首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R.J. Kluge  A.J. Gordon 《BioControl》2004,49(3):341-355
The hakea bud weevil, Dicomada rufa (Curculionidae), is a promising candidate for the biological control of the weed Hakea sericea (Proteaceae) in South Africa. Because D. rufa could not be successfully cultured on potted plants in quarantine, most of theconventional methods for host range determination were not suitable. A type of open-field testing method, the fixed plot survey method, was developed to show that D. rufa is host specific to H. sericea. The trial was conducted in three 1–2 ha plots at three localities in New SouthWales, Australia, involving 41 test plantspecies. This result was combined with otherconventional considerations to apply for therelease of D. rufa in South Africa. Theseincluded a multiple choice feeding trial inquarantine in South Africa, during which 10test species from seven genera of South AfricanProteaceae were not accepted for feeding. AllSouth African Proteaceae, except Brabejumstellatifolium, are phylogenetically distinctfrom H. sericea. Also, there are norecords of D. rufa interacting withcommercially important plants in Australia,including commercially cultivated South AfricanProteaceae. Dicomada rufa adult andlarval feeding destroys buds, flowers, smallfruits and succulent shoots. It is expectedthat this damage will supplement that of thetwo seed-feeding biological control agentsalready established in South Africa and furtherreduce the reproductive potential of the weed,particularly that of young plants regeneratingafter fires. Without compromising safety, thefixed plot survey method may also contribute toreducing the time and cost normally associatedwith conventional host specificity testing.  相似文献   

2.
Summary Four shrub species of the Australian Proteaceae (Hakea sericea, H. gibbosa, H. suaveolens and H. salicifolia) were introduced to South African fynbos shrublands between 1840 and 1860. H. sericea is highly invasive, H. gibbosa and H. suaveolens are moderately invasive and H. salicifolia is not invasive. The allocation of reproductive energy, germinability, the ability to survive fires and to germinate in burnt and unburnt areas, and the nutrient content of seeds were assessed for the four species. The information was used to investigate whether the success of H. sericea relative to the other three species could be explained by the superior expression of any trait. The most important trait which separates H. sericea from the other species is its ability to produce a large seed bank in its adopted environment in the absence of seed predators. Seed production in H. sericea shrubs with an above-ground dry mass of 8 kg is four times greater than H. gibbosa and more than 16 times that of H. suaveolens. Although H. salicifolia also produces a large seed bank, its seeds are unable to survive fires due to inadequate insulation by the small follicles. The results are compared to dispersal and seed bank data for indigenous South African Proteaceae, which have low dispersal and suffer high pre-dispersal seed predation. We suggest that potential invasives in the fynbos can be identified as species that have: (i) a potentially high seed production that is limited by specialized predators; (ii) an ability to disperse over long distances; and (iii) are pre-adapted to frequent fires and low soil nutrients. The data also support the current strategy of combatting H. sericea using specialized insect seed predators.  相似文献   

3.
Terry Olckers   《Biological Control》2003,28(3):302-312
Biological control of Solanum mauritianum Scopoli, a major environmental weed in the high-rainfall regions of South Africa, is dependent on the establishment of agents that can reduce fruiting and limit seed dispersal. The flowerbud weevil, Anthonomus santacruzi Hustache, is a promising fruit-reducing agent, despite ambiguous results obtained during host-specificity evaluations in quarantine. Adult no-choice tests showed that although feeding is confined to Solanum species, normal feeding and survival occurred on the foliage (devoid of floral material) of cultivated eggplant (aubergine), potato, and several native South African Solanum species. During paired-choice tests, involving floral bouquets in 10-liter containers, A. santacruzi oviposited in the flower buds of 12 of the 17 test species, including potato and eggplant, although significantly more larvae were recovered on S. mauritianum than on eight other species. Larvae survived to adults on all 12 species, with survival significantly lower on only four species than on S. mauritianum. However, during multi-choice tests, involving potted plants in a large walk-in cage, A. santacruzi consistently displayed significant feeding and oviposition preferences for S. mauritianum over all of the 14 Solanum species tested. Analyses of the risk of attack on nontarget Solanum plants suggested that, with the possible exception of two native species, none is likely to be extensively utilized as a host in the field. Also, host records and field surveys in South America have suggested that A. santacruzi has a very narrow host range and that the ambiguous laboratory results are further examples of artificially expanded host ranges. These and other considerations suggest that A. santacruzi should be considered for release against S. mauritianum in South Africa, and an application for permission to release the weevil was submitted in 2003.  相似文献   

4.
Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) was introduced as an ornamental in South Africa, but is fast becoming an important invasive plant in many areas. It is difficult to control the plant chemically and mechanically. The first biocontrol agent, the chrysomelid Charidotis auroguttata (Boheman), has been released. It established at some release sites, but numbers have so far remained low. Additional biocontrol agents were sought to augment C. auroguttata. The potential host ranges of two foliage feeding lace bugs, Carvalhotingis visenda (Drake and Hambleton) and C. hollandi (Drake) (Hemiptera: Tingidae) were evaluated on the basis of nymphal no-choice and adult multi-choice tests involving 23 plant species in 11 families. In no-choice tests, nymphs of both species were able to survive and complete development on M. unguis-cati only, and adults of both species only fed and oviposited on M. unguis-cati during the adult multi-choice tests. Host specificity tests thus confirm that the tingids are highly host specific biocontrol agents, and will not pose risk to any non-target plants in South Africa. A study to determine the potential impact of C. hollandi nymphal feeding on M. unguis-cati showed a significant decrease in the chlorophyll contents of leaves when compared to those of control plants. These studies indicate that, once released, the two lace bug species could contribute significantly to the biological control of M. unguis-cati in South Africa.  相似文献   

5.
The family Proteaceae dominates the nutrient-poor, Mediterranean-climate floristic regions of southwestern Australia (SWA) and the Cape of South Africa. It is well-recognised that mediterranean Proteaceae have comparatively large seeds that are enriched with phosphorus (P), stored mainly as salts of phytic acid in protein globoids. Seed P can contribute up to 48% of the total aboveground P, with the fraction allocated depending on the species fire response. For SWA species, 70–80% of P allocated to fruiting structures is invested in seeds, compared with 30–75% for Cape species, with SWA species storing on average 4.7 times more P per seed at twice the concentration. When soil P is less limiting for growth, seed P reserves may be less important for seedling establishment, and hence plants there tend to produce smaller seeds with less P. For Australian Hakea and Grevillea species the translocation of P from the fruit wall to the seed occurs in the days/weeks before final fruit dry mass is reached, and accounts for 4–36% of seed P. Seed P content increases with the level of serotiny, though it decreases marginally as a fraction of the total reproductive structure. The greater occurrence of serotiny and higher seed P content within the Proteaceae in SWA supports the notion that SWA soils are more P-impoverished than those of the Cape.  相似文献   

6.
T. Olckers 《BioControl》2004,49(3):323-339
The South American tree Solanum mauritianum, a major environmentalweed in the high-rainfall regions of SouthAfrica, has proved to be a difficult target forbiological control. Artificially expanded hostranges of candidate agents during quarantinehost-specificity tests, have resulted in therelease of only one agent species which has sofar had a negligible impact on the weed. Thenecessity for additional agents resulted in theimportation of a leaf-mining flea beetle, anunidentified species of Acallepitrix,from Brazil in 1997. No-choice tests inquarantine showed that potential host plantsare confined to the genus Solanum.Although several non-target plants, includingcultivated eggplant (aubergine) and some nativeSouth African Solanum species, sustainedfeeding, oviposition and the development oflarval leaf mines, most of these were inferiorhosts. These results were confirmed by pairedchoice tests, where Acallepitrix sp. nov.displayed significant feeding and ovipositionpreferences for S. mauritianum and where,with few exceptions, more larval leaf mineswere initiated on S. mauritianum.Interpretation of the host-specificity testswas facilitated by a risk assessment matrixwhich suggested that the risk of feeding andoviposition on non-target Solanum plants,including eggplant cultivations, was relativelylow. These and other considerations, such asthe lack of evidence of damage inflicted oncultivated Solanaceae in South America, suggestthat Acallepitrix sp. nov. could beconsidered for release against S. mauritianum in South Africa. However, the results of the host-specificity tests remain ambiguous and until more compelling evidence is obtained from field surveys and open-field trials in Brazil, an application for permission to release the flea beetle in South Africa will not be considered.  相似文献   

7.
The woody shrub Hakea sericea is an aggressive invader of natural vegetation in South Africa. Large-scale die-back in H. sericea is attributed to a form of the fungus Colletotrichum gloeosporioides. The progression of symptoms of the disease was monitored over 21 months. Results were used to construct a transition matrix model to predict further progression of the disease. Eighty-two percent mortality is predicted after 10 years. Pathogen-induced seed release occurred mainly between October and January. No regeneration was observed beneath or near infected stands of H. sericea. The model will be useful to managers when identifying priority areas for weed control operations.  相似文献   

8.
Native to Central America, Tecoma stans (L.) Juss ex Kunth var. stans (Bignoniaceae) is a small tree that is invasive in South Africa and neighbouring countries. The plant was targeted for biological control in South Africa in 2003, with two insect agents released and established so far. The root-feeding flea beetle, Heikertingerella sp. (Coleoptera: Galerucinae: Alticini), was imported from Mexico as an additional biocontrol agent and its biology and host specificity was assessed under quarantine conditions. The beetle displayed a generation time (i.e. from adult to adult) of 49 to 67 days, ensuring four annual generations under laboratory conditions. The beetle's larval and adult stages inflicted high levels of damage on the root system and the leaves of T. stans, respectively. No-choice tests with 40 test-plant species revealed adult feeding on only two non-target species, Tecoma × alata and T. capensis (Thunb.) Spach, with feeding four times higher on T. stans. Larvae developed to adulthood on T. stans only. Multi-choice tests involving the three Tecoma species confirmed these trends, demonstrating that Heikertingerella sp. is host specific. Since T. × alata is a hybrid of T. stans with invasive tendencies, any unlikely attacks by Heikertingerella sp. would be inconsequential in South Africa. The native T. capensis, which suffered little leaf damage and produced no F1 adults, is also at minimal risk of attack. We conclude that Heikertingerella sp. is a suitable biocontrol agent for T. stans and that permission for its release in South Africa be sought.  相似文献   

9.
T. Olckers 《BioControl》2000,45(3):373-388
The South American tree Solanummauritianum is a major environmental weed in thehigh-rainfall regions of South Africa and has beentargeted for biological control since 1984. Althoughhost ranges of imported agents determined duringquarantine tests have resulted in the rejection ofeight of the 11 candidate agents tested so far, theleaf-sucking lace bug Gargaphia decoris,imported from Argentina in 1995, displayed anacceptably narrow host range in captivity. No-choicetests showed that G. decoris is confined to Solanum species and cannot survive on solanaceouscrops outside that genus. Although these tests alsoindicated that G. decoris colonies could surviveand reproduce on cultivated eggplant (aubergine) andat least five native South African Solanumspecies, all but one native species proved to beinferior hosts in terms of adult survival andoviposition potential. During paired choice andmultichoice tests in small and larger cagesrespectively, G. decoris displayed very strongfeeding and oviposition preferences for S. mauritianum. Analyses of the risk of attack onnon-target Solanum plants revealed that, withone possible exception, none were likely to suffermore than incidental damage in the field. Host recordsfrom South America have also indicated that G. decoris has not been recorded on any Solanumspecies other than S. mauritianum, providingfurther evidence of its host specificity. The resultsof this study were accepted by the regulatoryauthorities and in February 1999, G. decorisbecame the first agent to be released in South Africafor the biological control of S. mauritianum.  相似文献   

10.
The control of invasive alien plants often involves the integration two or more approaches, including mechanical clearing, the application of herbicides, burning, and biological control. More than one species of invasive plant can threaten the same area, which necessitates prioritization in the allocation of scarce resources to support the control of different species. This paper describes the integrated control of the invasive shrub Hakea sericea over four decades in South Africa. The species is widespread across an area of approximately 800 × 200 km, and occurs mainly in rugged, inaccessible and fire-prone mountain areas. The species is serotinous, and produces copious amounts of seed that are wind dispersed after fires. We present a brief history of the control measures which included a combination of felling and burning, augmented by biological control. We used data from two surveys, 22 years apart, to assess changes in distribution and density of the species. The assessment suggested that the overall distribution of the species was reduced by 64%, from ~530,000 to ~190,000 ha between 1979 and 2001. The species either decreased in density, or was eliminated from 492,113 ha, while it increased in density, or colonised 107,192 ha. We conclude that initial programs of mechanical clearing were responsible for reducing the density and extent of infestations, and biological control was largely responsible for the failure of the species to re-colonize cleared sites, or to spread to new areas following unplanned wildfires. We propose that a significant portion of the resources used for clearing Hakea in the past can be reallocated to mechanical control efforts against other invasive species (such as alien pines) for which effective biological control options are not available, provided that sufficient resources are allocated to ensure the widespread and effective implementation of all biological control agents to maintain the advances reported on here.  相似文献   

11.
The invasive tree Solanum mauritianum Scop. has been targeted for biological control in South Africa and New Zealand, by deploying insect agents that could constrain its excessive reproductive output. The flower-feeding weevil Anthonomus santacruzi (Curculionidae) was approved for release in South Africa in 2007 but following the loss of the original culture in quarantine, new stocks were introduced from Argentina in 2008–2009. This study was initiated to confirm that the host range of the new culture was the same as that of the previous one, but also to assess the risks associated with the weevil's release in New Zealand. Different testing procedures, including no-choice tests and multi-choice tests in different arenas, produced inconsistent and ambiguous results. During no-choice tests, oviposition and larval development to adulthood occurred on three non-target species including two native South African and one native New Zealand Solanum species. However, subsequent multi-choice tests and a risk assessment suggested that the risks of anything more than collateral damage to non-target Solanum species are low. Overall, these data do not deviate substantially from the results of the original quarantine tests which facilitated the release of A. santacruzi in South Africa in 2009. Although we argue that none of the New Zealand native and cultivated species are at risk, stronger evidence from open-field trials and chemical ecology studies may be required to convince the regulatory authorities that A. santacruzi is suitable for release in New Zealand.  相似文献   

12.
The biology and host range of the defoliating beetle Physonota maculiventris Boheman (Chrysomelidae: Cassidinae) were studied in quarantine to determine its suitability for release as a biological control agent against Mexican sunflower, Tithonia diversifolia (Hemsl.) A. Gray (Asteraceae), in South Africa. Females laid 5.25?±?0.25 (mean?±?SE) egg batches during their lifetimes, with each batch consisting of approximately 33 eggs. Larvae were highly gregarious as early instars and both larvae and adults fed voraciously, often defoliating the plants completely. The life cycle of the beetle was completed in 67.5?±?7.5 days under quarantine conditions. Among the 58 test plant species subjected to no-choice tests, P. maculiventris developed successfully on T. diversifolia and some sunflower (Helianthus annuus L.) cultivars. However, only minor damage was recorded on non-target species, notably the exotic weed Xanthium strumarium L. and some H. annuus cultivars. Also, survival to adulthood was considerably lower on sunflower cultivars than on the target weed during these tests. During choice tests, P. maculiventris oviposited and developed successfully on T. diversifolia only, with only minor feeding damage on some H. annuus cultivars, suggesting that the beetle’s field host range will be confined to the target weed. Risk analysis also showed that P. maculiventris presents an extremely low risk to non-target plant species (e.g. within the tribe Heliantheae and other close relatives). The study concluded that P. maculiventris is safe for release in South Africa and an application for its release is being considered by the relevant South African regulatory authorities.  相似文献   

13.
Identifying nonrandom species composition patterns predicted by assembly rules has been a central theme in community ecology. Few studies have investigated the prevalence of multiple drivers on species composition patterns in small mammal assemblages in the Old World. This study investigated seasonal changes in rodent and shrew diversity in eleven savannah vegetation types in South Africa. We tested whether species composition patterns are nonrandom with respect to predictions from Diamond's assembly rules, niche limitation hypothesis and nestedness hypothesis. Species richness estimators indicated that inventories for the rodents (80%) and shrews (100%) were relatively complete. Rodent (n = 11 species) diversity and shrew (n = 5 species) diversity were highest in summer and lowest in autumn. Rodent richness was highest in the Terminalia sericea bushveld and woodlands and lowest in the Drypetes arguta sand forest, whilst shrew richness was highest in the T. sericea bushveld and woodlands and lowest in the Acacia nilotica/Dichrostachys cinerea open shrub savannah. We found no support for the predictions of competition and nestedness hypotheses and suggest that this was probably due to the high seasonal and annual variability in rodent and shrew diversity.  相似文献   

14.
Floral resources from native plants that are adapted to the local environment could be more advantageous than the use of nonnative plants. In Australia, there is a dearth of information on the benefits of native plants to natural enemies and their selectivity against pests. Accordingly, we examined the longevity of the parasitoids Diaeretiella rapae (McIntosh) and Cotesia glomerata (L.) (both Hymenoptera: Braconidae), and Diadegma semiclausum (Hellen) (Hymenoptera: Ichneumonidae) exposed to flowering shoots from Australian native plants which was compared with the nonnative buckwheat (Fagopyrum esculentum), often used in conservation biological control. Longevity of parasitoids was significantly enhanced by the Australian natives Westringia fruticosa, Mentha satureioides, Callistemon citrinus, Leptospermum cv. ‘Rudolph’, Grevillea cv. ‘Bronze Rambler’, Myoporum parvifolium, Lotus australis, and nonnative F. esculentum. The highest mean survival by native plant species was 3.4× higher for D. rapae with Leptospermum sp. and 4.3× higher for D. semiclausum with M. parvifolium. For C. glomerata, Grevillea sp. increased longevity by 6.9× compared with water only. Longevity of Plutella xylostella (L.) (Lepidoptera: Plutellidae), a major crop pest, was enhanced by all plants against which it was screened except Acacia baileyana, a species that had no effect on parasitoid longevity. Several Australian native plant species that benefit parasitoids were identified. None of the plant species provided a selective benefit to the parasitoid D. semiclausum compared with its host P. xylostella; however, the benefit of M. parvifolium and Grevillea sp. on the longevity of D. semiclausum was relatively higher compared with the pest. These results suggest the need for field studies to determine whether native Australian plants increase P. xylostella impact in nearby brassica crops.  相似文献   

15.
Mediterranean‐type ecosystems (MTEs) contain exceptional plant diversity. Explanations for this diversity are usually classed as either “equilibrium,” with elevated MTE diversity resulting from greater ecological carrying capacities, or “non‐equilibrium,” with MTEs having a greater accumulation of diversity over time than other types of ecosystems. These models have typically been considered as mutually exclusive. Here, we present a trait‐based explanatory framework that incorporates both equilibrium and non‐equilibrium dynamics. Using a large continental Australian plant radiation (Hakea) as a case study, we identify traits associated with niche partitioning in coexisting species (α‐traits) and with environmental filtering (β‐traits), and reconstruct the mode and relative timing of diversification of these traits. Our results point to a radiation with an early non‐equilibrium phase marked by divergence of β‐traits as Hakea diversified exponentially and expanded from the southwest Australian MTE into biomes across the Australian continent. This was followed from seven million years ago by an equilibrium phase, marked by diversification of α‐traits and a slowdown in lineage diversification as MTE‐niches became saturated. These results suggest that processes consistent with both equilibrium and non‐equilibrium models have been important during different stages of the radiation of Hakea, and together they provide a richer explanation of present‐day diversity patterns.  相似文献   

16.
The seed attacking moth Carposina autologa was released in South Africa for control of the weed Hakea sericea but established poorly. Altering the release method such that it corresponded more closely to natural infestation and better training and supervision of field workers resulted in a 111 % increase in success of a subsequent release.  相似文献   

17.
Tecoma stans (Bignoniaceae), is an evergreen shrub that has a wide natural distribution in the tropical and subtropical parts of the western hemisphere. This shrub is native to Mexico and the southern regions of the USA. This weed is widely distributed in South Africa and neighbouring countries. As part of the biological control initiative, a leafmining fly, Pseudonapomyza sp. (Diptera: Agromyzidae), was imported into South Africa, and was subsequently studied as a potential biological control agent for T. stans. During no-choice tests involving 46 plant species in 16 families, Pseudonapomyza sp. only oviposited and developed on T. stans. Neither oviposition nor larval development was recorded on the closely related and indigenous plant species. When six plant species in the Bignoniaceae family were exposed to Pseudonapomyza sp. during multi-choice tests, oviposition and larval development only occurred on T. stans. It was concluded that Pseudonapomyza sp. was sufficiently host-specific to be released against T. stans in South Africa. Pseudonapomyza sp. also displayed very promising biological attributes that could enhance its effectiveness to control T. stans.  相似文献   

18.
Fynbos is a vegetation type in the Cape Floral Region (CFR), at the southern tip of Africa. Portions of the CFR are recognised as a ‘serial’ World Heritage site and acclaimed by UNESCO as the world’s ‘hottest hot spot’ for plant species richness and endemism. Habitat degradation and species losses through human intrusion in the CFR include transformations brought about by introduced invasive alien tree species. Since 1970, ten invasive tree species in the fynbos biome have been subjected to biological control, namely: six Acacia species and Paraserianthes lophantha (Mimosaceae), Hakea sericea (Proteaceae) and Leptospermum laevigatum (Myrtaceae), all from Australia, and Sesbania punicea (Fabaceae) from South America. A total of 19 species have been deployed as biological control agents, including nine weevil species (eight Curculionidae and one species in the family Brentidae: Apioninae), a seed-feeding moth species (Lepidoptera: Carposinidae), two species of bud-gallers (Hymenoptera: Pteromalidae), two species of flower-gallers (Diptera: Cecidomyiidae), and a gall-forming rust fungus (Uredinales: Pileolariaceae). Most of these agents primarily reduce seed production, directly or indirectly, but some also cause die-back and mortality of their host plants. The overall result, often in combination with mechanical clearing and herbicide applications, has been a substantial decline in the abundance and/or aggressiveness of most of the targeted host-plants. In this review, four representative but contrasting case studies are used to show that biological control is an indispensible supplement to other management practices for long-term conservation of the remnants of the fynbos biome.  相似文献   

19.
The South American tree Solanum mauritianum Scopoli (Solanaceae), a major environmental weed in South Africa and New Zealand, has been targeted for biological control, with releases of agents restricted to South Africa. The leaf-sucking lace bug, Gargaphia decoris Drake (Tingidae), so far the only agent released, has become established in South Africa with recent reports of severe damage at a few field sites. To evaluate the insect’s suitability for release in New Zealand, host-specificity testing was carried out in South Africa in laboratory and open-field trials, with selected cultivated and native species of Solanum from New Zealand. No-choice tests confirmed the results of earlier trials that none of the three native New Zealand Solanum species are acceptable as hosts. Although the cultivated Solanum muricatum Aiton and S. quitoense Lam. also proved unacceptable as hosts, some cultivars of S. melongena L. (eggplant) supported feeding, development and oviposition in the no-choice tests. Although eggplant was routinely accepted under laboratory no-choice conditions in this and previous studies, observations in the native and introduced range of G. decoris, open-field trials and risk assessment based on multiple measures of insect performance indicate that the insect has a host range restricted to S. mauritianum. These results strongly support the proposed release of G. decoris in New Zealand because risks to non-target native and cultivated Solanum species appear to be negligible. An application for permission to release G. decoris in New Zealand will be submitted to the regulatory authority. Handling editor: John Scott.  相似文献   

20.
This paper contributes to the relatively sparse literature on the effects of insect herbivory on the population dynamics of plants and is probably unique in that it reports the long-term effects of combinations of three insect herbivore species on the population densities of a moderately long-lived tree species. The tree is Sesbania punicea, a leguminous perennial from South America that has been the target of a biological control programme in South Africa for almost 20 years. Sixteen infestations of the weed have been monitored for periods of up to 10 years to determine changes in the density of the mature, reproductive plants under the influence of different combinations of three biological control agents (i.e. with one, two or three of the agent species present in the weed infestation). The three biological control agents, all weevil species, include Trichapion lativentre, which primarily destroys the flower-buds, Rhyssomatus marginatus, which destroys the developing seeds, and Neodiplogrammus quadrivittatus, whose larvae bore into the trunk and stems of the plants. While T. lativentre occurs throughout the range of the weed in South Africa, the other two species are less mobile, more recent introductions and are largely confined to the vicinity of selected release sites. There has been a significant decline in the density of mature S. punicea in areas where two or more of the agents are established. The decline of the weed has been most evident where N. quadrivittatus is active and particularly so where both of the other two weevil species are also present. Received: 2 April 1997 / Accepted: 30 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号