首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The Semliki Forest virus (SFV) spike is composed of three copies of a membrane protein heterodimer. The two subunits of this heterodimer (p62 and E1) are synthesized sequentially from a common mRNA together with the capsid (C) in the order C-p62-E1. In this work heterodimerization of the spike proteins has been studied in BHK 21 cells. The results indicate that: (a) the polyprotein is cotranslationally cleaved into individual chains; (b) the two membrane protein subunits are initially not associated with each other in the endoplasmic reticulum (ER); (c) heterodimerization occurs predominantly between subunits that originate from the same translation product (heterodimerization in cis); (d) the kinetics of subunit association are very fast (t1/2 = 4 min); and (e) this heterodimerization is highly efficient. To explain the cis- directed heterodimerization reaction we suggest that the p62 protein, which is made before E1 during 26S mRNA translation, is retained at its translocation site until also the E1 chain has been synthesized and translocated at this same site. The mechanism for p62 retention could either be that the p62 anchor sequence cannot diffuse out from an "active" translocation site or that the p62 protein is complexed with a protein folding facilitating machinery that is physically linked to the translocation apparatus.  相似文献   

2.
The spikes of alphaviruses are composed of three copies of an E2-E1 heterodimer. The E1 protein possesses membrane fusion activity, and the E2 protein, or its precursor form, p62 (sometimes called PE2), controls this function. Both proteins are, together with the viral capsid protein, translated from a common C-p62-E1 coding unit. In an earlier study, we showed that the p62 protein of Semliki Forest virus (SFV) dimerizes rapidly and efficiently in the endoplasmic reticulum (ER) with the E1 protein originating from the same translation product (so-called heterodimerization in cis) (B.-U. Barth, J. M. Wahlberg, and H. Garoff, J. Cell Biol. 128:283-291, 1995). In the present work, we analyzed the ER translocation and folding efficiencies of the p62 and E1 proteins of SFV expressed from separate coding units versus a common one. We found that the separately expressed p62 protein translocated and folded almost as efficiently as when it was expressed from a common coding unit, whereas the independently expressed E1 protein was inefficient in both processes. In particular, we found that the majority of the translocated E1 chains were engaged in disulfide-linked aggregates. This result suggests that the E1 protein needs to form a complex with p62 to avoid aggregation. Further analyses of the E1 aggregation showed that it occurred very rapidly after E1 synthesis and could not be avoided significantly by the coexpression of an excess of p62 from a separate coding unit. These latter results suggest that the p62-E1 heterodimerization has to occur very soon after E1 synthesis and that this is possible only in a cis-directed reaction which follows the synthesis of p62 and E1 from a common coding unit. We propose that the p62 protein, whose synthesis precedes that of the E1 protein, remains in the translocon of the ER and awaits the completion of E1. This strategy enables the p62 protein to complex with the E1 protein immediately after the latter has been made and thereby to control (suppress) its fusion activity.  相似文献   

3.
Maximal activation of NADPH oxidase requires formation of a complex between the p40(phox) and p67(phox) subunits via association of their PB1 domains. We have determined the crystal structure of the p40(phox)/p67(phox) PB1 heterodimer, which reveals that both domains have a beta grasp topology and that they bind in a front-to-back arrangement through conserved electrostatic interactions between an acidic OPCA motif on p40(phox) and basic residues in p67(phox). The structure enabled us to identify residues critical for heterodimerization among other members of the PB1 domain family, including the atypical protein kinase C zeta (PKC zeta) and its partners Par6 and p62 (ZIP, sequestosome). Both Par6 and p62 use their basic "back" to interact with the OPCA motif on the "front" of the PKC zeta. Besides heterodimeric interactions, some PB1 domains, like the p62 PB1, can make homotypic front-to-back arrays.  相似文献   

4.
Reticulophagy is a type of selective autophagy in which protein aggregate-containing and/or damaged endoplasmic reticulum(ER)fragments are engulfed for lysosomal degradation, which is important for ER homeostasis. Several chemical drugs and mutant proteins that promote protein aggregate formation within the ER lumen can efficiently induce reticulophagy in mammalian cells.However, the exact mechanism and cellular localization of reticulophagy remain unclear. In this report, we took advantage of the self-oligomerization property of p62/SQSTM1, an adaptor for selective autophagy, and developed a novel reticulophagy system based on an ER-targeted p62 mutant to investigate the process of reticulophagy in living cells. LC3 conversion analysis via western blot suggested that p62 mutant aggregate-induced ER stress triggered a cellular autophagic response. Confocal imaging showed that in cells with moderate aggregation conditions, the aggregates of ER-targeted p62 mutants were efficiently sequestered by autophagosomes, which was characterized by colocalization with the autophagosome precursor marker ATG16L1, the omegasome marker DFCP1, and the late autophagosomal marker LC3/GATE-16. Moreover, time-lapse imaging data demonstrated that the LC3-or DFCP1-positive protein aggregates are tightly associated with the reticular structures of the ER, thereby suggesting that reticulophagy occurs at the ER and that omegasomes may be involved in this process.  相似文献   

5.
The endoplasmic reticulum (ER) has an elaborate quality control system, which retains misfolded proteins and targets them to ER-associated protein degradation (ERAD). To analyze sorting between ER retention and ER exit to the secretory pathway, we constructed fusion proteins containing both folded carboxypeptidase Y (CPY) and misfolded mutant CPY (CPY*) units. Although the luminal Hsp70 chaperone BiP interacts with the fusion proteins containing CPY* with similar efficiency, a lectin-like ERAD factor Yos9p binds to them with different efficiency. Correlation between efficiency of Yos9p interactions and ERAD of these fusion proteins indicates that Yos9p but not BiP functions in the retention of misfolded proteins for ERAD. Yos9p targets a CPY*-containing ERAD substrate to Hrd1p E3 ligase, thereby causing ER retention of the misfolded protein. This ER retention is independent of the glycan degradation signal on the misfolded protein and operates even when proteasomal degradation is inhibited. These results collectively indicate that Yos9p and Hrd1p mediate ER retention of misfolded proteins in the early stage of ERAD, which constitutes a process separable from the later degradation step.  相似文献   

6.
M Lobigs  H X Zhao    H Garoff 《Journal of virology》1990,64(9):4346-4355
The Semliki Forest virus spike glycoproteins E1 and p62 form a heterodimeric complex in the endoplasmic reticulum (ER) and are transported as such to the cell surface. In the mature virus particle, the heterodimeric association of E1 and E2 (the cleavage product of p62) is maintained, but as a more labile and acid-sensitive oligomer than the E1-p62 complex. The E3 peptide forms the N-terminal part of the p62 precursor and carries the signal for the translocation of p62 into the lumen of the ER. The question of whether E3 is also important in the formation and stabilization of the E1-p62 heterodimer has been addressed here with the aid of an E3 deletion mutant cDNA. In this construct, the entire E3 was replaced with a cleavable, artificial signal sequence which preserved the membrane topology of an authentic E2. The E3 deletion, when expressed via a recombinant vaccinia virus, abolished heterodimerization of the spike proteins. It also resulted in the complete retention of E1 in the ER and almost total inhibition of E2 transport to the plasma membrane. The oligomerization and transport defect of E1 expressed from the E3 deletion mutant could be complemented with a wild-type p62 provided from a separate coding unit in double infections. These results point to a central role of E3 in complex formation and transport of the viral structural components to the site of budding. In conjunction with earlier work (M. Lobigs and H. Garoff, J. Virol. 64:1233-1240, 1990; J. Wahlberg, W. A. M. Boere, and H. Garoff, J. Virol. 63:4991-4997, 1989), the data support a model of spike protein oligomerization control of Semliki Forest virus assembly and disassembly which may be mediated by the presence of E3 in the uncleaved p62 precursor and release of E3 after cleavage.  相似文献   

7.
Processing of the p62 envelope precursor protein of Semliki Forest virus   总被引:5,自引:0,他引:5  
The spike protein of Semliki Forest virus is composed of three subunits, E1, E2, and E3, which mediate the fusion of the virus membrane with that of the host cell. E2 and E3 are synthesized as a precursor, p62, which is cleaved post-translationally after an Arg-His-Arg-Arg sequence. In vitro mutagenesis of a cDNA clone of the spike proteins was used to specifically alter amino acids in this cleavage site. Cleavage of p62 was completely blocked by mutation of the proximal Arg residue to Phe, without affecting transport or surface expression of the spike protein. The cleavage mutation resulted in the loss of spike protein fusion activity within the physiological pH range. Fusion activity was restored by cleavage with exogenous chymotrypsin and showed the same low pH dependence as that of wild type. The cleavage sensitivity of newly synthesized p62 was investigated by pulse-chase analysis and chymotrypsin treatment in detergent solution. p62 was sensitive to cleavage immediately following its synthesis. Protein trapped in the rough endoplasmic reticulum or Golgi apparatus by carbonyl cyanide m-chlorophenylhydrazone, monensin, or Brefeldin A treatment was also fully sensitive to cleavage. These results suggest that p62 does not require an organelle-mediated conformational change for processing. Thus, in vivo, the site of p62 processing is probably controlled by the location or activity of the cleavage enzyme, rather than the sensitivity of the p62 substrate.  相似文献   

8.
Endoplasmic reticulum (ER) stress is triggered by various cellular stresses that disturb protein folding or calcium homeostasis in the ER. To cope with these stresses, ER stress activates the unfolded protein response (UPR) pathway, but unresolved ER stress induces reactive oxygen species (ROS) accumulation leading to apoptotic cell death. However, the mechanisms that underlie protection from ER stress-induced cell death are not clearly defined. The nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway plays a crucial role in the protection of cells against ROS-mediated oxidative damage. Keap1 acts as a negative regulator of Nrf2 activation. In this study, we investigated the role of the Nrf2-Keap1 pathway in protection from ER stress-induced cell death using tunicamycin (TM) as an ER stress inducer. We found that Nrf2 is an essential protein for the prevention from TM-induced apoptotic cell death and its activation is driven by autophagic Keap1 degradation. Furthermore, ablation of p62, an adapter protein in the autophagy process, attenuates the Keap1 degradation and Nrf2 activation that was induced by TM treatment, and thereby increases susceptibility to apoptotic cell death. Conversely, reinforcement of p62 alleviated TM-induced cell death in p62-deficient cells. Taken together, these results demonstrate that p62 plays an important role in protecting cells from TM-induced cell death through Nrf2 activation.  相似文献   

9.
Sequestosome 1 (SQSTM1)/p62 is an interacting partner of the atypical protein kinase C zeta/iota and serves as a scaffold for cell signaling and ubiquitin binding, which is critical for several cell functions in vivo such as osteoclastogenesis, adipogenesis, and T cell activation. Here we report that in neurons of p62-/- mouse brain there is a detectable increase in ubiquitin staining paralleled by accumulation of insoluble ubiquitinated proteins. The absolute amount of each ubiquitin chain linkage measured by quantitative mass spectrometry demonstrated hyperaccumulation of Lys63 chains in the insoluble fraction recovered from the brain of p62-/- mice, which correlated with increased levels of Lys63-ubiquitinated TrkA receptor. The increase in Lys63 chains was attributed in part to diminished activity of the TRAF6-interacting the Lys63-deubiquitinating enzyme (DUB), cylindromatosis tumor suppressor (CYLD). The interaction of CYLD with TRAF6 was dependent upon p62, thus defining a mechanism that accounts for decreased activity of CYLD in the absence of p62. These findings reveal that p62 serves as an adapter for the formation of this complex, thereby regulating the DUB activity of CYLD by TRAF6 interaction. Thus, p62 has a bifunctional role in regulation of an E3 ubiquitin-protein ligase, TRAF6, and a DUB, CYLD, to balance the turnover of Lys63-polyubiquitinated proteins such as TrkA.  相似文献   

10.
N R Salama  T Yeung    R W Schekman 《The EMBO journal》1993,12(11):4073-4082
SEC13 encodes a 33 kDa protein that participates in vesicle budding from the endoplasmic reticulum (ER). In order to purify a functional form of Sec13p, a SEC13-dihydrofolate reductase (mouse) fusion gene (SEC13:DHFR) was constructed that complements both sec13 temperature sensitive and null mutations. Methotrexate-agarose affinity chromatography facilitated the purification of two forms of the Sec13-dhfrp fusion protein: a monomeric form and a high molecular weight complex. The complex form consists of two subunits: Sec13-dhfrp and a 150 kDa protein (p150). Native immunoprecipitation experiments confirm that Sec13p exists in a complex with p150 in wild type cells. Functional analysis supports a role for both subunits in protein transport. Vesicle budding from the ER in a cell-free reaction is inhibited by Fab antibody fragments directed against either Sec13p or p150. The purified Sec13-dhfrp/p150 complex, but not the Sec13-dhfrp monomer, in combination with two other pure protein fractions (Sar1p and a Sec23/Sec24 protein complex) satisfies the requirement for cytosol in a cell-free vesicle budding reaction. The vesicles formed with the purified protein fractions are competent to fuse with the Golgi and are biochemically distinct from the ER membrane fraction from which they derive.  相似文献   

11.
The hepatitis C virus (HCV) glycoproteins E1 and E2 should be anchored in the viral membrane by their C-terminal domains. During synthesis, they are translocated to the endoplasmic reticulum (ER) lumen where they remain. The 31 C-terminal residues of the E1 protein and the 29 C-terminal residues of the E2 protein are implicated in the ER retention. Moreover, the E1 and E2 C termini are implicated in E1-E2 heterodimerization. We studied the E1 and E2 C-terminal sequences of 25 HCV strains in silico using molecular modeling techniques. We conclude that both C-terminal domains should adopt a similar and peculiar configuration: one amphipathic alpha-helix followed by a pair of transmembrane beta-strands. Several three-dimensional (3-D) models were generated. After energy minimization, their ability to interact with membranes was studied using the molecular hydrophobicity potentials calculation and the IMPALA procedure. The latter simulates interactions with a membrane by a Monte Carlo minimization of energy. These methods suggest that the beta-hairpins could anchor the glycoproteins in the ER membrane at least transiently. Anchoring could be stabilized by the adsorption of the nearby amphipathic alpha-helices at the membrane surface. The 3-D models correlate with experimental results which indicate that the E1-E2 transmembrane domains are involved in the heterodimerization and have ER retention properties.  相似文献   

12.
Signal specificity of multifunctional enzymes is achieved through protein-protein interactions involving specific domains on scaffold proteins. p62 (also known as sequestosome 1) is such a scaffold protein that possesses PB1 and UBA domains, and the TRAF6 binding sequence. Proteins recruited to these domains enable p62 to integrate kinase-activated and ubiquitin-mediated signaling pathways. The biological function of p62 has been studied in diverse systems and processes such as osteoclastogenesis, inflammation, differentiation, neurotrophin biology and obesity. The availability of mice in which p62 has been genetically inactivated is providing new insight into the mechanism and function of p62 at a whole-organism level.  相似文献   

13.
14.
So far it has been demonstrated that the signal sequence of proteins which are made at the ER functions both at the level of protein targeting to the ER and in initiation of chain translocation across the ER membrane. However, its possible role in completing the process of chain transfer (see Singer, S. J., P. A. Maher, and M. P. Yaffe. Proc. Natl. Acad. Sci. USA. 1987. 84:1015-1019) has remained elusive. In this work we show that the p62 protein of Semliki Forest virus contains an uncleaved signal sequence at its NH2-terminus and that this becomes glycosylated early during synthesis and translocation of the p62 polypeptide. As the glycosylation of the signal sequence most likely occurs after its release from the ER membrane our results suggest that this region has no role in completing the transfer process.  相似文献   

15.
Human asialoglycoprotein receptor H1 and H2b subunits assemble into a hetero-oligomer that travels to the cell surface. The H2a variant on the other hand is a precursor of a cleaved soluble form that is secreted. Uncleaved H2a precursor molecules cannot exit the endoplasmic reticulum (ER), a lumenal juxtamembrane pentapeptide being responsible for their retention. Insertion of this pentapeptide into H1 (H1i5) causes its complete ER retention but not fast degradation as happens to H2a. Cotransfection of H2a elicited, by heterodimerization, the Golgi processing of H1i5 and its surface expression. This occurred to a much lesser extent by cotransfection of H2b. Likewise, coexpression of H1i5 and not H1 stabilized H2a and caused its export to the cell surface. Homodimerization of molecules containing the pentapeptide did not cancel the retention. Thus, only when the pentapeptide is present in both subunits is the ER retention efficiently abrogated. The results show the unexpected finding that identical ER retention signals present in two associated chains can mask and cancel each other's effect. This could have important implications as similar abrogation of ER retention of other proteins could eventually be obtained by engineering and coexpressing an associated protein containing the same retention signal.  相似文献   

16.
Autophagy is an intracellular degradation process by which cytoplasmic contents are degraded in the lysosome. In addition to nonselective engulfment of cytoplasmic materials, the autophagosomal membrane can selectively recognize specific proteins and organelles. It is generally believed that the major selective substrate (or cargo receptor) p62 is recruited to the autophagosomal membrane through interaction with LC3. In this study, we analyzed loading of p62 and its related protein NBR1 and found that they localize to the endoplasmic reticulum (ER)-associated autophagosome formation site independently of LC3 localization to membranes. p62 colocalizes with upstream autophagy factors such as ULK1 and VMP1 even when autophagosome formation is blocked by wortmannin or FIP200 knockout. Self-oligomerization of p62 is essential for its localization to the autophagosome formation site. These results suggest that p62 localizes to the autophagosome formation site on the ER, where autophagosomes are nucleated. This process is similar to the yeast cytoplasm to vacuole targeting pathway.  相似文献   

17.
p62/SQSTM1 is frequently up-regulated in many cancers including hepatocellular carcinoma. Highly expressed p62 promotes hepato-carcinogenesis by activating many signaling pathways including Nrf2, mTORC1, and NFκB signaling. However, the underlying mechanism for p62 up-regulation in hepatocellular carcinoma remains largely unclear. Herein, we confirmed that p62 was up-regulated in hepatocellular carcinoma and its higher expression was associated with shorter overall survival in patients. The knockdown of p62 in hepatocellular carcinoma cells decreased cell growth in vitro and in vivo. Intriguingly, p62 protein stability could be reduced by its acetylation at lysine 295, which was regulated by deacetylase Sirt1 and acetyltransferase GCN5. Acetylated p62 increased its association with the E3 ligase Keap1, which facilitated its poly-ubiquitination-dependent proteasomal degradation. Moreover, Sirt1 was up-regulated to deacetylate and stabilize p62 in hepatocellular carcinoma. Additionally, Hepatocyte Sirt1 conditional knockout mice developed much fewer liver tumors after Diethynitrosamine treatment, which could be reversed by the re-introduction of exogenous p62. Taken together, Sirt1 deacetylates p62 at lysine 295 to disturb Keap1-mediated p62 poly-ubiquitination, thus up-regulating p62 expression to promote hepato-carcinogenesis. Therefore, targeting Sirt1 or p62 is a reasonable strategy for the treatment of hepatocellular carcinoma.Subject terms: Cancer, Post-translational modifications  相似文献   

18.
Nuclear pore complexes are constructed from a large number of different proteins, called collectively nucleoporins. One of these nucleoporins, p62, has an alpha-helical coiled-coil COOH-terminal rod domain linked to an NH2-terminal domain that contains a series of degenerate pentapeptide repeats. In nuclear pores p62 forms a tight complex with at least two other proteins, p58 and p54, which can be extracted from isolated rat liver nuclei (Finlay, D. R., E. Meier, P. Bradley, J. Horecka, and D. J. Forbes. 1991. J. Cell Biol. 114:169-183). We have used a range of methods to demonstrate a strong binding between p62 and p54 in this complex and show that the rod domain of p62 appears to constitute the principal binding site for p54. Whole p62 and its rod domain expressed in Escherichia coli both bind strongly to p54 in blot- overlay assays. Most of the epitopes on the p62 rod recognized by polyclonal antisera are masked in the complex, whereas epitopes on the NH2-terminal domain of p62 are still exposed, both in the isolated complex and also in nuclear pores stained in situ by immunofluorescence in isolated rat nuclei. Moreover, it has been possible to exchange recombinant p62 rod for some of the native p62 in complexes partially dissociated by 4 M urea. Overall these results suggest a key role for the p62 rod domain in maintaining the structural integrity of the complex and also suggest a molecular model for the complex. This model is consistent with data that indicate that the analogous coiled-coil region of yeast nucleoporin NSP1 may function in a similar way.  相似文献   

19.
《Autophagy》2013,9(8):1063-1066
Loss of autophagy causes liver injury, cardiomyopathy, and neurodegeneration, associated with the formation of ubiquitin-positive inclusion bodies. However, the pathogenic mechanism and molecular machinery involved in inclusion formation are not fully understood. We recently identified a ubiquitin-binding protein, p62/A170/SQSTM1, as a molecule involved in inclusion formation. p62 interacts with LC3 which regulates autophagosome formation, through an 11 amino acid sequence rich in acidic and hydrophobic residues, named the LC3-recognition sequence (LRS), and the LC3-p62 complex is degraded by autophagy. Furthermore, structural analysis reveals an interaction of Trp-340 and Leu-343 of p62 with different hydrophobic pockets in the ubiquitin-fold of LC3. p62 mutants, defective in binding the LRS, escape efficient turnover by autophagy, forming ubiquitin- and p62-positive inclusions. Importantly, such ubiquitin- and p62-positive inclusions are identified in various human diseases, implying the involvement of autophagy in their pathogenic mechanisms. Our reports identify an important role for autophagy in the selective turnover of p62, and demonstrate that in addition to the essential role of LC3 in autophagosome formation, LC3 is also involved in sorting autophagy-specific substrate(s).

Addendum to: Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, Hara T, Mizushima N, Iwata JI, Ezaki J, Murata S, Hamazaki J, Nishito Y, Iemura SI, Natsume T, Yanagawa T, Uwayama J, Warabi E, Yoshida H, Ishii T, Kobayashi A, Yamamoto M, Yue Z, Uchiyama Y, Kominami E, Tanaka K. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007; 131:1149-63.

and

Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, Ueno T, Kominami E, Yamane T, Tanaka K, Komatsu M. Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 2008; 283:22847-57.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号