首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
SNARE proteins mediate intracellular membrane fusion by forming a coiled-coil complex to merge opposing membranes. A "fusion-active" neuronal SNARE complex is a parallel four-helix bundle containing two coiled-coil domains from SNAP-25 and one coiled-coil domain each from syntaxin-1a and VAMP-2. "Prefusion" assembly intermediate complexes can also form from these SNAREs. We studied the N-terminal coiled-coil domain of SNAP-23 (SNAP-23N), a non-neuronal homologue of SNAP-25, and its interaction with other coiled-coil domains. SNAP-23N can assemble spontaneously with the coiled-coil domains from SNAP-23C, syntaxin-4, and VAMP-3 to form a heterotetrameric complex. Unexpectedly, pure SNAP-23N crystallizes as a coiled-coil homotetrameric complex. The four helices have a parallel orientation and are symmetrical about the long axis. The complex is stabilized through the interaction of conserved hydrophobic residues comprising the a and d positions of the coiled-coil heptad repeats. In addition, a central, highly conserved glutamine residue (Gln-48) is buried within the interface by hydrogen bonding between glutamine side chains derived from adjacent subunits and to solvent molecules. A comparison of the SNAP-23N structure to other SNARE complex structures reveals how a simple coiled-coil motif can form diverse SNARE complexes.  相似文献   

2.
Regulated secretion of neurotransmitter at the synapse is likely to be mediated by dynamic protein interactions involving components of the vesicle (vesicle-associated membrane protein; VAMP) and plasma membrane (syntaxin and synaptosomal associated protein of 25 kDa (SNAP-25)) along with additional molecules that allow for the regulation of this process. Recombinant Hrs-2 interacts with SNAP-25 in a calcium-dependent manner (they dissociate at elevated calcium levels) and inhibits neurotransmitter release. Thus, Hrs-2 has been hypothesized to serve a negative regulatory role in secretion through its interaction with SNAP-25. In this report, we show that Hrs-2 and SNAP-25 interact directly through specific coiled-coil domains in each protein. The presence of syntaxin enhances the binding of Hrs-2 to SNAP-25. Moreover, while both Hrs-2 and VAMP can separately bind to SNAP-25, they cannot bind simultaneously. Additionally, the presence of Hrs-2 reduces the incorporation of VAMP into the syntaxin.SNAP-25.VAMP (7 S) complex. These findings suggest that Hrs-2 may modulate exocytosis by regulating the assembly of a protein complex implicated in membrane fusion.  相似文献   

3.
The synaptosome-associated protein of 25 kDa (SNAP-25) interacts with syntaxin 1 and vesicle-associated membrane protein 2 (VAMP2) to form a ternary soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor (SNARE) complex that is essential for synaptic vesicle exocytosis. We report a novel RING finger protein, Spring, that specifically interacts with SNAP-25. Spring is exclusively expressed in brain and is concentrated at synapses. The association of Spring with SNAP-25 abolishes the ability of SNAP-25 to interact with syntaxin 1 and VAMP2 and prevents the assembly of the SNARE complex. Overexpression of Spring or its SNAP-25-interacting domain reduces Ca(2+)-dependent exocytosis from PC12 cells. These results indicate that Spring may act as a regulator of synaptic vesicle exocytosis by controlling the availability of SNAP-25 for the SNARE complex formation.  相似文献   

4.
SNARE proteins function at the center of membrane fusion reactions by forming complexes with each other via their coiled-coil domains. Several SNAREs have N-terminal domains (NTDs) that precede the coiled-coil domain and have critical functions in regulating the fusion cascade. This review will highlight recent findings on NTDs of syntaxins, the longin domain of VAMP proteins and SNAP-23/25 homologues in yeast. Biochemical and genetic experiments as well as the resolution of several NMR and crystal structures of SNARE NTDs shed light on their diverse function.  相似文献   

5.
The interaction of the presynaptic membrane proteins SNAP-25 and syntaxin with the synaptic vesicle protein synaptobrevin (VAMP) plays a key role in the regulated exocytosis of neurotransmitters. Clostridial neurotoxins, which proteolyze these polypeptides, are potent inhibitors of neurotransmission. The cytoplasmic domains of the three membrane proteins join into a tight SDS-resistant complex (Hayashi et al., 1994). Here, we show that this reconstituted complex, as well as heterodimers composed of syntaxin and SNAP-25, can be disassembled by the concerted action of the N-ethylmaleimide-sensitive factor, NSF, and the soluble NSF attachment protein, alpha-SNAP. alpha-SNAP binds to predicted alpha-helical coiled-coil regions of syntaxin and SNAP-25, shown previously to be engaged in their direct interaction. Synaptobrevin, although incapable of binding alpha-SNAP individually, induced a third alpha-SNAP binding site when associated with syntaxin and SNAP-25 into heterotrimers. NSF released prebound alpha-SNAP from full-length syntaxin but not from a syntaxin derivative truncated at the N-terminus. Disassembly of complexes containing this syntaxin mutant was impaired, indicating a critical role for the N-terminal domain in the alpha-SNAP/NSF-mediated dissociation process. Complexes containing C-terminally deleted SNAP-25 derivatives, as generated by botulinal toxins type A and E, were dissociated more efficiently. In contrast, the N-terminal fragment generated from synaptobrevin by botulinal toxin type F produced an SDS-sensitive complex that was poorly dissociated.  相似文献   

6.
Delayed-rectifier K(+) channels (K(DR)) are important regulators of membrane excitability in neurons and neuroendocrine cells. Opening of these voltage-dependent K(+) channels results in membrane repolarization, leading to the closure of the Ca(2+) channels and cessation of insulin secretion in neuroendocrine islet beta cells. Using patch clamp techniques, we have demonstrated that the activity of the K(DR) channel subtype, K(V)1.1, identified by its specific blocker dendrodotoxin-K, is inhibited by SNAP-25 in insulinoma HIT-T15 beta cells. A co-precipitation study of rat brain confirmed that SNAP-25 interacts with the K(V)1.1 protein. Cleavage of SNAP-25 by expression of botulinum neurotoxin A in HIT-T15 cells relieved this SNAP-25-mediated inhibition of K(DR). This inhibitory effect of SNAP-25 is mediated by the N terminus of K(V)1.1, likely by direct interactions with K(Valpha)1.1 and/or K(V)beta subunits, as revealed by co-immunoprecipitation performed in the Xenopus oocyte expression system and in vitro binding. Taken together we have concluded that SNAP-25 mediates secretion not only through its participation in the exocytotic SNARE complex but also by regulating membrane potential and calcium entry through its interaction with K(DR) channels.  相似文献   

7.
In yeast two-hybrid screens for proteins that bind to SNAP-25 and may be involved in exocytosis, we isolated a protein called EHSH1 (for EH domain/SH3 domain-containing protein). Cloning of full-length cDNAs revealed that EHSH1 is composed of an N-terminal region with two EH domains, a central region that is enriched in lysine, leucine, glutamate, arginine, and glutamine (KLERQ domain), and a C-terminal region comprised of five SH3 domains. The third SH3 domain is alternatively spliced. Data bank searches demonstrated that EHSH1 is very similar to Xenopus and human intersectins and to human SH3P17. In addition, we identified expressed sequence tags that encode a second isoform of EHSH1, called EHSH2. EHSH1 is abundantly expressed in brain and at lower levels in all other tissues tested. In binding studies, we found that the central KLERQ domain of EHSH1 binds to recombinant or native brain SNAP-25 and SNAP-23. The C-terminal SH3 domains, by contrast, quantitatively interact with dynamin, a protein involved in endocytosis. Dynamin strongly binds to the alternatively spliced central SH3 domain (SH3C) and the two C-terminal SH3 domains (SH3D and SH3E) but not to the N-terminal SH3 domains (SH3A and SH3B). Immunoprecipitations confirmed that both dynamin and SNAP-25 are complexed to EHSH1 in brain. Our data suggest that EHSH1/intersectin may be a novel adaptor protein that couples endocytic membrane traffic to exocytosis. The ability of multiple SH3 domains in EHSH1 to bind to dynamin suggests that EHSH1 can cluster several dynamin molecules in a manner that is regulated by alternative splicing.  相似文献   

8.
The assembly of four soluble N-ethylmaleimide-sensitive factor attachment protein receptor domains into a complex is essential for membrane fusion. In most cases, the four SNARE-domains are encoded by separate membrane-targeted proteins. However, in the exocytotic pathway, two SNARE-domains are present in one protein, connected by a flexible linker. The significance of this arrangement is unknown. We characterized the role of the linker in SNAP-25, a neuronal SNARE, by using overexpression techniques in synaptosomal-associated protein of 25 kDa (SNAP-25) null mouse chromaffin cells and fast electrophysiological techniques. We confirm that the palmitoylated linker-cysteines are important for membrane association. A SNAP-25 mutant without cysteines supported exocytosis, but the fusion rate was slowed down and the fusion pore duration prolonged. Using chimeric proteins between SNAP-25 and its ubiquitous homologue SNAP-23, we show that the cysteine-containing part of the linkers is interchangeable. However, a stretch of 10 hydrophobic and charged amino acids in the C-terminal half of the SNAP-25 linker is required for fast exocytosis and in its absence the calcium dependence of exocytosis is shifted toward higher concentrations. The SNAP-25 linker therefore might have evolved as an adaptation toward calcium triggering and a high rate of execution of the fusion process, those features that distinguish exocytosis from other membrane fusion pathways.  相似文献   

9.
Clostridial neurotoxins inhibit neurotransmitter release by selective and specific intracellular proteolysis of synaptobrevin/VAMP, synaptosomal-associated protein of 25 kDa (SNAP-25) or syntaxin. Here we show that in binary reactions synaptobrevin binds weakly to both SNAP-25 and syntaxin, and SNAP-25 binds to syntaxin. In the presence of all three components, a dramatic increase in the interaction strengths occurs and a stable sodium dodecyl sulfate-resistant complex forms. Mapping of the interacting sequences reveals that complex formation correlates with the presence of predicted alpha-helical structures, suggesting that membrane fusion involves intermolecular interactions via coiled-coil structures. Most toxins only attack the free, and not the complexed, proteins, and proteolysis of the proteins by different clostridial neurotoxins has distinct inhibitory effects on the formation of synaptobrevin-syntaxin-SNAP-25 complexes. Our data suggest that synaptobrevin, syntaxin and SNAP-25 associate into a unique stable complex that functions in synaptic vesicle exocytosis.  相似文献   

10.
SNAP-25 and its ubiquitously expressed homologue, SNAP-23, are SNARE proteins that are essential for regulated exocytosis in diverse cell types. Recent work has shown that SNAP-25 and SNAP-23 are partly localized in sphingolipid/cholesterol-rich lipid raft domains of the plasma membrane and that the integrity of these domains is important for exocytosis. Here, we show that raft localization is mediated by a 36-amino-acid region of SNAP-25 that is also the minimal sequence required for membrane targeting; this domain contains 4 closely spaced cysteine residues that are sites for palmitoylation. Analysis of endogenous levels of SNAP-25 and SNAP-23 present in lipid rafts in PC12 cells revealed that SNAP-23 (54% raft-associated) was almost 3-fold more enriched in rafts when compared with SNAP-25 (20% raft-associated). We report that the increased raft association of SNAP-23 occurs due to the substitution of a highly conserved phenylalanine residue present in SNAP-25 with a cysteine residue. Intriguingly, although the extra cysteine in SNAP-23 enhances its raft association, the phenylalanine at the same position in SNAP-25 acts to repress the raft association of this protein. These different raft-targeting signals within SNAP-25 and SNAP-23 are likely important for fine-tuning the exocytic pathways in which these proteins operate.  相似文献   

11.
SNAP-25 is a component of the SNARE complex that is involved in membrane docking and fusion. Using a yeast two-hybrid screen, we identify a novel interaction between SNAP-25 and cytoplasmic Lek1 (cytLEK1), a protein previously demonstrated to associate with the microtubule network. The binding domains within each protein were defined by yeast two-hybrid, coimmunoprecipitation, and colocalization studies. Confocal analyses reveal a high degree of colocalization between the proteins. In addition, the endogenous proteins can be isolated as a complex by immunoprecipitation. Further analyses demonstrate that cytLEK1 and SNAP-25 colocalize and coprecipitate with Rab11a, myosin Vb, VAMP2, and syntaxin 4, components of the plasma membrane recycling pathway. Overexpression of the SNAP-25-binding domain of cytLEK1, and depletion of endogenous Lek1 alters transferrin trafficking, consistent with a function in vesicle recycling. Taken together, our studies indicate that cytLEK1 is a link between recycling vesicles and the microtubule network through its association with SNAP-25. This interaction may play a key role in the regulation of the recycling endosome pathway.  相似文献   

12.
Synaptic vesicle exocytosis requires three SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins: syntaxin and SNAP-25 on the plasma membrane (t-SNAREs) and synaptobrevin/VAMP on the synaptic vesicles (v-SNARE). Vesicular synaptotagmin 1 is essential for fast synchronous SNARE-mediated exocytosis and interacts with the SNAREs in brain material. To uncover the step at which synaptotagmin becomes linked to the three SNAREs, we purified all four proteins from brain membranes and analyzed their interactions. Our study reveals that, in the absence of calcium, native synaptotagmin 1 binds the t-SNARE heterodimer, formed from syntaxin and SNAP-25. This interaction is both stoichiometric and of high affinity. Synaptotagmin contains two divergent but conserved C2 domains that can act independently in calcium-triggered phospholipid binding. We now show that both C2 domains are strictly required for the calcium-independent interaction with the t-SNARE heterodimer, indicating that the double C2 domain structure of synaptotagmin may have evolved to acquire a function beyond calcium/phospholipid binding.  相似文献   

13.
Thyroid hormones are major regulators of postnatal brain development. Thyroid hormones act through nuclear receptors to modulate the expression of specific genes in the brain. We have used microarray analysis to identify novel responsive genes in 14-day-old hypothyroid rat brains, and discovered that synaptosomal-associated protein of 25 kDa (SNAP-25) was one of the thyroid hormone-responsive genes. SNAP-25 is a presynaptic plasma membrane protein and an integral component of the vesicle docking and fusion machinery mediating secretion of neurotransmitters and is required for neuritic outgrowth and synaptogenesis. Using microarray analysis we have shown that SNAP-25 was down-regulated in the hypothyroid rat brain compared with the age-matched controls. Real-time RT-PCR and western blotting analysis confirmed that SNAP-25 mRNA and protein levels decreased significantly in the developing hypothyroid rat brain. Our data suggest that in the developing rat brain, SNAP-25 expression is regulated by thyroid hormone, and thyroid hormone deficiency can cause decreased expression of SNAP-25 and this may on some level account for the impaired brain development seen in hypothyroidism.  相似文献   

14.
To define the role of the Rab3-interacting molecule RIM in exocytosis we searched for additional binding partners of the protein. We found that the two C(2) domains of RIM display properties analogous to those of the C(2)B domain of synaptotagmin-I. Thus, RIM-C(2)A and RIM-C(2)B bind in a Ca(2+)-independent manner to alpha1B, the pore-forming subunit of N-type Ca(2+) channels (EC(50) = approximately 20 nm). They also weakly interact with the alpha1C but not the alpha1D subunit of L-type Ca(2+) channels. In addition, the C(2) domains of RIM associate with SNAP-25 and synaptotagmin-I. The binding affinities for these two proteins are 203 and 24 nm, respectively, for RIM-C(2)A and 224 and 16 nm for RIM-C(2)B. The interactions of the C(2) domains of RIM with SNAP-25 and synaptotagmin-I are modulated by Ca(2+). Thus, in the presence of Ca(2+) (EC(50) = approximately 75 microm) the interaction with synaptotagmin-I is increased, whereas SNAP-25 binding is reduced. Synaptotagmin-I binding is abolished by mutations in two positively charged amino acids in the C(2) domains of RIM and by the addition of inositol polyphosphates. We propose that the Rab3 effector RIM is a scaffold protein that participates through its multiple binding partners in the docking and fusion of secretory vesicles at the release sites.  相似文献   

15.
The docking and fusion of synaptic vesicles with the presynaptic plasma membrane require the interaction of the vesicle-associated membrane protein VAMP with the plasma membrane proteins syntaxin and SNAP-25. Both of these proteins behave as integral membrane proteins, although they are unusual in that they insert into membranes post-translationally. Whereas VAMP and syntaxin possess hydrophobic transmembrane domains, SNAP-25 does not, and it is widely believed that SNAP-25 traffics to and inserts into membranes by post-translational palmitoylation. In pulse-chase biosynthesis studies, we now show that SNAP-25 and syntaxin rapidly bind to each other while still in the cytosol of neuroendocrine and transfected heterologous cells. Cell fractionation studies revealed that cytosolic SNAP-25.syntaxin complexes then traffic to and insert into membranes. Furthermore, the association of SNAP-25 with membranes is dramatically enhanced by syntaxin, and the transmembrane domain of syntaxin is essential for this effect. Surprisingly, despite the importance of the SNAP-25 palmitoylation domain for membrane anchoring at steady state, removal of this domain did not inhibit the initial association of newly synthesized SNAP-25 with membranes in the presence of syntaxin. These data demonstrate that the initial attachment of newly synthesized SNAP-25 to membranes is a consequence of its association with syntaxin and that it is only after syntaxin-mediated membrane tethering that SNAP-25 is palmitoylated.  相似文献   

16.
We recently reported that store-operated Ca2+ entry (SOCE) in nonexcitable cells is likely to be mediated by a reversible interaction between Ca2+ channels in the plasma membrane and the endoplasmic reticulum, a mechanism known as "secretion-like coupling." As for secretion, in this model the actin cytoskeleton plays a key regulatory role. In the present study we have explored the involvement of the secretory proteins synaptosome-associated protein (SNAP-25) and vesicle-associated membrane protein (VAMP) in SOCE in pancreatic acinar cells. Cleavage of SNAP-25 and VAMPs by treatment with botulinum toxin A (BoNT A) and tetanus toxin (TeTx), respectively, effectively inhibited amylase secretion stimulated by the physiological agonist CCK-8. BoNT A significantly reduced Ca2+ entry induced by store depletion using thapsigargin or CCK-8. In addition, treatment with BoNT A once SOCE had been activated reduced Ca2+ influx, indicating that SNAP-25 is needed for both the activation and maintenance of SOCE in pancreatic acinar cells. VAMP-2 and VAMP-3 are expressed in mouse pancreatic acinar cells. Both proteins associate with the cytoskeleton upon Ca2+ store depletion, although only VAMP-2 seems to be sensitive to TeTx. Treatment of pancreatic acinar cells with TeTx reduced the activation of SOCE without affecting its maintenance. These findings support a role for SNAP-25 and VAMP-2 in the activation of SOCE in pancreatic acinar cells and show parallels between this process and secretion in a specialized secretory cell type. synaptosome-associated protein; vesicle-associated membrane protein; pancreatic acinar cells; cytoskeleton; calcium entry  相似文献   

17.
Pairing of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and SNARE proteins on target membranes (t-SNAREs) mediates intracellular membrane fusion. VAMP3/cellubrevin is a v-SNARE that resides in recycling endosomes and endosome-derived transport vesicles. VAMP3 has been implicated in recycling of transferrin receptors, secretion of alpha-granules in platelets, and membrane trafficking during cell migration. Using a cell fusion assay, we examined membrane fusion capacity of the ternary complexes formed by VAMP3 and plasma membrane t-SNAREs syntaxin1, syntaxin4, SNAP-23 and SNAP-25. VAMP3 forms fusogenic pairing with t-SNARE complexes syntaxin1/SNAP-25, syntaxin1/SNAP-23 and syntaxin4/SNAP-25, but not with syntaxin4/SNAP-23. Deletion of the N-terminal domain of syntaxin4 enhanced membrane fusion more than two fold, indicating that the N-terminal domain negatively regulates membrane fusion. Differential membrane fusion capacities of the ternary v-/t-SNARE complexes suggest that transport vesicles containing VAMP3 have distinct membrane fusion kinetics with domains of the plasma membrane that present different t-SNARE proteins.  相似文献   

18.
SNAP-25, syntaxin, and synaptobrevin are SNARE proteins that mediate fusion of synaptic vesicles with the plasma membrane. Membrane attachment of syntaxin and synaptobrevin is achieved through a C-terminal hydrophobic tail, whereas SNAP-25 association with membranes appears to depend upon palmitoylation of cysteine residues located in the center of the molecule. This process requires an intact secretory pathway and is inhibited by brefeldin A. Here we show that the minimal plasma membrane-targeting domain of SNAP-25 maps to residues 85-120. This sequence is both necessary and sufficient to target a heterologous protein to the plasma membrane. Palmitoylation of this domain is sensitive to brefeldin A, suggesting that it uses the same membrane-targeting mechanism as the full-length protein. As expected, the palmitoylated cysteine cluster is present within this domain, but surprisingly, membrane anchoring requires an additional five-amino acid sequence that is highly conserved among SNAP-25 family members. Significantly, the membrane-targeting module coincides with the protease-sensitive stretch (residues 83-120) that connects the two alpha-helices that SNAP-25 contributes to the four-helix bundle of the synaptic SNARE complex. Our results demonstrate that residues 85-120 of SNAP-25 represent a protein module that is physically and functionally separable from the SNARE complex-forming domains.  相似文献   

19.
Movement through the endocytic pathway occurs principally via a series of membrane fusion and fission reactions that allow sorting of molecules to be recycled from those to be degraded. Endosome fusion is dependent on SNARE proteins, although the nature of the proteins involved and their regulation has not been fully elucidated. We found that the endosome-associated hepatocyte responsive serum phosphoprotein (Hrs) inhibited the homotypic fusion of early endosomes. A region of Hrs predicted to form a coiled coil required for binding the Q-SNARE, SNAP-25, mimicked the inhibition of endosome fusion produced by full-length Hrs, and was sufficient for endosome binding. SNAP-25, syntaxin 13, and VAMP2 were bound from rat brain membranes to the Hrs coiled-coil domain. Syntaxin 13 inhibited early endosomal fusion and botulinum toxin/E inhibition of early endosomal fusion was reversed by addition of SNAP-25(150-206), confirming a role for syntaxin 13, and establishing a role for SNAP-25 in endosomal fusion. Hrs inhibited formation of the syntaxin 13-SNAP-25-VAMP2 complex by displacing VAMP2 from the complex. These data suggest that SNAP-25 is a receptor for Hrs on early endosomal membranes and that the binding of Hrs to SNAP-25 on endosomal membranes inhibits formation of a SNARE complex required for homotypic endosome fusion.  相似文献   

20.
Bajohrs M  Rickman C  Binz T  Davletov B 《EMBO reports》2004,5(11):1090-1095
Botulinum neurotoxins (BoNTs) block neurotransmitter release through their specific proteolysis of the proteins responsible for vesicle exocytosis. Paradoxically, two serotypes of BoNTs, A and E, cleave the same molecule, synaptosome-associated protein with relative molecular mass 25K (SNAP-25), and yet they cause synaptic blockade with very different properties. Here we compared the action of BoNTs A and E on the plasma membrane fusion machinery composed of syntaxin and SNAP-25. We now show that the BoNT/A-cleaved SNAP-25 maintains its association with two syntaxin isoforms in vitro, which is mirrored by retention of SNAP-25 on the plasma membrane in vivo. In contrast, BoNT/E severely compromises the ability of SNAP-25 to bind the plasma membrane syntaxin isoforms, leading to dissociation of SNAP-25. The distinct properties of botulinum intoxication, therefore, can result from the ability of shortened SNAP-25 to maintain its association with syntaxins-in the case of BoNT/A poisoning resulting in unproductive syntaxin/SNAP-25 complexes that impede vesicle exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号