首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heterozygous and homozygous glycophorin A were partially and fully reductively methylated with 13C-enriched formaldehyde in the presence of sodium cyanoborohydride. Total reductive methylation modified the five lysine residues (to produce N epsilon,N-[13C]dimethyl lysine) and the N-terminal amino acid residues (N alpha,N-[13C]dimethyl serine and leucine) of glycophorins AM and AN, respectively. 13C-NMR spectra of these species indicated that the 13C-enriched methyl carbons of the five lysyl derivatives all occur at 44.1 ppm downfield from Me4Si. Titration results indicate that the pK alpha of these methylated lysines is greater than 10. The chemical shift equivalent methyl resonances of the 13C-enriched methylated N-terminal Leu derivative were found to occur at 42.8 ppm downfield from Me4Si and exhibited a normal pH titration behavior (pK alpha approximately 7.4). The methyl resonances of the N alpha,N-[13C]dimethyl Ser derivative, on the other hand, were found to exhibit chemical shift nonequivalence, indicating rotational constraints about the C alpha-N bond. The linewidths of the two methyl resonances were also found to be considerably different; this phenomenon could be eliminated by running spectra of the sample (pH approximately 5.0) at elevated temperatures (75 degrees C). This result suggested that for the N alpha,N-[13C]dimethyl Ser derivative of glycophorin AM, hindered rotation must occur about one of the N alpha-13CH3 bonds. This structural difference at the N-terminal residue of glycophorins AM and AN may be related to the MN blood group determinants displayed by these related glycoproteins.  相似文献   

2.
N-terminal Nα-[13C]monomethylamino derivatives for the N-terminal serine and leucine residues of glycophorins AM and AN, respectively, were obtained by reductively 13C-methylating homozygous human erythrocytes (MM, NN). The 13C-labeled glycophorins, AM and AN, were then isolated. A unique structural state was observed in solution reductively 13C-methylated glycophorin AM that was not observed in glycophorin AM derived from 13C-methylated erythrocytes. We attribute this state to the fact that some of the glycophorin AM forms a head-to-head dimer when subjected to reductive 13C-methylation in aqueous solution. The 13C chemical shift data and pH titration data for the N-terminal [13C]dimethylamino and [13C]monomethylamino groups of glycophorin AM and AN derived from reductively 13C-methylated erythrocytes were in agreement with the chemical shift and titration data previously obtained for the N-terminal [13C]dimethylamino groups of solution reductively 13C-methylated glycophorins and related glycopeptides and peptides and N-terminal [13C]monomethylamino groups of related glycopeptides and peptides.  相似文献   

3.
13C nuclear magnetic resonance spectroscopy (13C n.m.r.) was used to determine the pH titration parameters for the N-terminal N,N-[13C]dimethylamino and N,N-[13C]monomethylamino groups of glycophorins AM and AN, and some 28 related glycoproteins, glycopeptides and peptides. The results show that glycosylation of the Ser and Thr residues at positions 2, 3 and 4 of the glycophorins have a pronounced effect on the titration parameters. Substitution of amino acids 4 and 5 in the glycophorin sequence appears to minimally affect our titration parameters. Internal hydrogen-bonding involving the N-terminal Ser residue may explain some of the unusual pH titration results observed for glycophorin AM.  相似文献   

4.
The pH dependence of the labeled-carbon resonances of reductively [13C] methylated compounds tri-l-Ser, glyco-octapeptide AM, asialoglyco-octapeptide AM, glyco-octapeptide AN, asialoglyco-octapeptide AN, and a glycopentapeptide was investigated. The results are discussed relative to those previously observed for reductively [13C]methylated, intact glycophorins AM and AN, and in terms of the mode of display of the MN blood-group specificities by these related glycoproteins. The results indicated that the α-d-NeuAc groups appear to affect the pH-titration results of glyco-octapeptides AM and AN. Moreover, comparison of the pH-titration results for reductively [13C]methylated glyco-octapeptide AM and reductively [13C]methylated asialoglyco-octapeptide AM with those of a reductively [13C]methylated glycopentapeptide and reductively [13C]methylated tri-l-Ser indicated that the other carbohydrate residues present (α-d-GalNAc and β-d-Gal) may also affect the pH-titration results. The reductive-methylation modification appears to affect the chemical shifts of the carbohydrate and peptide carbon atoms of the glycopentapeptide minimally.  相似文献   

5.
Structural studies of homozygous glycophorin AM were undertaken by monitoring the 13C methyl resonances of 13C reductively methylated glycophorin AM (contains five N?,N-[13C]dimethyl Lys residues, and the N-terminal Nα,N-[13C]dimethyl Ser residues) in various forms of glycosylation. The results indicate that removal of the α-d-NeuAc residues does not affect the structure about the N-terminal Ser residue. However, removal of the fifteen O-linked oligosaccharide units results in a structural effect about the N-terminal Ser residue. Partial methylation experiments performed on native glycophorin AM and deglycosylated glycophorin AM indicate that methylation of the lysine residue(s) may influence the structure about the N-terminal Ser residue, especially in the case of deglycosylated AM.  相似文献   

6.
The tyrosine residues of guanidinated horse heart cytochrome c have been specifically acetylated by reaction with N-[1-13C]acetylimidazole (90 atom%). Acetylation was monitored by 13C-NMR spectroscopy. The tyrosine residues were found to show widely varying reactivities ranging from one that is completely and exclusively acetylated at low reagent concentration (residue 67) to one that is acetylated only when the protein is unfolded (residue 97). Homogeneous derivatives were prepared containing one (either residue 67 or 97), three 48, 67 and 74), or four (residues 48, 67, 74 and 97) O-[1-13C]acetyl groups. 13C-NMR spectra of selected derivatives were obtained at pH 5.8, in the presence of cyanide ion, in the ferrous and ferric oxidation states, and after denaturation with 6M guanidine hydrochloride. The O-[1-13C]acetyltyrosyl resonances gave chemical shift values ranging from 171.8 to 176.0 ppm. These resonances were assigned to specific groups based on the known order of reactivity of the tyrosyl side chains toward N-acetylimidazole. The chemical shift of O-[1-13C]acetyltyrosyl 67 was found to be particularly sensitive to changes in protein structure. The proximity of this group to the heme makes it subject to distance-dependent paramagnetic and ring current effects. Acetylation of tyrosyl 74 gives rise to a pH-dependent equilibrium between conformers in the ferric state and a conformation change in the ferrous state. Acetylation of this residue also leads to an absorbance decrease at 695 nm that can be related to the 13C-NMR-detected conformational equilibrium. Addition of cyanide ion abolished this equilibrium.  相似文献   

7.
Complex formation between bovine neurophysin II and oxytocin molecules containing 85% 13C enrichment in specific amino acid residues was studied using 13C nuclear magnetic resonance spectroscopy. Chemical shift and relaxation time values of the analogue [13C-Leu3]oxytocin, [13C-Gly9]oxytocin, and the doubly labeled [13C-Ile3 Gly9]oxytocin were obtained for the hormones in the absence and presence of neurophysin. The results showed that certain 13C nuclear magnetic resonance parameters of residue 3 but not of residue 9 of oxytocin are altered upon binding to neurophysin. These observations suggest that residue 3 but not residue 9 is involved in the protein-hormone interaction and they demonstrate the general applicability of selective 13C enrichment for the study of peptide-protein interactions.  相似文献   

8.
A 13C NMR spectroscopic method for non-invasive, time-resolved measurements of glutathione function in the intact ocular lens maintained in organ culture is described. L-[beta-13C]cysteine (1 mM) included in the incubation medium is incorporated, by way of lenticular amino acid uptake and glutathione biosynthetic mechanisms, into the cysteinyl residue of intralenticular glutathione. 13C-NMR chemical shift measurements facilitate analysis of glutathione synthesis and anti-oxidant reactions in the intact tissue. The results of this preliminary study demonstrate the viability of a rapid non-invasive method for monitoring the multiple aspects of glutathione biosynthesis, metabolism, and function in intact tissue.  相似文献   

9.
Myosin light chain kinase binding to plastic   总被引:3,自引:0,他引:3  
R B Pearson  C House  B E Kemp 《FEBS letters》1982,145(2):327-331
Methionine-81 and/or -8 of the transmembrane sialoglycoprotein, glycophorin A, have been specifically alkylated with 13CH3I to produce the sulfonium ion derivatives [S-[13C]methylmethionine-8]glycophorin A and [S-[13C]methylmethionine-8 and -81]glycophorin A. 13C NMR spectra of these species show that the resonances of the methyl groups of the modified glycophorins occur at 26.1 ppm downfield from Me4Si. A spin-lattice relaxation time of 0.4 was observed for the 13C-enriched methyl resonances of the sulfonium ion derivatives of Met-8 and -81, which corresponds to an effective correlation time of < 2× 10?10 s. Demethylation of the 2 glycophorin A sulfonium ion species with 2-mercaptoethanol produces native glycophorin A which now has the ε-carbon of the methionine residue(s) 45% isotopically enriched. The ε-carbon of Met-8 was found to occur at 15.7 ppm downfield from Me4Si whereas the ε-carbon of Met-81 exhibited an unusual chemical shift of 2.0 ppm downfield from Me4Si. The spin-lattice relaxation time of both resonances was found to be ~0.3 s.  相似文献   

10.
E Berman 《Biochemistry》1984,23(16):3754-3759
The analysis of the carbon-13 chemical shift data of NeuAc alpha (2----3)Gal beta (1----4)Glc and NeuAc alpha (2----3)Gla beta-(1----4)GlcNAc and their respective NeuAc alpha (2----6) isomers established distinct and different conformations of the sialic acid residue, depending on the type of anomeric linkage [alpha-(2----3) vs. alpha (2----6)]. Interactions between the NeuAc residue and the Glc or GlcNAc residue are particularly strong in the case of the alpha (2----6) isomers. Similar effects are observed for the larger oligosaccharides [II3(NeuAc)2Lac and IV6NeuAcLcOse4] and even in intact glycoproteins and polysaccharides. It is proposed that the NeuAc alpha (2----3) isomers assume an extended conformation with the sialic residue at the end (terminal) of the oligosaccharide chain or branch. The NeuAc alpha (2----6) isomers are assumed to be folded back toward the inner core sugar residues.  相似文献   

11.
The indole C-2(delta 1) carbon of Trp 62 in hen egg-white lysozyme was selectively labeled with 13C through a series of reactions involving N'-formylkynurenine 62-lysozyme with K13CN, NaBH4-reduction, and acid-catalyzed dehydration. [delta 1-13C]Trp 62-lysozyme in which Trp 62 is labeled with 90% 13C has the same chemical and enzymatic properties as the native protein. The reverted lysozyme gave a single 13C-NMR signal at 125 ppm. pH-titration of the 13C signal indicated a transition at pH 3.9 for the free enzyme. In the presence of (GlcNAc)3, the resonance signals were shifted 0.5-1 ppm upfield, and the transitions in the titration curve were observed at pH 3.9 and 6.5. Asp 52 and Glu 35 were assigned to the groups with pKas of 3.9 and 6.5, respectively. In [2-13C]AHT 62-lysozyme, which has 3-(2-amino-3-hydroxy-3H-[2-13C]indol-3-yl)alanine (AHT) at position 62, AHT 62 behaved quite differently from Trp 62 on pH-titration of the 13C-label. These results suggest that a conformational change around Trp 62 is induced upon ionization of the catalytic residue and that the structural flexibility of the side chain of this aromatic residue in the substrate binding site is closely related to the function of lysozyme.  相似文献   

12.
A unique resonance in the 13C NMR spectrum of [13C]methylated ribonuclease A has been assigned to a N epsilon, N-dimethylated active site residue, lysine 41. The chemical shift of this resonance was studied over the pH range 3 to 11, and the titration curve showed two inflection points, at pH 5.7 and 9.0. The higher pKa, designated pKa1, was assigned to the ionization of the lysyl residue itself while the pKa of 5.7, designated pKa2, was assigned on the basis of its pKa to the ionization of a histidyl residue which is somehow coupled to lysine 41. Both pKa values are measurably perturbed by the binding of active site ligands including nucleotides, nucleosides, phosphate, and sulfate. In most cases, the alterations in pKa values induced by the ligands were larger for pKa2. The ligand-induced perturbations in pKa2 generally paralleled those reported for histidine 12, another active site residue (Griffin, J. H., Schechter, A. N., and Cohen, J. S. (1973) Ann. N. Y. Acad. Sci. 222, 693-708). The sensitivity of the N epsilon, N-dimethylated lysine 41 resonance to the histidyl ionization may result from a conformational change in the active site region of ribonuclease which is coupled to the histidyl ionization. This coupling between lysine 41 and another ribonuclease residue, which has not been documented previously, offers new insight into the interrelationship between residues in the active site of this well characterized enzyme.  相似文献   

13.
The 13C resonances of Nα,N-[13C]dimethylserine of partially 13C reductively methylated glycophorin AM were monitored as a function of pH at 45°C. For comparison, limited data are also presented for the pH dependence of the 13C resonances of Nα,N- [13C]dimethylserine of fully 13C reductively methylated deglycosylated glycophorin AM. The ‘major’ component of Nα,N- [13C]dimethylserine of glycophorin AM did not titrate, whereas the ‘minor’ component titrated with a pKa of 7.80 (Hill coefficient of 0.95). Similar results are also indicated for the Nα,N- [13C]dimethylserine resonances of 13C reductively methylated deglycosylated glycophorin AM.  相似文献   

14.
The virgin (reactive-site Leu18-Glu19 peptide bond intact) and modified (reactive-site Leu18-Glu19 peptide bond hydrolyzed) forms of turkey ovomucoid third domain (OMTKY3 and OMTKY3*, respectively) have been analyzed by proton-detected 1H(13C) two-dimensional single-bond correlation (1H[13C]SBC) spectroscopy. Previous 1H-nmr assignments of these proteins [A.D. Robertson, W.M. Westler, and J.L Markley (1988) Biochemistry, 27, 2519-2529; G. I. Rhyu and J. L. Markley (1988) Biochemistry, 27, 2529-2539] have been extended to directly bonded 13C atoms. Assignments have been made to 52 of the 56 backbone 13C alpha-1H units and numerous side-chain 13C-1H groups in both OMTKY3 and OMTKY3*. The largest changes in the 13C chemical shift upon conversion of OMTKY3 to OMTKY3* occur at or near the reactive site, and tend toward values observed in small peptides. Moreover, the side-chain prochiral methylene protons attached to the C gamma of Glu19 and C delta of Arg21 show nonequivalent chemical shifts in OMTKY3 but more equivalent chemical shifts in OMTKY3*. These results suggest that the reactive site region becomes less ordered upon hydrolysis of the Leu18-Glu19 peptide bond. Comparison of 13C alpha chemical shifts of OMTKY3 and bovine pancreatic trypsin inhibitor [D. Brühuiler and G. Wagner (1986) Biochemistry 25, 5839-5843; N. R. Nirmala and G. Wagner (1988) Journal of the American Chemical Society, 110, 7557-7558] with small peptide values [R. Richarz and K. Wüthrich (1978) Biopolymers, 17, 2133-2141] suggests that 13C alpha chemical shifts of residues residing in helices are generally about 2 ppm downfield of resonances from nonhelical residues.  相似文献   

15.
13C nuclear magnetic resonance (n.m.r.) spectral data for 13C reductively methylated N-terminal tryptic glycopeptides and for 13C reductively methylated N-terminal glyco-octapeptides derived from homozygous glycophorins AM and AN are presented. Their 13C chemical shift data are compared with the previously published 13C n.m.r. data for 13C reductively methylated homozygous glycophorins AM and AN in order to investigate the means of display of the MN blood determinants by these species. The pH dependence of the 13C resonances of Nα,N-[13C]dimethyl leucine of glyco-octapeptide AN and of Nα,N-[13C]dimethyl serine of glyco-octapepti AM indicated that only a slight structural perturbation occurs at the N-terminus when a large portion of the glycoprotein molecule is removed. However, one structural ‘state’ of 13C reductively methylated glycophorin AM is lost when the glyco-octapeptide AM is produced. The 13C resonance of Nα,N-[13C]dimethyl leucine of glycooctapeptide AN titrated with a pKa of 7.7 (Hill coefficient ~ 1). The 13C resonance of Nα,N-[13C]dimethyl serine, on the other hand, exhibited an unusual pH dependence, indicating the existence of some possible steric constraints or hydrogen bonding in this molecule. In comparison to the data obtained for 13C-labelled glycooctapeptide AM molecule, the pH dependence of the chemical shift of the 13C resonance of Nα,N-[13C]dimethyl serine of tripeptide tri-L-serine is also presented. Circular dichroism (c.d.) spectra indicated that the reductive methylation technique does not cause a large perturbation of the glycophorin A molecule.  相似文献   

16.
The filamentous coliphage M13 possesses multiple copies of a 50-residue coat protein which is inserted into the inner membrane of Escherichia coli during infection. 13C nuclear magnetic resonance (NMR) spectroscopy has been used to probe the structure and dynamics of M13 coat protein solubilized in detergent micelles. A comparison of backbone dynamics within the hydrophobic core region and the hydrophilic terminal domains was obtained by biosynthetic incorporation of [3-13C]alanine. Alanine is distributed throughout the protein and accounts for 10 residues (i.e., 20% of the total). Similar 13C NMR spectra of the protein have been obtained in two anionic detergents, sodium deoxycholate and sodium dodecyl sulfate, although the structures and physical properties of these solubilizing agents are quite different. The N-terminal alanine residues, assigned by pH titration, and the penultimate residue, assigned by carboxypeptidase A digestion, give rise to analogous peaks in both detergent systems. The pKa of Ala-1 (approximately 8.8) and the relaxation parameters of individual carbon atoms (T1, T2, and the nuclear Overhauser enhancement) are also generally similar, suggesting a similarity in the overall protein structure. Relaxation data have been analyzed according to the model-free approach of Lipari and Szabo [Lipari, G., & Szabo, A. (1982) J. Am. Chem. Soc. 104, 4546-4559]. The overall correlation times were obtained by fitting the three experimental relaxation values for a given well-resolved single carbon atom to obtain a unique value for the generalized order parameter, S2, and the effective correlation time, tau e. The former parameter reflects the spatial restriction of motion, and the latter, the rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
It is shown that natural abundance 13C NMR spectroscopy can be used to determine the structures and relative amounts of chemically modified forms of a histidine residue of a peptide or protein. The unfractionated product of the reaction of N alpha-acetyl-L-histidine with bromoacetate yields four resonances of nonprotonated aromatic carbons. These resonances are assigned (on a one-to-one basis) to C gamma of the intact amino acid, the two monocarboxymethylated derivatives (at N delta1 and N epsilon2), and the dicarboxymethylated derivative. The effect of pH on the chemical shift of C gamma is characteristic for each of the four species. This property is used to study the carboxymethylation of His-15 of hen egg white lysozyme upon treatment with iodoacetate. With the use of various reaction conditions, His 15 is carboxymethylated in detectable quantities only at N epsilon2. The spectra of the various reaction mixtures indicate which conditions are best for maximizing the yield of this derivative. A comparison of the spectrum of chromatographically pure [N epsilon2-carboxymethylhistidine-15]lysozyme with that of the intact protein indicates that the chemical modification does not significantly affect the conformation of the protein (at least in the regions of all aromatic amino acid residues).  相似文献   

18.
The polymorphic structures of silk fibroins in the solid state were examined on the basis of a quantitative relationship between the 13C chemical shift and local structure in proteins. To determine this relationship, 13C chemical shift contour plots for C alpha and C beta carbons of Ala and Ser residues, and the C alpha chemical shift plot for Gly residues were prepared using atomic co-ordinates from the Protein Data Bank and 13C NMR chemical shift data in aqueous solution reported for 40 proteins. The 13C CP/MAS NMR chemical shifts of Ala, Ser and Gly residues of Bombyx mori silk fibroin in silk I and silk II forms were used along with 13C CP/MAS NMR chemical shifts of Ala residues of Samia cynthia ricini silk fibroin in beta-sheet and alpha-helix forms for the structure analyses of silk fibroins. The allowed regions in the 13C chemical shift contour plots for C alpha and C beta carbons of Ala and Ser residues for the structures in silk fibroins, i.e. Silk II, Silk I and alpha-helix, were determined using their 13C isotropic NMR chemical shifts in the solid state. There are two area of the phi,psi map which satisfy the observed Silk I chemical shift data for both the C alpha and C beta carbons of Ala and Ser residues in the 13C chemical shift contour plots.  相似文献   

19.
Xu XP  Case DA 《Biopolymers》2002,65(6):408-423
We have used density functional calculations on model peptides to study conformational effects on (15)N, (13)C alpha, (13)C beta, and (13)C' chemical shifts, associated with hydrogen bonding, backbone conformation, and side-chain orientation. The results show a significant dependence on the backbone torsion angles of the nearest three residues. Contributions to (15)N chemical shifts from hydrogen bonding (up to 8 ppm), backbone conformation (up to 13 ppm), side-chain orientation and neighborhood residue effects (up to 22 ppm) are significant, and a unified theory will be required to account for their behavior in proteins. In contrast to this, the dependence on sequence and hydrogen bonding is much less for (13)C alpha and (13)C beta chemical shifts (<0.5 ppm), and moderate for carbonyl carbon shifts (<2 ppm). The effects of side-chain orientation are mainly limited to the residue itself for both nitrogen and carbon, but the chi(1) effect is also significant for the nitrogen shift of the following residue and for the (13)C' shift of the preceding residue. The calculated results are used, in conjunction with an additive model of chemical shift contributions, to create an algorithm for prediction of (15)N and (13)C shifts in proteins from their structure; this includes a model to extrapolate results to regions of torsion angle space that have not been explicitly studied by density functional theory (DFT) calculations. Crystal structures of 20 proteins with measured shifts have been used to test the prediction scheme. Root mean square deviations between calculated and experimental shifts 2.71, 1.22, 1.31, and 1.28 ppm for N, C alpha, C beta, and C', respectively. This prediction algorithm should be helpful in NMR assignment, crystal and solution structure comparison, and structure refinement.  相似文献   

20.
Nakazawa Y  Asakura T 《FEBS letters》2002,529(2-3):188-192
The structure and structural transition of the glycine residue adjacent to the N-terminal alanine residue of the poly(L-alanine), (Ala)(12-13), region in Samia cynthia ricini silk fibroin was studied using (13)C nuclear magnetic resonance (NMR). Most of the glycine carbonyl peaks in the (13)C solution NMR spectrum of [1-(13)C]glycine-silk fibroin could be assigned to the primary structure from the comparison of the (13)C chemical shifts of seven glycine-containing tripeptides. The slow exchange between helix and coil forms in the NMR time scale was observed with increasing temperature exclusively for the underlined glycine residue in the Gly-Gly-(Ala)(12-13) sequence during fast helix-coil transition of the (Ala)(12-13) region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号