affect plasmid recombination in the wild-type. A recG258 single mutant is also sensitive to ionizing radiation. The SOS response is induced normally, although the basal level of expression is elevated two- to threefold. Further genetic studies revealed that recB recG and recG recJ double mutants are much more sensitive to UV light than the respective single mutants in each case. However, no synergistic interactions were discovered between recG258 and mutations in recF, recN, or recQ. It is concluded that recG does not fall within any of the accepted groups of genes that affect recombination and DNA repair.  相似文献   

19.
The function of GLN3, a GATA factor encoding gene, in nitrogen metabolism of Candida albicans was examined. GLN3 null mutants had reduced growth rates on multiple nitrogen sources. More severe growth defects were observed in mutants lacking both GLN3 and GAT1, a second GATA factor gene. GLN3 was an activator of two genes involved in ammonium assimilation, GDH3, encoding NADP-dependent glutamate dehydrogenase, and MEP2, which encodes an ammonium permease. GAT1 contributed to MEP2 expression, but not that of GDH3. A putative general amino acid permease gene, GAP2, was also activated by both GLN3 and GAT1, but activation by GLN3 was nitrogen source dependent. GLN3 was constitutively expressed, but GAT1 expression varied with nitrogen source and was reduced 2- to 3-fold in gln3 mutants. Both gln3 and gat1 mutants exhibited reduced sensitivity to rapamycin, suggesting they function downstream of TOR kinase. Hyphae formation by gln3 and gat1 mutants differed in relation to nitrogen source. The gln3 mutants formed hyphae on several nitrogen sources, but not ammonium or urea, suggesting a defect in ammonium assimilation. Virulence of gln3 mutants was reduced in a murine model of disseminated disease. We conclude that GLN3 has a broad role in nitrogen metabolism, partially overlapping, but distinct from that of GAT1, and that its function is important for the ability of C. albicans to survive within the host environment.  相似文献   

20.
The function of GLN3, a GATA factor encoding gene, in nitrogen metabolism of Candida albicans was examined. GLN3 null mutants had reduced growth rates on multiple nitrogen sources. More severe growth defects were observed in mutants lacking both GLN3 and GAT1, a second GATA factor gene. GLN3 was an activator of two genes involved in ammonium assimilation, GDH3, encoding NADP-dependent glutamate dehydrogenase, and MEP2, which encodes an ammonium permease. GAT1 contributed to MEP2 expression, but not that of GDH3. A putative general amino acid permease gene, GAP2, was also activated by both GLN3 and GAT1, but activation by GLN3 was nitrogen source dependent. GLN3 was constitutively expressed, but GAT1 expression varied with nitrogen source and was reduced 2- to 3-fold in gln3 mutants. Both gln3 and gat1 mutants exhibited reduced sensitivity to rapamycin, suggesting they function downstream of TOR kinase. Hyphae formation by gln3 and gat1 mutants differed in relation to nitrogen source. The gln3 mutants formed hyphae on several nitrogen sources, but not ammonium or urea, suggesting a defect in ammonium assimilation. Virulence of gln3 mutants was reduced in a murine model of disseminated disease. We conclude that GLN3 has a broad role in nitrogen metabolism, partially overlapping, but distinct from that of GAT1, and that its function is important for the ability of C. albicans to survive within the host environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号