首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gross morphology, histology and ultrastructure of the canary's incubation patch and the ventral apterium from which it arises are described. The apterium is vascularized by pectoral, external mammary, incubation, and prepubic arteries. It is innervated by cutaneous branches of spinal nerves. It has a surface area of 6 cm2. Its epidermis is a stratified squamous epithelium with basal, intermediate, transitional and cornified layers. Cells in the stratum germinativum contain a normal array of organelles, but are characterized by tonofilaments, desmosomes and interdigitating surfaces. Cellular organelles disappear in the stratum transitivum and are replaced by large vacuoles and keratohyalin bands. Nonmyelinated nerve fibers are abundant in the stratum germinativum. The dermis consists of (1) an avascular layer of dense collagen subjacent to the epidermis and containing many nonmyelinated nerves, and (2) an underlying layer of areolar connective tissue containing blood vessels, lamellar corpuscles and nerves. A layer of coarse elastic fibers, reinforced by collagen and smooth muscle, separates the dermis from subcutaneous tissue. In contrast to the ventral apterium, the incubation patch is featherless and visibly hypervascular and edematous. Its epidermis is both hypertrophic and hyperplastic. Large spaces separate cells in the stratum germinativum. The visible hypervascularity is due to hyperemia and increased number and size of blood vessels in the dermis. Visible edema is due to the accumulation of fluid interstitially. Although no histological differences exist among various regions of the ventral apterium, such differences are present in the incubation patch.  相似文献   

2.
Feet of chicks are normally covered with scales. Injection of retinoic acid into the amniotic cavity of 10-day chick embryos causes the formation of feathers on the foot scales. To elucidate whether retinoic acid affects primarily the epidermis or the dermis, heterotypic dermal-epidermal recombinants of tarsometatarsal skin were tested as to their morphogenetic capacity, when grafted to the chick chorioallantoic membrane. Recombinants involving treated epidermis and untreated dermis formed feathered scales, while the reverse recombinants of untreated epidermis and treated dermis led to the formation of scales only. Likewise the association of treated tarsometatarsal dermis with untreated epidermis from a non-appendage-forming region (the midventral apterium) resulted in the formation of scales only. These results show that retinoic acid affects primarily the epidermis. Further insight into the mechanism of dermal-epidermal interaction was gained by heterotopic recombinations of early (8.5- and 10-day) untreated tarsometatarsal dermis with epidermis from the midventral apterium. These recombinants formed scales, proving that tarsometatarsal dermis is endowed with scale-forming properties as early as 8.5 days of incubation. Finally, it is concluded that retinoic acid acts on the chick foot epidermal cells by temporarily inhibiting their scale placode-forming properties, allowing their latent feather placode-forming properties to be expressed.  相似文献   

3.
Summary The fine structure of the tentacles of the articulate brachiopod Terebratalia transversa has been studied by light and electron microscopy. The epidermis consists of a simple epithelium that is ciliated in frontal and paired latero-frontal or latero-abfrontal longitudinal tracts. Bundles of unsheathed nerve fibers extend longitudinally between the bases of the frontal epidermal cells and appear to end on the connective tissue cylinder; no myoneural junctions were found. The acellular connective tissue cylinder in each tentacle is composed of orthogonal arrays of collagen fibrils embedded in an amorphous matrix. Baffles of parallel crimped collagen fibrils traverse the connective tissue cylinder in regions where it buckles during flexion of the tentacle.The tentacular peritoneum consists of four cell types: 1) common peritoneal cells that line the lateral walls of the coelomic canal, 2) striated and 3) smooth myoepithelial cells that extend along the frontal and abfrontal sides of the coelomic canal, and 4) squamous smooth myoepithelial cells that comprise the tentacular blood channel.Experimental manipulations of a tentacle indicate that its movements are effected by the interaction of the tentacular contractile apparatus and the resilience of the supportive connective tissue cylinder. The frontal contractile bundle is composed of a central group of striated fibers and two lateral groups of smooth fibers which function to flex the tentacle and to hold it down, respectively. The small abfrontal group of smooth myoepithelial cells effects the re-extension of the tentacle, in conjunction with the passive resiliency of the connective tissue cylinder and the concomitant relaxation of the frontal contractile bundle.The authors wish to express their appreciation to Professor Robert L. Fernald for his advice and encouragement throughout the course of this study. Some of the work was conducted at the Friday Harbor Laboratories of the University of Washington. The authors are indebted to the Director, Professor A.O.D. Willows, for use of the facilities. Part of this study was supported by NIH Developmental Biology Training Grant No. 5-T01-HD00266 and NSF grant BMS 7507689  相似文献   

4.
Summary The present study concerns the functional organization of the skin ofTetraodon fluviatilis. The epidermis consists of five different types of cells — the flask-shaped mucous cells, the eosinophilic granular cells, the sacciform granulated cells, the vesicle containing granulated cells, and the polygonal cells. A thin noncellular layer, the cuticle found on the surface of the skin, is probably secreted from the polygonal cells in the outermost layer of the epidermis. A,well-defined lymphatic plexus exists between the cells of the basal layer.Numerous triradiate calcareous spines are embedded within elastic connective tissue pockets in the thick dermis. These pockets are filled with an amorphous, acellular, PAS positive material, and are richly supplied with fine blood capillaries. A histomorphologic basis for the erection of the spines and various structural modifications in the skin facilitating its enormous stretching under inflated conditions of the fish are discussed.Abbreviations Used BCA blood capillary - BM basement membrane - BC basal cell - BL basal layer - CFB collagen fiber bundle - CTB connective tissue band - DER dermis - EGC eosinophilic granular cell - EPD epidermis - FB fibroblasts - FC fat cell - L lymphocyte - LS lymphatic space - MC mucous cell - ML middle layer - MUS muscle - MYS myocommata - NV nerve - OL outermost layer - PCB black pigment cell - PCY yellow pigment cell - PEC polygonal epidermal cell - SCT subcutis - SGC sacciform granulated cell - SP spine - STC stratum compactum - STL stratum laxum - VGC vesicle containing granulated cell - VS vertical strand This investigation was supported by a research grant No. 38(131)/72-GAU-II from the Council of Scientific and Industrial Research and a financial assistance grant for teachers No. F. 6(4626) 72-(SF-1), from the University Grants Commission, Government of India, New Delhi.  相似文献   

5.
The limb tissues of the adult newt investigated for their fine structure include epidermis, subcutaneous glands, dermis, striated muscle, peripheral nerves and blood vessels. This survey complements and extends previous observations, emphasizing intercellular junctions, and the ubiquitous “glycocalyx” (= polysaccharide-protein lamella, around cells and adjacent to epithelia). Our survey touches on the characteristic tonofilaments, intercellular desmosomes and basal hemidesmosomes of the epidermis. The subcutaneous glands consist of secretory cells with a granular product, and myoepithelial cells; intercellular desmosomes are present. The adepidermal reticulum of collagen fibrils reveals periodic regions of intersecting fibrils ( = nodules), and fibril continuity with the underlying dermis: a striking feature is the adipose tissue closely applied to the adepidermal reticulum. The limb striated muscle displays typical banded myofibrils, and a triad system with centrotubules in the I-band close to the Z-band: terminal sacs of sarcoplasmic reticulum complete the triad system. A particularly prominent glycocalyx is applied to the surface of the sarcolemma. The peripheral nerves of the limb possess connective tissue sheaths with prominent vesiculation of the cell membranes, and an occasional intercellular desmosomal junction. Blood vessels typically have endothelial cells with prominently vesiculated plasma membranes. This investigation serves as the basis for recognizing the fine structure of tissue responses to trauma, their repair, and regeneration.  相似文献   

6.
Summary The normal skin of the pleuronectid fish, Hippoglossoides elassodon, is described by light and electron microscopy. The epidermis consists of 5 to 9 layers of cells, the majority of which are squamous cells and the minority mucous cells. The squamous cells are characterized by numerous desmosomes and associated cytoplasmic filaments. The mucous cells accumulate mucous droplets in vacuoles of Golgi origin and are observed apparently in the process of releasing their content at the free surface. The dermis consists of alternating lamellae composed of typical collagen fibers. Pigment cells are of three types: melanophores, iridophores (guanophores), and lipophores.This work was supported by Public Health Service Research Grant CA-08158 from the National Cancer Institute.  相似文献   

7.
We investigated the cellular mechanism of formation of subepidermal thick bundles of collagen (collagen lamella) during larval development of the bullfrog, Rana catesbeiana, using cDNA of alpha1(I) collagen as a probe. The originally bilayered larval epidermis contains basal skein cells and apical cells, and the collagen lamella is directly attached to the basement membrane. The basal skein cells above the collagen lamella and fibroblasts beneath it intensively expressed the alpha1(I) gene. As the skin developed, suprabasal skein cells ceased expression of the gene. Concomitantly, the fibroblasts started to outwardly migrate, penetrated into the lamella and formed connective tissue between the epidermis and the lamella. These fibroblasts intensively expressed the gene. As the connective tissue developed, the basal skein cells ceased to express the gene and were replaced by larval basal cells that did not express the gene. These dynamic changes took place first in a lateral region of the body skin and proceeded to all other regions except the tail. Isolated cultured skein cells expressed the gene and extracellularly deposited its protein as the type I collagen fibrils. Thus, it is concluded that anuran larval epidermal cells can autonomously and intrinsically synthesize type I collagen.  相似文献   

8.
Frozen sections stained with Oil-red-O and semithin (0.5 μm) plastic sections stained with toluidine blue revealed an abundance of fat globules of various sizes in all strata of the epidermis of bottlenose dolphins (Tursiops truncatus and T. gilli). The fat was rather evenly distributed but sometimes appeared as circumscribed areas of heavier concentration involving hundreds of cells (as seen in a single plane). Occasionally, there were smaller groups of epidermal cells heavily loaded with lipid. The dermis presented a unique phenomenon in the presence of abundant extracellular fat distributed among the collagen bundles as droplets of various sizes or as larger, irregularly shaped lipid particles that seemed to conform to the spaces between collagen bundles. These lipid particles were sometimes seen to be closely applied to the dermal surface of the stratum basale. Equally unusual was the presence of lipid particles of various sizes and shapes in the lumen of some of the vessels of the dermal papillae. Granular cells resembling mast cells were commonly seen in the papillary dermis and some were closely associated with lipid particles. Blood vessels of the reticular dermis tended to have collections of lipid droplets in the loose connective tissue often found adjacent to the tunica adventitia. It is postulated that the extracellular dermal lipids (probably mainly triglycerides) are broken down to free fatty acids that diffuse into the basal layer of the epidermis and are there resynthesized into triglycerides. Possible uses for the epidermal lipids are discussed.  相似文献   

9.
The epidermis of the torrent catfish, Liobagrus mediadiposalis, consists of three layers: the outermost layer, middle layer and stratum germinativum. The epidermis consists of two types of skin glands, small mucus cell and voluminous club cell. The unicellular mucus cell contains acid sulfomucins (some sialomucins) and the club cell, sometimes binucleate, is proteinaceous. Well-developed vascularization is one of the characteristics of epidermis of L. mediadiposalis. Well-developed lymphatic spaces contain lymphocytes in the epidermis. The dermis lacks scales and consists mostly of a thick, dense connective tissue; its superficial region just below the basal membrane is supplied with fine blood capillaries. These histological features of the skin in L. mediadiposalis are consistent with that required for cutaneous respiration.  相似文献   

10.
The previous issue of Culture, Medicine and Psychiatry (Vol. 5, N. 4) included my article When Rational Men Fall Sick: An Inquiry into Some Assumptions Made by Medical Anthropologists together with a series of comments. This paper consists of my replies to some of the commentators and a case study illustrating my points.My collaborators in this research were two physicians, Dr. Robert Like, of the Department of Family Practice of Case Western Reserve University and Dr. Rivka Plotkin of the Ben-Gurion University of the Negev (Israel). Also, I want to thank Avraham Blidstein for his invaluable assistance.  相似文献   

11.
Summary The morphology and ultrastructure of the lateral body integument of the leptocephalus, glass eel, pigmented elver, and adult stages of the American eel, Anguilla rostrata, were examined with light and electron microscopy. The integument consists of an epidermis separated by a basal lamina from the underlying dermis. Three cell types are present in the epidermis in all stages. Filament-containing cells, which are the principal structural cell type, are increasingly numerous at each stage. Mucous cells, which secrete the mucous that compose the mucous surface coat, are also more numerous in each subsequent stage and are more numerous in the anterior lateral body epidermis than in the posterior lateral body epidermis of the adult. Club cells, whose function is unknown, are most numerous in the glass eel and pigmented elver. Chloride cells are common in the leptocephalus which is marine and infrequent in the glass eel. They are not present in the pigmented elver and adult which inhabit estuaries and fresh-water. Lymphocytes and melanocytes are also present in some stages. The dermis comprises two layers: a layer of collagenous lamellae, the stratum compactum, and an underlying layer of loose connective tissue, the stratum spongiosum.There is a progressive increase in epidermal thickness at each stage which is paralleled by an increase in the thickness of the stratum compactum. Rudimentary scales are present in the dermis of the adult. The increase in the number of epidermal filament-containing cells, epidermal thickness and stratum compactum thickness is correlated with an increased need for protection from abrasion and mechanical damage as the eel moves from a pelagic, oceanic habitat to a benthic, freshwater habitat. The increase in mucous cell numbers is likewise correlated with an increased need for the protective and anti-bacterial action of the mucous surface coat in the freshwater environment.This investigation was supported by NIH research grant NS-11276 from National Institute of Neurological Diseases and Stroke to Dr. J.D. McCleave and by N.S.F. Grant GD 38933 to the Bermuda Biological Station, St. Georges West, Bermuda. Bermuda Biological Station Contribution No. 668  相似文献   

12.
The skin of the scuted teleost Agonus cataphractus has been investigated by histochemical methods, SEM and TEM. The anterior dorsal skin bears tubercles of epidermis overlying tiny ossifications (scutelets) superficial to the main scutes. The epidermis secretes a cuticular layer containing acidic non-sulphated glycoproteins, but there are no mucous goblet cells in the external skin. Non-mucous sacciform cells of two types are present in the epidermis, also numerous chloride cells. Scanning electron microscopy reveals variation in the microridge pattern of superficial epithelial cells, thought to relate to arrival at the surface and secretion of the cuticle. The major scutes overlap anteriorly, contrary to the normal arrangement of scales, indicating that they are secondary ossifications. The type of mineralization is similar to that of acellular bone. The scutes are set directly in the collagen of the dermis. They have a girdered structure with radial and cross bars, inserting on both faces of a thin plate. The interstices are occupied by unmineralized collagen, and extrinsic collagen bundles impinge on the bone. Non-mineralized parts of the dermis contain tracts of microfibrils in addition to collagen; these are best developed in the flexible gular skin and in the barbels and are interpreted as elastic tissue, although an amorphous component was not seen. The barbels have a core of connective tissue without a cartilaginous skeleton and bear taste buds and numerous chloride cells.  相似文献   

13.
The vas deferens of Ambystoma macrodactylum is composed of a peritoneal epithelium, connective tissue layer with fibroblasts, circular smooth muscle, capillaries, cells containing lipid, and a luminal epithelium composed of a single layer of cuboidal cells covered by a net of interconnected ciliated squamous cells. The cuboidal cells have abundant rough endoplasmic reticulum, mitochondria, and PAS + secretory vesicles. Squamous cells of breeding males consistently have tufts of ~100 cilia located at one end of the long axis of each cell. These cilia may help distribute secretory products. The squamous cells, absent in post-breeding males, are apparently sloughed into the lumen. Lipid vesicles are present throughout the cytoplasm of the cuboidal and squamous epithelial cells and are also in some cells of the connective tissue layer. These vesicles increase dramatically in number during the first 4 weeks after breeding and may serve as an energy pool for the next breeding season. Enzyme-histochemical tests for testosterone synthesis were negative. In addition to the accumulation of lipid and the loss of squamous cells in the vas deferens, after breeding PAS + vesicle production is terminated. These alterations appear to represent energy conservation strategies employed by the sperm-depleted vas deferens.  相似文献   

14.
15.
Collagen types I, III, and V in human embryonic and fetal skin   总被引:3,自引:0,他引:3  
The dermis of human skin develops embryonically from lateral plate mesoderm and is established in an adult-like pattern by the end of the first trimester of gestation. In this study the structure, biochemistry, and immunocytochemistry of collagenous matrix in embryonic and fetal dermis during the period of 5 to 26 weeks of gestation was investigated. The dermis at five weeks contains fine, individual collagen fibrils draped over the surfaces of mesenchymal cells. With increasing age, collagen matrix increases in abundance in the extracellular space. The size of fibril diameters increases, and greater numbers of fibrils associate into fiber bundles. By 15 weeks, papillary and reticular regions are recognized. Larger-diameter fibrils, larger fibers, denser accumulations of collagen, and fewer cells distinguish the deeper reticular region from the finer, more cellular papillary region located beneath the epidermis. The distribution of collagen types I, III, and V were studied at the light microscope level by immunoperoxidase staining and at the ultrastructural level by transmission (TEM) and scanning electron microscopy (SEM) with immunogold labeling. By immunoperoxidase, types I and III were found to be evenly distributed, regardless of fetal age, throughout the dermal and subdermal connective tissue with an intensification of staining at the dermal-epidermal junction (DEJ). Staining for types III and V collagen was concentrated around blood vessels. Type V collagen was also localized in basal and periderm cells of the epidermis. By immuno-SEM, types I and III were found associated with collagen fibrils, and type V was localized to dermal cell surfaces and to a more limited extent with fibrils. The results of biochemical analyses for relative amounts of types I, III, and V collagen in fetal skin extracts were consistent with immunoperoxidase data. Type I collagen was 70-75%, type III collagen was 18-21%, and type V was 6-8% of the total of these collagens at all gestational ages tested, compared to 85-90% type I, 8-11% type III, and 2-4% type V in adult skin. The enrichment of both types III and V collagen in fetal skin may reflect in part the proportion of vessel- and nerve-associated collagen versus dermal fibrillar collagen. The accumulation of dermal fibrillar collagen with increasing age would enhance the estimated proportion of type I collagen, even though the ratios of type III to I in dermal collagen fibrils may be similar at all ages.  相似文献   

16.
The scaleless notothenioid Gymnodraco acuticeps is a bottom dweller beneath the sea ice of McMurdo Sound, Antarctica. Gymnodraco experience unusual environmental conditions, including highly oxygenated subzero water. Skin morphology is evaluated with reference to its potential as a barrier to ice propagation and as a surface for cutaneous respiration. Light and electron microscopy and histochemistry reveal skin structure that is generally similar to that of other teleosts. In the epidermis, epithelial cells are arranged in nine to fifteen layers, and two types of mucous cells are also present. Large mucous cells are most common on external epidermal surfaces, whereas small cells are more frequent on internal epithelial surfaces. Epithelial cell junctions have extensive areas of desmosomes as well as interdigitations of the cell membranes, especially in the basal and midepidermis. The dermis consists of an exceptionally dense stratum compactum. The skin is thicker than that of Bovichtus, a scaleless temperate notothenioid from New Zealand. Mean skin thicknesses at sites on the trunk are 371–711 μm. With the exception of fins that contact the substrate, epidermal thickness between rays of most fins is 70–118 μm. The epithelial surfaces of the oral and branchial cavities are 27–50 μm thick. An unusual type of connective tissue is present beneath the epidermis of the pelvic fin. It contains abundant ground substance and is similar to mucous connective tissue of the mammalian umbilical cord. Perfusions of a microvascular filling agent reveal a moderately developed cutaneous vasculature. These vessels have the dimensions of capillaries (mean external diameter 11 μm). They are confined to the dermis and are more prominent on the head than on the trunk. The skin is secondary to the gills as a respiratory surface in Gymnodraco.  相似文献   

17.
The dermis in the holothurian body wall is a typical catch connective tissue or mutable collagenous tissue that shows rapid changes in stiffness. Some chemical factors that change the stiffness of the tissue were found in previous studies, but the molecular mechanisms of the changes are not yet fully understood. Detection of factors that change the stiffness by working directly on the extracellular matrix was vital to clarify the mechanisms of the change. We isolated from the body wall of the sea cucumber Stichopus chloronotus a novel protein, softenin, that softened the body-wall dermis. The apparent molecular mass was 20 kDa. The N-terminal sequence of 17 amino acids had low homology to that of known proteins. We performed sequential chemical and physical dissections of the dermis and tested the effects of softenin on each dissection stage by dynamic mechanical tests. Softenin softened Triton-treated dermis whose cells had been disrupted by detergent. The Triton-treated dermis was subjected to repetitive freeze-and-thawing to make Triton-Freeze-Thaw (TFT) dermis that was softer than the Triton-treated dermis, implying that some force-bearing structure had been disrupted by this treatment. TFT dermis was stiffened by tensilin, a stiffening protein of sea cucumbers. Softenin softened the tensilin-stiffened TFT dermis while it had no effect on the TFT dermis without tensilin treatment. We isolated collagen from the dermis. When tensilin was applied to the suspending solution of collagen fibrils, they made a large compact aggregate that was dissolved by the application of softenin or by repetitive freeze-and-thawing. These results strongly suggested that softenin decreased dermal stiffness through inhibiting cross-bridge formation between collagen fibrils; the formation was augmented by tensilin and the bridges were broken by the freeze-thaw treatment. Softenin is thus the first softener of catch connective tissue shown to work on the cross-bridges between extracellular materials.  相似文献   

18.
A. Kemp 《Tissue & cell》2014,46(5):397-408
Many fossil lungfish have a system of mineralised tubules in the dermis of the snout, branching extensively and radiating towards the epidermis. The tubules anastomose in the superficial layer of the dermis, forming a plexus consisting of two layers of vessels, with branches that expand into pore canals and flask organs, flanked by cosmine nodules where these are present. Traces of this system are found in the Australian lungfish, Neoceratodus forsteri, consisting of branching tubules in the dermis, a double plexus below the epidermis and dermal papillae entering the epidermis without reaching the surface. In N. forsteri, the tubules, the plexus and the dermal papillae consist of thick, unmineralised connective tissue, enclosing fine blood vessels packed with lymphocytes. Tissues in the epidermis and the dermis of N. forsteri are not associated with deposits of calcium, which is below detectable limits in the skin of the snout at all stages of the life cycle. Canals of the sensory line system, with mechanoreceptors, are separate from the tubules, the plexus and the dermal papillae, as are the electroreceptors in the epidermis. The system of tubules, plexus, dermal papillae and lymphatic capillaries may function to protect the tissues of the snout from infection.  相似文献   

19.
During larval development of Salamandra salamandra salamandra chromatophores organize to form the definitive pigment pattern constituted by a black background with yellow patches that are characterized by epidermal xanthophores and dermal iridophores. Simultaneously the dermis undergoes remodeling from the larval stage to that typical of the adult. In the present study we ultrastucturally and immunocytochemically examined skin fragments of S. s. salamandra larvae and juveniles in order to investigate the modalities of xanthophore migration and differentiation in the context of dermal remodeling from the larval to adult stage. Semithin and thin sections showed that the dermis in newly born larvae consists of a compact connective tissue (basement lamella), to which fibroblasts and xanthophores adhere, and of a loose deep collagen layer. As larval development proceeds, fibroblasts and xanthophores invade the basement lamella, skin glands develop and the adult dermis forms. At metamorphosis, xanthophores reach the epidermis crossing through the basal lamina. We examined immunocytochemically the expression of signal molecules, such as fibronectin, vitronectin, beta1-integrin, chondroitin sulfate, E-cadherin, N-cadherin and plasminogen activator, which are known to be involved in regulating morphogenetic events. Their role in dermal remodeling and in pigment pattern formation is discussed.  相似文献   

20.
Summary The innervation of the endometrium of rabbit, rat, mink, mongoose and pig has been investigated electron microscopically. Large bundles of nerve fibers can be observed in the connective tissue spaces within the basal layer of the endometrium. Unmyelinated nerve fibers enter the lamina functionalis, terminal nerve fibers penetrate the basal lamina and make contact with the glandular and the cavum epithelial cells. The terminal axons contain abundant synaptic vesicles, dense core vesicles and mitochondria. To date, no specialized presynaptic or postsynaptic membranes have been found.Supported by the Deutsche Forschungsgemeinschaft, Bonn-Bad Godesberg (Grants Ku 210/5 and Be 524/4).Dedicated to Prof. Dr. Drs. h.c. Wolfgang Bargmann on his 70th birthday in friendship and admiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号