首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To clarify the role of presenilin-1 (PS-1) in the pathology of Alzheimer's disease (AD), we tested four antisera to PS-1. The specific antisera to the N-terminus (HSN-2) and C-terminus (HS-C) of PS-1 detected a 44/40kD holoprotein, a 25kD N-terminal fragment (NTF) and a 16kD C-terminal fragment (CTF) of PS-1 in COS-7 cells. The 25kD NTF and 16kD CTF were observed in human brains, and their amounts were not significantly different between the control and AD brains. The antibody HS-C labeled extensive neurofibrillary tangles, dystrophic neurites and curly fibers in the AD brains. In the paired helical filament (PHF) fraction containing A68 protein from AD brains, a smear pattern of CTFs was revealed. Antisera (HS-L292 and HS-L300) to cleavage sites of PS-1 also revealed immunoreactive neurofibrillary tangles in the AD brain sections and the smear pattern of CTFs of A68 protein fraction. The CTFs of PS-1 accumulate with PHF tau, suggesting a close relationship between PS-1 and cytoskeletal abnormalities in AD brains.  相似文献   

2.
We characterized senile plaques (SPs) immunohistochemically in cynomolgus monkey brains and also examined age-related biochemical changes of Alzheimer's disease (AD)-associated proteins in these brains from monkeys of various ages. In the neocortex of aged monkeys (>20 years old), we found SPs but no neurofibrillary tangles (NFTs). Antibodies against beta-amyloid precursor protein (APP) or apolipoprotein E (ApoE) stained SPs; however, the pattern of immunostaining was different for the two antigens. APP was present only in swollen neurites, but ApoE was present throughout all parts of SPs. Western blot analysis revealed that the pattern of APP expression changed with age. Although full-length APP695 protein was mainly expressed in brains from young monkeys (4-years-old), the expression of full-length APP751 protein was increased in brains from older monkeys (>20 years old). Biochemical analyses also showed that levels of various AD-associated proteins increased significantly with age in nerve ending fractions. Both SP-associated (APP) and NFT-associated proteins (tau, activated glycogen synthase kinase 3beta, cyclin dependent kinase 5, p35, and p25) accumulated in the nerve ending fraction with increasing age; however, we found no NFTs or paired helical filaments of tau in aged cynomolgus monkey brains. This age-related accumulation of these proteins in the nerve ending fraction was similar to that observed in our laboratory previously for presenilin-1 (PS-1). The accumulation of these SP-associated proteins in this fraction may be a causal event in the spontaneous formation of SPs; thus, SPs may be formed initially in nerve endings. Taken together, these results suggest that intensive investigation of age-related changes in the nerve ending and in axonal transport will contribute to a better understanding of the pathogenesis of neurodegenerative disorders such as AD.  相似文献   

3.
We performed an analysis of mutation patterns in all 10 hydrophobic regions (HRs) of presenilin-1 (PS-1) and PS-2 using a recent database of Alzheimer's disease (AD) mutations. The linear patterns were confirmed and extended to areas spanning as many as three faces of a given HR. The complementary areas of residues free of AD mutations were identified based on the location of non-pathogenic polymorphisms and PS-1 versus PS-2 amino acid discordances. Taking into account the location of areas of AD mutations and mutation-free areas/regions, we proposed a preliminary model of PS-1 structure using a general stick-out-mutation rule. To build a molecular structure of PS-1 and preserve features of the preliminary model, we used bacteriorhodopsin template in homology/comparative modelling. Two molecular models were built differing in the location of C-terminal fragment helices. The models properly distinguish residues belonging to AD-affected sites and non-pathogenic areas, and may be used for classification purposes. They also comply with experimental results, such as differences in accessibility of the catalytic residues in uncleaved PS-1, and binding of PEN-2 by the PS-1 NF motif.  相似文献   

4.
5.
Abstract: Many cases of autosomal dominant inherited forms of early-onset Alzheimer's disease are caused by mutations in the genes encoding presenilin-1 (PS-1; chromosome 14) and presenilin-2 (PS-2; chromosome 1). PSs are expressed in neurons throughout the brain wherein they appear to be localized primarily to the endoplasmic reticulum (ER) of cell bodies and dendrities. PS-1 and PS-2 show high homology and are predicted to have eight transmembrane domains with the C terminus, N terminus, and a loop domain all on the cytosolic side of the membrane; an enzymatic cleavage of PSs occurs at a site near the loop domain. The normal function of PSs is unknown, but data suggest roles in membrane trafficking, amyloid precursor protein processing, and regulation of ER calcium homeostasis. Homology of PSs to the C. elegans gene sel-12 , which is involved in Notch signaling, and phenotypic similarities of PS-1 and Notch knockout mice suggest a developmental role for PSs in the nervous system. When expressed in cultured cells and transgenic mice, mutant PSs promote increased production of a long form of amyloid β-peptide (Aβ1-42) that may possess enhanced amyloidogenic and neurotoxic properties. PS mutations sensitize cultured neural cells to apoptosis induced by trophic factor withdrawal, metabolic insults, and amyloid β-peptide. The mechanism responsible for the proapoptotic action of mutant PSs may involve perturbed calcium release from ER stores and increased levels of oxidative stress. Recent studies of apoptosis in many different cell types suggest that ER calcium signaling can modulate apoptosis. The evolving picture of PS roles in neuronal plasticity and Alzheimer's disease is bringing to the forefront the ER, an organelle increasingly recognized as a key regulator of neuronal plasticity and survival.  相似文献   

6.
Mutations in the presenilin-1 (PS-1) and presenilin-2 (PS-2) genes account for the majority of cases of early-onset familial Alzheimer's disease (AD). Alternative splicing forms of the PS-1 and PS-2 gene products have previously been reported in fibroblast and brain tissue from both familial and sporadic AD patients, as well as from normal tissues and cell lines. We demonstrate here unusual alternative splicing of the PS-2 gene that leads to the generation of mRNA lacking exon 5 in human brain tissue. This product was more frequently detected in brain tissue from sporadic AD patients (70.0%; 21 of 30) than from normal age-matched controls (17.6%; three of 17). In cultured neuroblastoma cells, this splice variant was generated in hypoxia but not under other forms of cellular stress. Hypoxia-mediated induction of this splice variant was blocked by pretreatment of neuroblastoma cells with the protein synthesis inhibitor cycloheximide or antioxidants such as N-acetylcysteine and diphenyl iodonium, suggesting that hypoxia-mediated oxidant stress might, at least in part, underlie the alternative splicing of PS-2 mRNA through de novo protein synthesis. Furthermore, the stable transfectants of this splice variant produced the N-terminal part of PS-2 protein (15 kDa) and were more susceptible to cellular stresses than control transfectants. These results suggest the possibility that altered presenilin gene products in stress conditions may also participate in the pathogenesis of AD.  相似文献   

7.
The cellular uptake of l-arginine and other cationic amino acids (such as l-lysine and l-ornithine) is mainly mediated by cationic amino acid transporter (CAT) proteins. Despite the important roles of cationic amino acid transporters for normal brain functioning and various brain diseases there is currently only fragmentary knowledge about their cellular and regional distribution patterns in the human brain. We mapped the immunohistochemical localization of human cationic amino acid transporters 1, 2 and 3 (hCAT1, 2, and 3) throughout five adult human brains and found a wide but uneven distribution of these transporters. All three hCAT1s were mainly localized in neurons, but were also found in numerous astrocytes, oligodendrocytes, plexus choroideus epithelial cells, and small blood vessels. The highest density of hCAT expressing neurons was observed in the hypothalamus, in some areas of the cerebral cortex, the thalamic reticular nucleus and the caudate nucleus, whereas weak to moderate expression was detected in the hippocampus, the prefrontal cortex (hCAT1 only), pons, brain stem and cerebellum. In contrast to what has been found in rodent brain, we detected hCAT2 and hCAT3 also in astrocytes. Overall, each hCAT has its characteristic, individual cerebral expression patterns, which, however, overlap with the others.  相似文献   

8.
The amyloid precursor protein (APP) and presenilin-1 (PS-1) are not only of importance for the normal functioning of the various neurons, but also play central roles in the pathogenesis of Alzheimer’s disease (AD). Through the use of immunohistochemical and Western blot techniques, the bidirectional axonal transport of these proteins has been demonstrated in the sciatic nerve of adult rat. Double-ligation of the sciatic nerve for 6, 12 or 24 h was observed to cause a progressive accumulation of the 45 kDa presenilin-1 holoprotein and APPs with molecular masses of 116 and 94 kDa on both sites of the ligature. It is concluded that the functions of presenilin-1 and APPs are not restricted to the neuronal perikarya: they may carry information in both directions, from the cell body to the axon terminals and vice versa.  相似文献   

9.
10.
Until now c-series polysialogangliosides were known to exist in human brain only during development and in some pathological conditions like Alzheimers disease. Using thin-layer chromatography (TLC) and immunostaining with Q211 antibody (TLC-overlay technique) we have analysed c-series gangliosides in four human cerebella (age 20, 47, 52 and 54 years). Four distinct ganglioside bands, most probably corresponding to GT1c, GQ1c, GP1c and GH1c were found to exist in the analysed brains, which is convincing demonstration of the existence of c-series gangliosides in normal adult human brain. Immunohistochemical analysis was performed to locate polysialogangliosides in the analysed tissue. Q211 antibody was found to bind specifically to a single subpopulation of neurons in the molecular layer of adult cerebellum. According to their position and morphology these cells correspond to stellate neurons. © 1998 Rapid Science Ltd  相似文献   

11.
The supernatant fluids of cultures of four bacterial strains isolated from the skin of barracuda contained extracellular polymer concentrations of 0.2–0.5 mg/ml and reduced factional drag by 2.5–22% in a turbulent flow rheometer. The production and properties of one of the drag-reducing polymers, referred to as PS-6, were studied further. Polymer PS-6 was produced by strain NS-31 in minimal salts medium supplemented with ethanol or glucose. The polymer began to accumulate in the culture medium during exponential phase and continued to be produced during stationary phase. It reduced drag by 55% at a concentration of 0.75 mg/ ml. Acid-base titration of the deproteinized polymer PS-6A gave two inflection points: pK1=3.26 (2.4 eq/mg) and pK2=9.66 (0.8 eq/mg).13C-NMR spectroscopy of PS-6A resolved 25 peaks, including three methyl groups, three carbonyl groups, and four signals in the anomeric region (99–103 ppm), indicating the presence of four different monosaccharides. Strong acid hydrolysis of PS-6A yielded an amino acid, pyruvate, and four reducing sugars: a hexosamine, a uronic acid, and two hexoses which migrated on TLC similarly to glucose and galactose. The possible role of bacteria in production of drag-reducing mucus is discussed.  相似文献   

12.
1. The ability to target specific neurons can be used to produce selective neural lesions and potentially to deliver therapeutically useful moieties for treatment of disease. In the present study, we sought to determine if a monoclonal antibody to the dopamine transporter (anti-DAT) could be used to target midbrain dopaminergic neurons.2. The monoclonal antibody recognizes the second, large extracellular loop of DAT. The antibody was conjugated to the ribosome-inactivating protein saporin, and stereotactically pressure microinjected into either the center of the striatum or the left lateral ventricle of adult, male Sprague-Dawley rats.3. Local intrastriatal injections produced destruction of dopaminergic neurons in the ipsilateral substantia nigra consistent with suicide transport of the immunotoxin. Intraventricular injections (i.c.v.) produced significant loss of dopaminergic neurons in the substantia nigra and ventral tegmental area bilaterally without evident damage to any other aminergic structures such as the locus coeruleus and raphé nuclei. To confirm the anatomic findings, binding of [3H]mazindol to DAT in the striatum and midbrain was assessed using densitometric analysis of autoradiograms. Anti-DAT-saporin injected i.c.v. at a dose of 21 g, but not 8 g, produced highly significant decreases in mazindol binding consistent with loss of the dopaminergic neurons.4. These results show that anti-DAT can be used to target midbrain dopaminergic neurons and that anti-DAT-saporin may be useful for producing a lesion very similar to the naturally occurring neural degeneration seen in Parkinson's disease. Anti-DAT-saporin joins the growing list of neural lesioning agents based on targeted cytotoxins.  相似文献   

13.
Although delta-catenin/neural plakophilin-related armadillo protein (NPRAP) was reported to interact with presenilin-1 (PS-1), the effects of PS-1 on delta-catenin have not been established. In this study, we report that overexpression of PS-1 inhibits the delta-catenin-induced dendrite-like morphological changes in NIH 3T3 cells and promotes delta-catenin processing and turnover. The effects of PS-1 on endogenous delta-catenin processing were confirmed in hippocampal neurons overexpressing PS-1, as well as in the transgenic mice expressing the disease-causing mutant PS-1 (M146V). In addition, disease-causing mutant PS-1 (M146V and L286V) enhanced delta-catenin processing, whereas PS-1/gamma-secretase inhibitors could block the formation of processed forms of delta-catenin. Together, our findings suggest that PS-1 can affect delta-catenin-induced morphogenesis possibly through the regulation of its processing and stability.  相似文献   

14.
Summary The cell-body layer of the lamina ganglionaris of the housefly, Musca domestica, contains the perikarya of five types of monopolar interneuron (L1–L5) along with their enveloping neuroglia (Strausfeld 1971). We confirm previous reports (Trujillo-Cenóz 1965; Boschek 1971) that monopolar cell bodies in the lamina form three structural classes: Class I, Class II, and midget monopolar cells. Class-I cells (L1 and L2) have large (8–15 m) often crescentshaped cell bodies, much perinuclear cytoplasm and deep glial invaginations. Class-II cells (L3 and L4) have smaller perikarya (4–8 m) with little perinuclear cytoplasm and no glial invaginations. The midget monopolar cell (L5) resides at the base of the cell-body layer and has a cubshaped cell body. Though embedded within a reticulum of satellite glia, the L1–L4 monopolar perikarya and their immediately proximal neurites frequently appose each other directly. Typical arthropod (-type) gap junctions are routinely observed at these interfaces. These junctions can span up to 0.8 m with an intercellular space of 2–4 nm. The surrounding nonspecialized interspace is 12–20 nm. Freezefracture replicas of monopolar appositions confirm the presence of -type gap junctions, i.e., circular plaques (0.15–0.7 m diam.) of large (10–15 nm) E-face particles. Gap junctions are present between Class I somata and their proximal neurites, between Class I and Class II somata and proximal neurites, and between Class II somata. Intercartridge coupling may exist between such monopolar somata. The cell body and proximal neurite of L5 were not examined. We also find that Class I and Class II somata are extensively linked to their satellite glia via gap junctions. The gap width and nonjunctional interspace between neuron and glia are the same as those found between neurons. The particular arrangement and morphology of lamina monopolar neurons suggest that coupling or low resistance pathways between functionally distinct neurons and between neuron and glia are probably related to the metabolic requirements of the nuclear layer and may play a role in wide field signal averaging and light adaptation.  相似文献   

15.
The sequence entries in the Peptaibol Database were analysed to provide information on compositional features of this unusual family of peptides. The non-standard amino acid -aminoisobutyric acid represents almost 40% of the residues in all the known sequences. Glutamine is the only significant polar residue in peptaibols, and the position and number of these residues appear to be related to their functional properties as ion channels. Aromatic residues are clustered at the termini, which may contribute to stabilization of the peptide vertically within the bilayer. The peptide chain length is strongly weighted towards the longer members of the family (16–20 residues) and likely to be an important feature in their mode of action as transmembrane permeabilizers. The significant skewing towards even numbers of residues and the bias in pairwise distributions of amino acids have implications for the nature of the in vivo synthesis of these peptides via large non-ribosomal protein complexes.  相似文献   

16.
Growing evidence suggests that diabetes mellitus (DM) is one of the strongest risk factors for developing Alzheimer’s disease (AD). However, it remains unclear why DM accelerates AD pathology. In cynomolgus monkeys older than 25 years, senile plaques (SPs) are spontaneously and consistently observed in their brains, and neurofibrillary tangles are present at 32 years of age and older. In laboratory-housed monkeys, obesity is occasionally observed and frequently leads to development of type 2 DM. In the present study, we performed histopathological and biochemical analyses of brain tissue in cynomolgus monkeys with type 2 DM to clarify the relationship between DM and AD pathology. Here, we provide the evidence that DM accelerates Aβ pathology in vivo in nonhuman primates who had not undergone any genetic manipulation. In DM-affected monkey brains, SPs were observed in frontal and temporal lobe cortices, even in monkeys younger than 20 years. Biochemical analyses of brain revealed that the amount of GM1-ganglioside-bound Aβ (GAβ)—the endogenous seed for Aβ fibril formation in the brain—was clearly elevated in DM-affected monkeys. Furthermore, the level of Rab GTPases was also significantly increased in the brains of adult monkeys with DM, almost to the same levels as in aged monkeys. Intraneuronal accumulation of enlarged endosomes was also observed in DM-affected monkeys, suggesting that exacerbated endocytic disturbance may underlie the acceleration of Aβ pathology due to DM.  相似文献   

17.
Summary Fresh leguminous plant residues were incorporated into soil columns and incubated at 23°C for up to 20 weeks. The N released from specific fractions (foliage, stems, and roots) of each residue were monitored at specific time intervals. Relationships between organic carbon, total nitrogen, CN ratio, lipids, and lignin content of the plant materials and the cumulative amount of N mineralized in soil were investigated. Statistical analyses indicated that the rates of N mineralized were not significantly correlated with the organic C nor lipid content of the residues. However, the cumulative amount of N released was significantly correlated with the total N content of the plant material (r=0.93***). The percentage of organic N of the legumes mineralized in soil ranged from 15.9 to 76.0%. The relationship between the percentage of N released and the CN ratio of the plant material showed an inverse cuvilinear response (r= 0.88***). It was also evident that the composition of lignin in the residue influenced N mine-ralization rates of the leguminous organs incorporated into soil.There was a curvilinear relationship between the cumulative amount of N released from the residues and time of incubation. Nitrogen mineralization rates were described by first-order kinetics to estimate the N mineralization potential (N0), mineralization rate constant (k), and the time of incubation required to mineralize one-half of N0 (t1/2). The kinetic parameters were calculated by both the linear least squares (LLS) and nonlinear least squares (NLLS) transformations. The N0 values among the crop residues varied from –35 to 510 g Ng–1 soil. Statistical analyses revealed that the N0 values obtained by both LLS and NLLS methods were significantly correlated (r=0.93***). The mineralization rate constants (k) of the residues ranged from 0.045 to 0.325 week–1. The time of incubation required to mineralize one-half the nitrogen mineralization potential (t1/2) of the legumes incorporated into soil ranged from 2.1 to 15.4 weeks.  相似文献   

18.
A missense mutation (N1411) in Presenilin-2 (PS-2) gene is associated with early-onset familial Alzheimer's disease. In this study, SK-N-SH human neuroblastoma cells were transfected with wild-type and mutant PS-2 gene to examine presenilin-2 effects on apoptosis. Serum deprivation resulted in enhanced apoptosis in mutant PS-2 comparing with wild-type PS-2. Similarly, mutant PS-2 induced lactate dehydrogenase release to greater extent than wild-type PS-2. Time course experiment demonstrated that the increase in caspase-3-like activity was more pronounced and accelerated in mutant PS-2, compared to wild-type PS-2. While a significant decrease in bcl-2, an anti-apoptotic molecule, occurred in the cells overexpressing mutant PS-2, no significant change was observed in bax, a pro-apoptotic molecule, as compared with the cells overexpressing wild-type PS-2. Our study demonstrated that mutant PS-2 induces apoptosis accompanied by increased caspase-3-like activity and decreased bcl-2 expression in neuronal cells after serum-deprivation.  相似文献   

19.
New neurons are added throughout the forebrain of adult birds. The song-control system is a model to investigate the addition of new long-projection neurons to a cortical circuit that regulates song, a learned sensorimotor behavior. Neuroblasts destined for the song nucleus HVC arise in the walls of the lateral ventricle, and wander through the pallium to reach HVC. The survival of new HVC neurons is supported by gonadally secreted testosterone and its downstream effectors including neurotrophins, vascularization, and electrical activity of postsynaptic neurons in nucleus RA (robust nucleus of the arcopallium). In seasonal species, the HVC→RA circuit degenerates in nonbreeding birds, and is reconstructed by the incorporation of new projection neurons in breeding birds. There is a functional linkage between the death of mature HVC neurons and the birth of new neurons. Various hypotheses for the function of adult neurogenesis in the song system can be proposed, but this remains an open question.Song behavior in oscine birds is regulated by a network of pallial and striatal nuclei. The song-control system shows extensive plasticity in adults, including ongoing neurogenesis in several nuclei (Brenowitz 2008). The addition of new neurons to the adult brain of higher vertebrates was first suggested by the pioneering studies of Altman and Das (1965) and Kaplan and Hinds (1977). They reported that labeled cells were present in the dentate gyrus (DG) of rats following the injection of 3H-thymidine. Their claims, however, met with skepticism and the neuronal identity of the new cells that they observed was called into question (Gross 2000). In an influential study, Rakic (1985) injected adult rhesus monkeys with 3H-thymidine and reported that, “all neurons of the rhesus monkey brain are generated during prenatal and early postnatal life.” The study of neuronal addition to the adult brain, was subsequently dropped for ∼20 years in the face of the dogma that neurogenesis was largely completed by birth (Gross 2000). This prevailing view only started to be overturned when Nottebohm and colleagues published a series of studies showing that new cells are added to the cortical-like song nucleus HVC (Fig. 1) of adult canaries (Serinus canarius) (Goldman and Nottebohm 1983). These new cells have neuronal morphology, some of these cells fire action potentials in response to sound (Paton and Nottebohm 1984), receive synaptic input (Burd and Nottebohm 1985), may synapse on neurons in the efferent robust nucleus of the arcopallium (RA) (Alvarez-Buylla et al. 1990), and express neuron-specific proteins (Barami et al. 1995). Together, these studies in songbirds showed that new neurons are born and incorporated into functional circuits in the brains of adults of higher vertebrates (Nottebohm 2004). This research on adult neurogenesis in songbirds stimulated investigators to re-examine this topic in mammals. It soon became clear that new neurons are added throughout life to the DG and olfactory bulb of mammals including humans (Cameron and Gould 1994; Gould et al. 1997, 1999a; Lim et al. 1997; Eriksson et al. 1998). Because of these initial confirmatory reports, there has been explosive growth in study of the mechanisms and functions of adult neurogenesis in the mammalian DG and olfactory bulb.Open in a separate windowFigure 1.A schematic of the neurogenic regions in the avian brain overlaid on the avian song circuits. Neurogenic regions are shown in red. Note the proximity of HVC (and hippocampus [HC]) to the ventricular zone (VZ). A schematic version of the motor pathway for song production is shown in blue. A schematic of the ascending auditory pathway is shown in green. The dotted line indicates an indirect route through many nuclei of the ascending auditory pathway leading to field L in the telencephalon. The anterior forebrain circuit for song learning and plasticity is shown in yellow. NCM, Caudomedial nidopallium; RA, arcopallium; LMAN, lateral magnocellular nucleus of the anterior neostriatum; OB, olfactory bulb; DLM, dorsolateral medial; PAm, parambigualis; RAm, retroambigualisBirds continue to be a productive model for the study of neurogenesis in the adult brain, as discussed below. In this article, we will focus on neurogenesis in the song-control system as this is the most intensively studied model in birds. (For a review of neurogenesis in the avian hippocampus [HC], see Barnea and Pravosudov 2011.) We will discuss the mechanisms of neurogenesis in the song system, intrinsic and extrinsic factors that influence neuronal addition, a linkage between cell death and neurogenesis, seasonal plasticity, and consider potential functions of adult neurogenesis.  相似文献   

20.
To determine what changes occur in the activity of gonadotropin-releasing hormone (GnRH) neurons during pubertal development in primate species we tested the hypotheses that there are morphologic differences between GnRH-containing neurons in juvenile versus adult monkeys, and the low activity of the reproductive axis is governed by hypothalamic GnRH release in monkeys prior to puberty. We removed the brains from 5 juvenile and 5 adult male monkeys (Macaca fascicularis) and blocked, sectioned, and prepared each hypothalamus for light microscopic immunocytochemistry for GnRH-containing cells. The distribution and number of GnRH-containing neurons were similar in adult and juvenile brains; however, GnRH-containing perikarya in adult brains were significantly larger in total cross-sectional area (200 +/- 12 vs. 169 +/- 8 micron 2, P less than 0.05) and in cross-sectional area of the cytoplasm (139 +/- 2 vs. 88 +/- 6 micron 2, P less than 0.05) than in juvenile brains. In another group of 10 juvenile male macaques, we administered an antiserum to GnRH (Fraser #94; 2 ml/kg, i.v.) and monitored the effects on plasma luteinizing hormone (LH) and testosterone concentrations. The percentage of plasma samples with detectable LH levels decreased significantly (from 26.67 +/- 8.3% to 5.3 +/- 3.4%, P less than 0.05) after GnRH antiserum administration; however, plasma testosterone concentrations (0.08 +/- 0.02 ng/ml) remained unchanged. We conclude that during pubertal maturation in primate species there is increased synthesis and release of GnRH from a population of GnRH neurons that are active prior to puberty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号