首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cytoplasmic juxtamembrane region of the p75 neurotrophin receptor (p75(NTR)) has been found to be necessary and sufficient to initiate neural cell death. The region was named "Chopper" to distinguish it from CD95-like death domains. A 29-amino acid peptide corresponding to the Chopper region induced caspase- and calpain-mediated death in a variety of neural and non-neural cell types and was not inhibited by signaling through Trk (unlike killing by full-length p75(NTR)). Chopper triggered cell death only when bound to the plasma membrane by a lipid anchor, whereas non-anchored Chopper acted in a dominant-negative manner, blocking p75(NTR)-mediated death both in vitro and in vivo. Removal of the ectodomain of p75(NTR) increased the potency of Chopper activity, suggesting that it regulates the association of Chopper with downstream signaling proteins.  相似文献   

2.
Neurotrophins induce neural cell survival and differentiation during retinal development and regeneration through the high-affinity tyrosine kinase (Trk) receptors. On the other hand, nerve growth factor (NGF) binding to the low-affinity neurotrophin receptor p75 (p75(NTR)) might induce programmed cell death (PCD) in the early phase of retinal development. In the present study, we examined the retinal cell types that experience p75(NTR)-induced PCD and identify them to be postmitotic retinal ganglion cells (RGCs). However, retinal morphology, RGC number, and BrdU-positive cell number in p75(NTR) knockout (KO) mouse were normal after embryonic day 15 (E15). In chick retina, migratory RGCs express p75(NTR), whereas layered RGCs express the high-affinity NGF receptor TrkA, which may switch the pro-apoptotic signaling of p75(NTR) into a neurotrophic one. In contrast to the chick model, migratory RGCs express TrkA, while stratified RGCs express p75(NTR) in mouse retina. However, RGC number in TrkA KO mouse was also normal at birth. We next examined the expression of transforming growth factor beta (TGFbeta) receptor, which modulates chick RGC number in combination with p75(NTR), but was absent in mouse RGCs. p75(NTR) and TrkA seem to be involved in the regulation of mouse RGC number in the early phase of retinal development, but the number may be later adjusted by other molecules. These results suggest the different mechanism of RGC number control between mouse and chick retina.  相似文献   

3.
The low affinity neurotrophin receptor p75NTR can mediate cell survival as well as cell death of neural cells by NGF and other neurotrophins. To elucidate p75NTR-mediated signal transduction, we screened p75NTR-associated proteins by a yeast two-hybrid system. We identified one positive clone and named NADE (p75NTR-associated cell death executor). Mouse NADE has marked homology to the human HGR74 protein. NADE specifically binds to the cell-death domain of p75NTR. Co-expression of NADE and p75NTR induced caspase-2 and caspase-3 activities and the fragmentation of nuclear DNA in 293T cells. However, in the absence of p75NTR, NADE failed to induce apoptosis, suggesting that NADE expression is necessary but insufficient for p75NTR-mediated apoptosis. Furthermore, p75NTR/NADE-induced cell death was dependent on NGF but not BDNF, NT-3, or NT-4/5, and the recruitment of NADE to p75NTR (intracellular domain) was dose-dependent. We obtained similar results from PC12 cells, nnr5 cells, and oligodendrocytes. Taken together, NADE is the first signaling adaptor molecule identified in the involvement of p75NTR-mediated apoptosis induced by NGF, and it may play an important role in the pathogenesis of neurogenetic diseases.  相似文献   

4.
The common neurotrophin receptor, p75(NTR), has been shown to signal in the absence of Trk tyrosine kinase receptors, including induction of neural apoptosis and activation of NF-kappaB. However, the mechanisms by which p75(NTR) initiates these intracellular signal transduction pathways are unknown. Here we report interactions between p75(NTR) and the six members of TRAF (tumor necrosis factor receptor-associated factors) family proteins. The binding of different TRAF proteins to p75(NTR) was mapped to distinct regions in p75(NTR). Furthermore, TRAF4 interacted with dimeric p75(NTR), whereas TRAF2 interacted preferentially with monomeric p75(NTR). TRAF2-p75(NTR), TRAF4-p75(NTR), and TRAF6-p75(NTR) interactions modulated p75(NTR)-induced cell death and NF-kappaB activation with contrasting effects. Coexpression of TRAF2 with p75(NTR) enhanced cell death, whereas coexpression of TRAF6 was cytoprotective. Furthermore, overexpression of TRAF4 abrogated the ability of dimerization to prevent the induction of apoptosis normally mediated by monomeric p75(NTR). TRAF4 also inhibited the NF-kappaB response, whereas TRAF2 and TRAF6 enhanced p75(NTR)-induced NF-kappaB activation. These results demonstrate that TRAF family proteins interact with p75(NTR) and differentially modulate its NF-kappaB activation and cell death induction.  相似文献   

5.
The p75 neurotrophin receptor (p75(NTR)) belongs to the tumor necrosis factor receptor/nerve growth factor receptor superfamily. In some cells derived from neuronal tissues it causes cell death through a poorly characterized pathway. We developed a neuronal system using conditionally immortalized striatal neurons, in which the expression of p75(NTR) is inducibly controlled by the ecdysone receptor. In these cells p75(NTR) induces apoptosis through its death domain in a nerve growth factor-independent manner. Caspases 9, 6, and 3 are activated by receptor expression indicating the activation of the common effector pathway of apoptosis. Cell death is blocked by a dominant negative form of caspase 9 and Bcl-X(L) consistent with a pathway that involves mitochondria. Significantly, the viral flice inhibitory protein E8 protects from p75(NTR)-induced cell death indicating that death effector domains are involved. A p75(NTR) construct with a deleted death domain dominantly interferes with p75(NTR) signaling, implying that receptor multimerization is required. However, in contrast to the other receptors of the family, p75(NTR)-mediated apoptosis does not involve the adaptor proteins Fas-associated death domain protein or tumor necrosis factor-associated death domain protein, and the apical caspase 8 is not activated. We conclude that p75(NTR) signals apoptosis by similar mechanisms as other death receptors but uses different adaptors and apical caspases.  相似文献   

6.
Epidermal growth factor (EGF)-treated neurospheres from fetal forebrain contain multipotential cells capable of neuronal, astrocytic, and oligodendroglial differentiation. These neural precursor cells express the TrkB as well as the neurotrophin receptor p75 (p75NTR), suggesting that they are BDNF responsive. In this study, we test whether the p75NTR plays a role in the differentiation of these neural precursor cells in vitro. Activation of the TrkB and the p75NTR by the addition of BDNF facilitates neuronal commitment and marked neurite genesis. However, no promotion of neuronal commitment by BDNF was observed in the neural precursor cells from mice carrying a mutation in the p75NTR gene. In addition, we observed a significant increase in the number of nestin-positive cells and the proliferation of the cells lacking functional p75NTR. These findings suggest that the p75NTR is required for proper neuronal fate decision as well as the differentiation of the neural precursor cells.  相似文献   

7.
NRIF (neurotrophin receptor interacting factor) is a ubiquitously expressed zinc finger protein of the Krüppel family which interacts with the neurotrophin receptor p75(NTR). The interaction was first detected in yeast and then biochemically confirmed using recombinant GST-NRIF fusions and p75(NTR) expressed by eukaryotic cells. Transgenic mice carrying a deletion in the exon encoding the p75(NTR)-binding domain of NRIF display a phenotype which is strongly dependent upon genetic background. While at the F(2 )generation there is only limited (20%) embryonic lethality, in a congenic BL6 strain nrif(-/-) mice cannot survive beyond E12, but are viable and healthy to adulthood in the Sv129 background. The involvement of NRIF in p75(NTR)/NGF-mediated developmental cell death was examined in the mouse embryonic neural retina. Disruption of the nrif gene leads to a reduction in cell death which is quantitatively indistinguishable from that observed in p75(NTR)(-/-) and ngf(-/-) mice. These results indicate that NRIF is an intracellular p75(NTR)-binding protein transducing cell death signals during development.  相似文献   

8.
Prolonged or high-intensity exposure to visible light leads to photoreceptor cell death. In this study, we demonstrate a novel pathway of light-induced photoreceptor apoptosis involving the low-affinity neurotrophin receptor p75 (p75NTR). Retinal degeneration upregulated both p75NTR and the high-affinity neurotrophin receptor TrkC in different parts of Müller glial cells. Exogenous neurotrophin-3 (NT-3) increased, but nerve growth factor (NGF) decreased basic fibroblast growth factor (bFGF) production in Müller cells, which can directly rescue photoreceptor apoptosis. Blockade of p75NTR prevented bFGF reduction and resulted in both structural and functional photoreceptor survival in vivo. Furthermore, the absence of p75NTR significantly prevented light-induced photoreceptor apoptosis. These observations implicate glial cells in the determination of neural cell survival, and suggest functional glial-neuronal cell interactions as new therapeutic targets for neurodegeneration.  相似文献   

9.
The p75 neurotrophin receptor (p75(NTR)) is a death receptor which belongs to the tumor necrosis factor receptor super-family of membrane proteins. This study shows that p75(NTR) retarded cell cycle progression by induced accumulation of cells in G0/G1 and a reduction in the S phase of the cell cycle. The rescue of tumor cells from cell cycle progression by a death domain deleted (DeltaDD) dominant-negative antagonist of p75(NTR) showed that the death domain transduced anti-proliferative activity in a ligand-independent manner. Conversely, addition of NGF ligand rescued retardation of cell cycle progression with commensurate changes in components of the cyclin/cdk holoenzyme complex. In the absence of ligand, p75(NTR)-dependent cell cycle arrest facilitated an increase in apoptotic nuclear fragmentation of the prostate cancer cells. Apoptosis of p75(NTR) expressing cells occurred via the intrinsic mitochondrial pathway leading to a sequential caspase-9 and -7 cascade. Since the death domain deleted dominant-negative antagonist of p75(NTR) rescued intrinsic caspase associated apoptosis in PC-3 cells, this shows p75(NTR) was integral to ligand independent induction of apoptosis. Moreover, the ability of ligand to ameliorate the p75(NTR)-dependent intrinsic apoptotic cascade indicates that NGF functioned as a survival factor for p75(NTR) expressing prostate cancer cells.  相似文献   

10.
Alzheimer's disease is characterized by the over-production and accumulation of amyloidogenic Abeta peptide, which can induce cell death in vitro. It has been suggested that the death signal could be transduced by the pan neurotrophin receptor (p75NTR). p75NTR is well known for its ability to mediate neuronal death in neurodegenerative conditions and is inextricably linked with changes that occur in Alzheimer's disease. Moreover, Abeta binds to p75NTR, activating signalling cascades. However, the complexity of p75NTR-mediated signalling, which does not always promote cell death, leaves open the possibly of Abeta promoting death via an alternative signalling pathway or the regulation of other p75NTR-mediated actions. This review focuses on the interactions between Abeta and p75NTR in the context of the broader p75NTR signalling field, and offers alternative explanations for how p75NTR might contribute to the aetiology of Alzheimer's disease.  相似文献   

11.
12.
The p75 neurotrophin receptor (p75NTR) has dual functions in cell survival and cell death but its intracellular signalling pathways are not understood. Here we describe that in rat brain and in pervanadate-stimulated PCNA and HEK293 cells p75NTR is phosphorylated at a single tyrosine residue within the cytosolic C-terminus. Phosphorylated tyrosine 308 constitutes a binding site for the ubiquitin ligase c-Cbl. This interaction is a prerequisite for ubiquitination of p75NTR. Our data suggest a c-Cbl-dependent ubiquitination of p75NTR involved in the regulation of p75NTR signalling.  相似文献   

13.
14.
The common neurotrophin receptor (p75(NTR) ) regulates various functions in the developing and adult nervous system. Cell survival, cell death, axonal and growth cone retraction, and regulation of the cell cycle can be regulated by p75(NTR) -mediated signals following activation by either mature or pro-neurotrophins and in combination with various co-receptors, including Trk receptors and sortilin. Here, we review the known functions of p75(NTR) by cell type, receptor-ligand combination, and whether regulated intra-membrane proteolysis of p75(NTR) is required for signalling. We highlight that the generation of the intracellular domain fragment of p75(NTR) is associated with many of the receptor functions, regardless of its ligand and co-receptor interactions.  相似文献   

15.
The p75 neurotrophin receptor (p75NTR) is a death domain (DD) containing receptor of the TNF/FAS(APO-1) family. p75NTR has recently been shown to mediate apoptosis in certain types of neurons as well as in oligodendrocytes. The molecular mechanisms by which p75NTR stimulates apoptosis are still unknown. Here, we have tested whether overexpression of p75NTR could modulate survival of sympathetic neurons cultured in the presence or absence of NGF. Moreover, using the yeast two-hybrid system, we tested whether p75NTR intracellular domain was able to dimerize or interact with known DD-containing proteins including FADD, RIP, RAIDD and TRADD. We found that over-expression of p75NTR had no effect on the survival of sympathetic neurons cultured in the presence of NGF but instead delayed neuronal death following NGF deprivation. These results strongly support the finding that p75NTR is not involved in the apoptosis process induced by NGF deprivation in sympathetic neurons. We also foun d that the intracellular domain of p75NTR failed to associate either with itself or with other known DD-containing proteins. This suggests that the mechanisms by which p75NTR triggers apoptosis in certain cell types are different from those used by other receptors of the TNF/FAS family.  相似文献   

16.
The common neurotrophin receptor p75(NTR) has been shown to initiate intracellular signaling that leads either to cell survival or to apoptosis depending on the cell type examined; however, the mechanism by which p75(NTR) initiates its intracellular transduction remains unclear. We show here that the tumor necrosis factor receptor-associated death domain protein (TRADD) interacts with p75(NTR) upon nerve growth factor (NGF) stimulation. TRADD could be immunodetected after p75(NTR) immunoprecipitation from MCF-7 breast cancer cells stimulated by nerve growth factor. In addition, confocal microscopy indicated that NGF stimulation induced the plasma membrane localization of TRADD. Using a dominant negative form of TRADD, we also show that interactions between p75(NTR) and TRADD are dependent on the death domain of TRADD, thus demonstrating its requirement for binding. Furthermore, the p75(NTR)-mediated activation of NF-kappaB was inhibited by transfection with a dominant negative TRADD, resulting in an inhibition of NGF antiapoptotic activity. These results thus demonstrate that TRADD is involved in the p75(NTR)-mediated antiapoptotic activity of NGF in breast cancer cells.  相似文献   

17.
Neurotrophins signal through two different classes of receptors, members of the trk family of receptor tyrosine kinases, and p75 neurotrophin receptor (p75(NTR)), a member of the tumor necrosis factor receptor family. While neurotrophin binding to trks results in, among other things, increased cell survival, p75(NTR) has enigmatically been implicated in promoting both survival and cell death. Which of these two signals p75(NTR) imparts depends on the specific cellular context. Xenopus laevis is an excellent system in which to study p75(NTR) function in vivo because of its amenability to experimental manipulation. We therefore cloned partial cDNAs of two p75(NTR) genes from Xenopus, which we have termed p75(NTR)a and p75(NTR)b. We then cloned two different cDNAs, both of which encompass the full coding region of p75(NTR)a. Early in development both p75(NTR)a and p75(NTR)b are expressed in developing cranial ganglia and presumptive spinal sensory neurons, similar to what is observed in other species. Later, p75(NTR)a expression largely continues to parallel p75(NTR) expression in other species. However, Xenopus p75(NTR)a is additionally expressed in the neuroepithelium of the anterior telencephalon, all layers of the retina including the photoreceptor layer, and functioning axial skeletal muscle. Finally, misexpression of full length p75(NTR) and each of two truncated mutants in developing retina reveal that p75(NTR) probably signals for cell survival in this system. This result contrasts with the reported role of p75(NTR) in developing retinae of other species, and the possible implications of this difference are discussed.  相似文献   

18.
Although traditionally little attention has been paid to the interplay between neurotrophins and the cell cycle, a number of recent findings suggest an important role for these growth factors in the regulation of this aspect of the cellular physiology. In this article, we review the evidence from a number of studies that neurotrophins can influence cell cycle progression or mitotic cycle arrest both in the nervous system as well as in other cell types. The contrary response of different cells to neurotrophins in terms of cell cycle regulation derives in part from the fact that these factors use two different receptor types to transmit their signals: members of the Trk family and the p75 neurotrophin receptor (p75NTR). With this in mind, we outline the current state of our knowledge regarding the molecular basis underlying the control of cell cycle progression by neurotrophins. We focus our interest on the receptors that transduce these signals and, in particular, the striking finding that p75NTR interacts with proteins that can promote mitotic cycle arrest. Finally, we discuss the mechanisms of cell death mediated by p75NTR in the context of cell cycle regulation.  相似文献   

19.
The p75 neurotrophin receptor (p75NTR) has been shown to mediate neuronal death through an unknown pathway. We microinjected p75NTR expression plasmids into sensory neurons in the presence of growth factors and assessed the effect of the expressed proteins on cell survival. We show that, unlike other members of the TNFR family, p75NTR signals death through a unique caspase-dependent death pathway that does not involve the "death domain" and is differentially regulated by Bcl-2 family members: the anti-apoptotic molecule Bcl-2 both promoted, and was required for, p75NTR killing, whereas killing was inhibited by its homologue Bcl-xL. These results demonstrate that Bcl-2, through distinct molecular mechanisms, either promotes or inhibits neuronal death depending on the nature of the death stimulus.  相似文献   

20.
The mechanisms employed by the p75 neurotrophin receptor (p75NTR) to mediate neurotrophin-dependent apoptosis are poorly defined. Two-hybrid analyses were used to identify proteins involved in p75NTR apoptotic signaling, and a p75NTR binding partner termed NRAGE (for neurotrophin receptor-interacting MAGE homolog) was identified. NRAGE binds p75NTR in vitro and in vivo, and NRAGE associates with the plasma membrane when NGF is bound to p75NTR. NRAGE blocks the physical association of p75NTR with TrkA, and, conversely, TrkA overexpression eliminates NRAGE-mediated NGF-dependent death, indicating that interactions of NRAGE or TrkA with p75NTR are functionally and physically exclusive. NRAGE overexpression facilitates cell cycle arrest and permits NGF-dependent apoptosis within sympathetic neuron precursors cells. Our results show that NRAGE contributes to p75NTR-dependent cell death and suggest novel functions for MAGE family proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号